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Executive Summary 

Satellite imagery could conceivably be added to data traditionally collected in traffic 
monitoring programs to allow wide spatial coverage unobtainable from ground-based 
sensors in a safe, off-the-road environment. Previously, we estimated that 1-m resolution 
panchromatic imagery should allow accurate vehicle counts and rough vehicle 
classifications, while large vehicles might be accurately detected with only 4-m 
resolution. At least three private groups are planning to market such high-resolution 
satellite data in the near future, but several issues must be addressed before these data 
could be used to complement traffic monitoring programs. This report addresses the 
following issues: 

, 

demonstrating that vehicles can be identified and classified accurately from 
satellite imagery; 

developing efficient image processing methods; and 

determining methods to integrate the imagery with ground-based data and 
assessing the value of this integration. 

Previously, we designed a process to compare image data with data obtained from 
ground-based sensors to investigate the accuracy in identieing and classifj.ing vehicles 
from imagery. We also tested the process using aerial photographs to simulate satellite 
imagery. In our new work, we replicate these field tests and develop software that 
automates many of the analytical components involved with these tests. The software 
could eventually be used in tests conducted with real satellite data. The empirical results 
of our new field tests show that our approach and software work well. However, we 
notice discrepancies between image- and ground-based data that lead us to propose that 
there are inevitable differences between image- and ground-based data sets that cannot be 
attributed to misidentification of vehicles in the images. Therefore, data collected from 
ground-based sensors should not be considered as absolute ground truth against which 
image-based data should be evaluated. Further work is warranted to reduce the magnitude 
of these inevitable differences and to determine how to work with such differences when 
determining the accuracy of vehicle identification and classification from image-based 
data. Additional consideration should also be given to operational differences in the tests 
we have conducted using simulated satellite imagery (scanned aerial photographs) and 
the ultimate tests of interest -those using real satellite data. For example, consideration 
should be given to anticipated data formats and the ease with which highway segments of 
interest can be identified and delimited in the images. 

Based on our experience with simulated high-resolution imagery, we are optimistic that 
an individual could visually detect and develop vehicle classifications from 1-m satellite 
imagery. However, to be useful in practice, automated image processing must be used to 
perform the detection and classification. We had previously developed rules that could be 
coupled with thresholding methods to count and classify vehicles using panchromatic 
imagery. This approach worked well under conditions where vehicle shadows were 
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pronounced, but it did not perform well under different lighting conditions. We are now 
developing a more robust methodology that first identifies dynamic (moving) pixels by 
subtracting an image of a highway segment under current conditions from a steady-state 
background image intended to represent the Same segment with no vehicles present. The 
effects of different lighting conditions in the current and background images are reduced 
by first transforming grey tones of one of the images. We develop an iterative, maximum 
likelihood-based procedure that requires an aprior estimate of the probability that a 
random pixel in the current image is dynamic. Tests on images generated from computer 
simulations and on images obtained from scanned aerial photographs show the promise 
of this approach and its robustness to the prior probability estimates required. Future 
work is needed to refine the image processing components we have been developing, to 
test them further, and to incorporate them with vehicle classification modules that would 
operate on the set of dynamic pixels identified. 

The limited temporal coverage that would be possible from a sensor carried on a satellite 
in a nongeostationary orbit has led us to focus on using satellite imagery to improve 
estimates of Average Annual Daily Traffic (AADT) on highway segments and Vehicle 
Miles Traveled (VMT) over the network of these segments. We develop methods to 
simulate the improvements in AADT and VMT estimates produced by combining data 
obtained on time scales consistent with satellite orbits with data collected on the ground. 
Numerical results indicate the potential of satellite-based data to complement ground- 
based data and markedly reduce the errors in AADT or VMT estimation and the 
personnel required to obtain sufficient ground data to produce a given level of accuracy. 
These encouraging results were obtained when using methods similar to those 
traditionally employed in practice. We improve estimates further by developing a method 
designed to take advantage of the assumed data models. However, we expected to see 
greater improvements when using this method. We, therefore, feel that this method can 
be refined and that other methods can be developed to exploit the different spatial- 
temporal natures of the satellite- and ground-based data. 
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Section 1. Introduction 

This report documents our continued research into the feasibility of using data obtained 
from satellite images to improve estimates of interest in traf€ic monitoring programs. 
Using satellite imagery is attractive for traffic monitoring programs, since imagery would 
allow wide spatial coverage unobtainable from ground-based sensors. In addition, sensors 
onboard satellites are 08-the-rard, and, therefore, there is no disruption to tr&ic flow or 
increased hazard to personnel during installation and repair. Moreover, high-resolution 
satellite imagery will soon be available for the first time in the non-military world. 

Previously, we estimated that approximately 1 -m resolution panchromatic imagery 
should allow accurate vehicle counts and rough vehicle classifications, while large 
vehicles might be accurately detected with only 4-m resolution (McCord et al. 1995% 
1995b). At least three private'groups are planning to market high-resolution satellite data 
in the near future (American Society of Photogrammetry and Remote Sensing, 1996). 
Earthwatch, Inc. lost the EarlyBird satellite (3-m panchromatic data) shortly &r launch 
in December 1997. However, the company is focused on the QuickBird-1 Satellite with a 
l-m panchromatic (0.45-0.9 pn) sensor and a 4-m multispectral (MS) sensor onboard. 
Orbital Sciences Corporation is presently developing OrbView-3, which will have l-m 
panchromatic and 4-m MS sensors. In April 1999, Space Imaging EOSAT lost the 
Ikonos-1 satellite that was to cany l-m panchromatic and 4-m MS sensors. Ikonos-2, an 
identical twin to Ikonos-1, was launched on 24 September, 1999. After an initial four- 
month calibration period, Ikonos images are now available for purchase by the public. 

Several issues would need to be addressed before such high-resolution satellite imagery 
could operationally be used to complement traffic monitoring programs. This report 
addresses the following issues: 

To gain acceptance, it would be necessary to demonstrate that vehicles can indeed be 
identified and classified accurately from real satellite imagery. 

To be used operationally, it would be necessary to develop methods that efficiently 
process image &tu into data that can be used to improve traftic parameter estimation. 

To stimulate investment in implementation, it would be necessary to assess the value 
that the processed imagery data would add to traditional traflic parameter estimation 
and to Clevelop methods for integrating he abtu with ground-based data to increase 
the value of the combined data. 

Showing that the numbers of classified vehicles observed in satellite images match those 
obtained from ground truth data would demonstrate that vehicles could be counted and 
classified from satellite imagery. However, determining ground truth data comparable to 
the type of data observed in a satellite image would not be straightforward. To obtain the 
l-m ground resolution we are seeking to detect vehicles, the sensor would need to orbit at 
altitudes much less than those permitting geostationary orbits, orbits where the satellite 



can continually image a fixed location on the earth (McCord et uZ. 1995a). The 
nongeostationary orbits imply that the image-based data would consist of snapshots of 
different vehicles over wide spatial weas taken at instants in time (Merry et al. 1996, 
McCord et al. 1995a). On the other hand, data obtained from ground sensors would 
consist of vehicles passing a point in space over an interval of time. Previously, we 
designed and field tested a process to compare the image data with data obtained from 
ground sensors (Merry et aZ. 1996). We used aerial photographs to simulate the satellite 
imagery because of the unavailability of high-resolution satellite imagery. 

In Section 2, we report on new field tests, where we again used aerial photographs to 
simulate satellite imagery. In our new work, we also developed software to automate 
many of the calculations involved. The empirical results show that our approach and 
software work well. However, we still notice differences between vehicle classifications 
obtained fiom the image- and ground-based data. We propose that some differences are 
unavoidable because of the different nature of the data sets. Therefore, when conducting 
tests with real satellite data in the future, data obtained fiom ground-based sensors should 
not be considered as absolute ground truth. Further work seems warranted to reduce the 
size of the differences that can occur and to obtain a feel for the maximum difference that 
could be tolerated before the equivalence of the number of vehicles in the image- and 
ground-based data would be rejected with confidence. 

Based on our experience with aerial photographs scanned to simulate 1-m imagery, we 
are optimistic about the ability to detect and classifjr vehicles from high-resolution 
satellite imagery. Specifically, we have always been able to visually detect in the 1-m 
images vehicles that appeared in the original aerial photographs. However, if such 
imagery is to be usefbl in practice, the detection and classification would need to be 
perfomed automati call y . 

In Section 3, we report on our progress in developing operational image processing 
methods for vehicle classification. The task is different from the presently popular one of 
detecting vehicle presence in video images of a fixed location. In video imaging, an 
extremely fine-resolution background of the location can be built up from thousands of 
frames under almost constant lighting conditions. Satellite-based images, on the other 
hand, will only yield pairs of overlapping images of a location, with each image in the 
pair taken several seconds apart, and different pairs of images taken days apart. We had 
previously developed classification rules that we coupled with thresholding methods to 
count and assign vehicles into two classes using panchromatic imagery. The method 
worked well under conditions where vehicle shadows were pronounced (McCord et al. 
1995a, 199b). However, the method did not perform as well under different lighting 
conditions (Meny et aZ. 1996). We, therefore, have been developing and testing a more 
robust methodology. We describe this methodology in Section 3.1 and report the 
encouraging test results in Section 3.2. We propose hrther work to continue developing 
the components of this methodology, integrating these components into an operational 
program, and testing the program with simulated and real satellite data. 
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Although a sensor carried on a satellite in a nongeostationary orbit could image the same 
area on different orbits, the repeat period would be on the order of days (McCord et aZ., 
199Sa). We propose that such data would be most useful for complementing traffic 
monitoring programs that collect and estimate state- or region-wide network trait 
statistics over relatively long time periods. Compared to traditional ground-based 
methods, satellite imagery would detect concurrent traffic conditions on an increased 
number of highway segments. It could also more directly determine changes in 
conditions along a segment of highway. Figure 1.1 shows velocities along approximately 
10 km of 1-70 in Central Ohio estimated from overlapping aerial photography that we 
have been using to simulate satellite data. 

5 

In our work reported in Section 4, we have been concentrating on the ability of satellite- 
based data to improve estimates of Average Annual Daily Traffic (AADT) on highway 
segments and Vehicle Miles Traveled (VMT) over the network of these segments. In 
Section 4.1 we describe the methods we developed and coded to simulate trafftc patterns 
and true AADT and VMT statistics and estimate these measures from observations 
assumed to be obtained from samples of the trafEc patterns. The estimation component 
can use either a traditional-based method (what has traditionally been used to estimate 
these measures fiom ground-based sensors) or a model-based method that uses 
observations more efficiently when the data can be assumed to be compatible with a 
specified underlying stochastic process. In Section 4.2, we report the results of numerical 
studies we conducted using our software. These results indicate the potential of satellite- 
based data to complement ground-based data and markedly reduce the errors in AADT or 
VMT estimation or the personnel required to maintain an accuracy level when estimating 
these parameters. 

In Section 5 we summarize the report and expand upon future work we feel is warranted 
in several areas. 
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Figure 1.1 .  Velocity profile along 1-70 E in Central Oho, estimated 
from overlapping aerial photographs. 
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Section 2. Air-Ground Coordinated Field Tests 

Our previous work (McCord et ul. 1995% 1995b, Merry et ul. 1996) indicates that 1-m 
resolution would be sufficient to identifl vehicles and distinguish between large and small 
vehicles in digital images scanned from panchromatic aerial photographs. It would be 
necessary to demonstrate that vehicles could be identified in panchromatic imagery 
obtained from a satellite platform to convince potential users that satellite imagery can, in 
reality, be used to count and classifi vehicles on highway segments. 

In our previous work, we compared vehicles identified in digital images scanned from 
aerial photographs to vehicles identified in the photographs. That is, the photographs 
served as the grmnd truth. When conducting tests with satellite imagery, it would be 
difficult to simultaneously image the dynamic highway segments with photographs and 
satellite imagery. Therefore, vehicle data detected from ground-based sensors would need 
to serve as ground truth. However, vehicle data obtained from ground-based sensors 
consist of vehicles passing a fixed location through time (ie.,  of temporal flow data at a 
point), whereas that collected by imagery consists of vehicles imaged at an instant across 
an area @e., of spatial density data at one time). We have been developing a means to 
compare the ground data to that collected from the satellite. We conducted a field test 
similar to that previously described (Merry et ul., 1996) to test and refine our approach. 
We also wrote software that automates many of the calculations required and tested th is  
program on the data collected. As in the previous study where we conducted the analysis 
manually, we scanned aerial photographs to simulate the satellite imagery. 

2.1 Acquisition of Data 

We conducted a new field test on 29 October 1996. The Ohio Department of 
Transportation’s (ODOT) Bureau of Aerial Engineering obtained aerial photography of 
the same three highway sites in Central Ohio that were used in a test we conducted in a 
previous project (Merry et ul., 1996) - 1-270 in Franklin County on the west side of 
Columbus, 1-70 in Madison County just west of Columbus, and 1-71 in Pickaway 
County just southwest of Columbus (see Figure 2.1). Photographs were obtained at a 
scale of 1 in. = 400 A with the highway centerlines located approximately in the center of 
the photos. The recorded weather indicated high overcast clouds, scattered at 1800 m 
(6000 A). 

While the aerial photographs were being taken, ODOT’s Bureau of Technical Services 
was collecting vehicle data passing traffic sensors embedded in the highway. For each 
direction of the 1-70 and 1-71 facilities, volume-by-length sensors were used to collect 1- 
minute volumes by two length classes - under 20 ft (6.1 m) and 20 ft (6.1 m) and over. 
For each direction of the 1-270 facility, weigh-in-motion sensors were used to record 
FHWA vehicle class and the time to the nearest second that the vehicle passed the sensor. 
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Figure 2.1. Site location map showing the I-270,I-70 and 1-71 field sites 
used in the 1996 field test. 
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To provide additional control, we videotaped traffic in all but the 1-71 southbound 
directions during the data collection period. The videotape had time stamps to the minute. 

We obtained the aerial photographs and ground sensor data in the same formats as those 
described in Merry et ul. (1996). 

2.2 Analysis of Data 

Our analysis is similar to what we developed and documented in Meny et ul. (1996). The 
process compares the number of vehicles in a class passing a ground trafk sensor during 
a specified time interval to a projection of the number in that class that would pass the 
location of the sensor during the same time interval. The projections are based on vehicle 
locations and speeds obtained in the imagery. As such, the comparisons will be influenced 
not only by how well vehicles can be identified in the images, but also by how well the 
times that the identified vehicles will arrive at the sensor location, which we denoteX""", 
can be predicted. 

We considered two vehicle classes, small and large, which we call cars and trucks, for 
simplicity. We based the classes on size, since it is a parameter that could conceivably be 
distinguished in images. In the volume-by-length sensor data, we classed vehicles less than 
20 ft (6.1 m) long as cars and vehicles 20 A (6.1 m) or longer as trucks. In the weigh-in- 
motion data, we considered vehicles in FHWA classes 1,2,3, and 5 to be in our car 
category and vehicles in the other classes to be in our truck category. The sensor data is 
provided by lane, but we aggregated across lanes to obtain classified counts during a time 
interval by direction (see Merry et ul., 1996). In this way, the numbers of cars and trucks 
passing the sensor during a specified time interval were readily available from the data 
recorded by the ground sensor. The time intervals are those recorded by the ground 
sensor. 

We visually classified vehicles in the aerial photographs as cars or trucks based on size. 
We also visually identified identical vehicles in different photographs and assigned each 
vehicle a 2-part identifier, where the first part indicated its class (C or T, for car or truck) 
and the second part (an integer number) allowed it to be identified as the same vehicle in 
different images: a vehicle with the same identifier in different photographs was believed 
to be the same vehicle. 

The photographs were scanned and saved as digital %bit image files. The x,y locations of 
the vehicles were digitized from these image files. The times that the vehicles were imaged 
and vehicle identifiers were manually added to the file. Highway edgelines were also 
digitized fiom these image files. The images were placed in a common x,y coordinate 
system. This consisted of registering the images by identiQing points that were common 
to pairs of images. The digitized locations of vehicles at specified times, the two-part 
identifiers of these vehicles, the digital locations from the reference edgeline of the 
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highway, and the locations of the ground sensor and upstream and downstream ramps 
serve as input to the software. This s o h a r e  estimates the time that each vehicle passes 
the ground sensor location 2" and totals the number of vehicles by class passing x""" 
during a specified time interval. The software code is described fully in Appendix A. We 
explain the concepts used here and note that comparisons with the manual calculations 
conducted as described in Meny et al. (1996) show that our software works very well. 

To control for horizontal curvature of the highway, we use the digitized edgeline of the 
highway as a linear reference. The program mathematically projects the digitized vehicle 
locations to this digitized edgeline, providing linear distances from a referenwdatum. A 
vehicle that appears in more than one image is automatically identified by its two-part 
identifier. The linear distance traveled between subsequent imaging of the same vehicle is 
calculated from the vehicle's locations along the edgeline. This distance is divided by the 
times between the images to yield an estimate of the vehicle's average velocity U" in the 
time between images. The closest imaged 1ocationX" of the vehicle to the ground sensor, 
&e time &e vehicle was imaged at this location, the estimated average velocity U"(X"' 
traveled in the time between this image and the next photograph, and the location of the 
ground sensor x"" are used to estimate the time the vehicle passes the ground sensor. 
Some vehicles may appear in only one image. These vehicles are assigned velocities equal 
to the average velocity of the other vehicles in its class - i.e., a car is assigned a velocity 
equal to the average velocity of all the cars considered on the segment, and a truck is 
assigned a velocity equal to the average velocity of all the trucks considered on the 
segment. Once the time that each vehicle passes the ground sensor is estimated, it is 
straightforward to determine the number of vehicles that pass the sensor during any time 
interval. Since the identifier indicates the vehicle class, the number of vehicles in each class 
in any time interval can be readily determined. In this case, the times would correspond to 
the airplane clock, i.e., the clock that assigns times to the photographs. 

Although the process is conceptually straightforward, there are certain controls that must 
be exerted. The ground sensor data are tagged to ground sensor clocks, while the image- 
based estimates are tagged to the airplane clock. Discrepancies in these clocks can lead to 
poor comparisons in a dynamic system such 8s this. We compensated for time 
discrepancies by adding or subtracting a constant time offset to the clocks. The details are 
presented in Meny et al. (1996), but the basic approach is to use video data obtained at 
the site to independently reference the video camera clock to the airplane clock and to the 
ground sensor clock. An offset is found between the video camera and ground sensor 
clock that maximizes a correlation measure between video-based estimates of classified 
counts passing 2"" during short intervals and ground sensor-based estimates of classified 
counts passing 2""" during intervals of possibly different durations over a relatively long 
time period. (we maximized Pearson's correlation factor, obtained video-based estimates 
of vehicles passing 2"" in 5-second intervals, used 1-min intervals for volume-by-length 
sensors and 1 -sec intervals for weigh-in-motion sensors, and compared the estimates over 
12-minute periods.) An offset between the video and airplane clocks is found by 
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averaging differences between the video times and estimated photo times when 
distinguishable vehicles pass 2". The time offset between the photo and ground sensor 
clocks is then determined by taking the differences of these photo-video and ground 
sensor-video time offsets. We expect that we will be able to control for the effect of clock 
differences more efficiently in tests with real satellite data by simply referencing the 
ground sensor clocks to the UTC (universal time code) time used in the satellite clocks. 

We also control for vehicles entering or exiting the highway. For example, if time intervals 
analyzed are too long, some vehicles could enter the highway from ramps upstream of the 
ground sensor after the highway was imaged and pass the ground sensor during the 
analyzed interval. Similar problems could occur with upstream exit ramps and 
downstream entrance and exit ramps. Therefore, we limit the time intervals to those such 
that only vehicles that are imaged downstream of ramps upstream of the ground sensor 
and upstream of downstream ramps could pass the ground sensor during the time period 
of analysis. Doing so shortens the lengths of the analyzed intervals from what could 
otherwise be considered from the imagery, and in some cases we only analyze intervals of 
less than a minute. 

2.3 Results 

After compensating for the time discrepancies among the various clocks, we compared 
volumes-by-class projected as passing the ground Sensors from the images, counted fiom 
the video, and recorded directly by the ground sensors for estimated concurrent time 
intervals. We considered the longest time intervals such that vehicles using entrance and 
exit ramps would not confound the comparisons. That is, we determined the time 
intervals by estimating the earliest and latest times that imaged vehicles downstream of 
upstream ramps and upstream of downstream entrance ramps would pass the ground 
sensors, where upstream and downstream directions are defined with respect to the 
ground sensor. We shortened the intervals to the nearest minute for the volume-by-length 
sensors and to the nearest second for the weigh-in-motion based sensors. 

The estimated volumes are presented in Table 2.1. In general, the estimates compare 
favorably with the ground sensor data at the 1-70 and 1-71 sites and less favorably at the 
1-270 site, although the 1-270 data compare fairly well with the video data. We 
investigated the 1-270 data in more detail and, upon contacting ODOT discovered that the 
ground sensor (weigh-in-motion) was malfhctioning during the relevant time interval at 
this site. 

c 

Despite the controls for clock differences and the effect of entrance and exit ramps, there 
could still exist discrepancies between the classification volumes recorded by the ground 
sensors and those estimated from the images that are not attributable to a failure to detect 
vehicle classes in the imagery. The discrepancies could result from errors in the estimated 
vehicle locations, which would cause errors in the X" and the W discussed above. They 
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could also result from the fundamental difference in comparing data taken from images 
covering a stretch of highway at a point in time to data collected from ground sensors at a 
point in space during a time interval. In short, if a vehicle would accelerate or decelerate 
from the estimated speed U" used to estimate when it would pass xSens, the estimated 
time of passingyms would be wrong. Depending on where it fell in the interval of 
analysis, this could cause discrepancies between the image-estimated volumes and the 
ground sensor-recorded volumes used as ground truth, even if the vehicles were correctly 
detected in the images. We have, therefore, begun developing methods and accompanying 
sofhvare to determine upper and lower bounds on the classified volumes that wouldqpass 
rms during specified intervals. The bounds would account for reasonable errors in 
estimated vehicle locations and vehicle acceleration and deceleration characteristics. 

Table 2.1. Volumes passing ground sensors estimated from air photos, video and 
recorded by ground sensors during estimated concurrent time intervals. 

cm l? I i h b 1 I S C  l..mn I Tmck Volume I 

Segment Ground Photo Video Ground Photo Viako- 
sensor sensor 

1-70 WB , 1996 
Time Interval = 6 rnin 63 72 64 47 42 45 
1-70 EB, 1996 
Time Interval = 2 rnin 16 16 16 11 12 . 12 
1-270 NB, 1996 
Time Interval = 0.83 rnin 18 31 28 13 6 6 
1-270 SB, 1996 
Time Interval = 1.58 rnin 52 45 47 3 10 10 
1-71 NB, 1996 

1 Time Interval = 2 min 25 27 26 I 7 7 5 
1-71 SB, 1996 
Time Interval = 6 min 52 53 . na 32 30 , na 

We have also begun investigating the contributions of various sources of error in these 
estimations. EKOIS due to pixel resolution, digitization of vehicle locations, and projected 
locations along digitized highway edgelines seem minor. It appears that errors due to 
estimating time offsets and to the registration of images could be more important. 
However, in tests using real satellite data, the time offset errors could be reduced by 
ensuring that the ground sensor clock is calibrated against a UTC clock, which would be 
the time of the satellite image. The error due to registration of overlapping images should 
also be reduced because of the precise locations associated with the satellite images. The 
most important and, perhaps, most irreducible source of error in estimating when vehicles 
imaged at a given time would pass a ground sensor, appears to be the error in determining 

1 
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I 
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the velocity profile of the vehicle between the time that the vehicle is imaged and when it 
passes the sensor. The bounds we are developing and the accompanying software should 
help in making useful comparisons between data collected from ground sensors and image- 
based estimates collected with real satellite data. 

Finally, discrepancies between image-estimated and ground sensor-recorded volumes 
could come from errors in the ground sensors themselves or the classification s o h a r e  
used. We mentioned above that we only discovered that the 1-270 sensor was 
malfhctioning upon detailed analysis. We onlythought to look at the sensor because of 
the independent (video) source of data used to form estimates. It actually appears that the 
image-estimated volumes generally agree with estimates derived from the video data better 
than with the volumes recorded fiom the ground sensors. In future feasibility tests, one 
must, therefore, be careful in considering data collected from ground sensors as ground 
truth. Obtaining concurrent video data might be necessary when conducting feasibility 
tests with real satellite data. 
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Section 3. Image Processing 

3.1 Identifying Stationary and Dynamic Pixels 

We assume that the remotely sensed image has been segmented for the appropriate highway 
section. In addition, we assume that we have a historical estimate of the gray-level image of the 
same highway segment in which all pixels represent the background pavement (stationary pixels). 
.Given a current image of the same highway segment with vehicles, registered appropriately with 
respect to the background image, we want to detect the pixels corresponding to vehicles. That is, 
we want to classifjr pixels in the new image as either stationary (pavement pixels) or dynamic 
(vehicle pixels). In this section, we present a brief introduction of the statistical pattern recognition 
procedure we developed to address this task. The technical dehils are presented in Appendix B. 
Future development will investigate: (1) how to obtain this initial estimate of the background 
scene, and (2) classification of clusters of moving pixels, e.g., into cars and trucks (or neither). 

Let BG demte fie gray-le~e! of the pixel in row i and column j in the estimated background image 
of the segment and let Yij be the gray-level of the same pixel of the current image. A priori, before 
seeing the new image Y, we start with a prior probability, qj, on the pixel (i, j) being stationary in 
the new image. Let 

- 
?t;j = Probability that pixel (ij) is stationary in image Y. (3.1) 

In general, the new (current) image, Y, may not have the same overall brightness level as the 
e . ted background image, By due to different lighting conditions under which the two images 
were acquired. We, therefore, trun.@orm the brightness level of the background image to make it 
comparable to match the overall brightness level of the new image Y using a variety of point 
operations (see, e.g., Castleman (1996), Section 6.3). Let (MBij)? where +:[0,255]->[0,255] is a 
brightness adjustment transformation in a specified class of pomt operations, denote the 
transformed background image. The parameters of the (unknown) transformation are estimated 
adaptively from image to image. 

Then we obtain the differences, Ri, in gray-level of the current image and the transformed 
background, ie., 

The stationary pixels in the current image, Y, are expected to have small values of Rij, whereas the 
dynamic pixels are expected to have Rij that are, in general, large in absolute values. We then 
estimate the distribution of R, given that the pixels are stationary, p ~ ,  and its distriiution, given that 
the pixels are dynarmc, pv, and compute the posterior probability of each pixel being stationary. 
The posterior probability of a pixel being static is used to classifl the pixel into static or dynamic. 

The estimation of the transformation $, differencing of the current image and transformed 
background image, computation of posterior probabilities, and classification of pixels are applied in 
an iterative manner, until the posterior probabilities converge. 
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These posterior probabilities can either be used to classifL each pixel individually or as input to a 
rule based clumping procedure. A more advanced statistical pattern recognition procedure, such as 
a flexible template-matching procedure, which uses the spatial relationship of dynamic pixel 
clusters could also be used to classify groups of dynamic pixels. 

3.2 Overview of the Iterative Procedure 

For each pixel in the current image, define the mobsewable variables XiJ = 1 if pixel ( i j)  in the 
image Y is a stationary pixel, and 0 otherwise. Let nij = PrOb(Xij = 1) denote the prior probability 
that the pixel (id) is a background (Stationary) pixel. 

The conditional distributions of the differences Ri, of the background pixels and the vehicle pixels 
in the current image are defined as follows: 

a p(R6 I Xg = 1) = p~(Rij),  probability density of the background pixel differences, 
p(R. IJ I X-. *J = 0) = pv(Rjj), probability density of the vehiclehackground pixel differences. 

Note that m(.) should be a unimodal distribution centered at 0, but pv(.) depends on the gray levels 
of dynamic pixels in the image Y. 

Now the joint density of R and X is given by 

Mij 2 Xij) = n(Xij) pB(Rij) p~@ij)  l-xlj- (3-3) 

Using Bayes theorem, the posterior probability of Xij = 1 is given by 

To be able to compufe these posterior probabilities, pv (.), ps(.) and M.) all need to be known. In 
general, these three components in the model are unla?own and need to be estimated. A 111 
Bayesian approach would include s j w i m g  priors on the unknown components. However, since 
the amount of information about pv (.), ps(.) and M.) is overwhelming (tens of thousands of pixels 
- a small segment of the size 10 m x 10,000 m has 100,000 1-m pixels), any prior information 
would likely be swamped by the data. Therefore, the approach adopted here is to estimate pv (.) 
and ps(.) and +(.) in an iterative fashion, ignoring the fact that they were estimated when computing 
the posterior probabilities P(x1j = 1 I Rij) in each cycle of the iteration. The detailed descriptions of 
each component of this procedure are given in Appendix B. We illustrate the performance of this 
procedure for a test image, as well as scanned 1 m x 1 m resolution aerial images in the next 
section. 
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3.3 Numerical Study 

To illustrate the potential of the methodology described in the previous section, we conducted the 
following studies. The first study is based on simulated images, while the second uses images 
formed by scanning air photos taken during our field tests. In the fbture, we expect to form the 
background image from an average of several images of the same location. Under light traffic 
conditions, forming the average would smooth out any signals from vehicles, and the resulting 
image should be a good approximation of the pavement background. In the studies reported below, 
we did not have several images of the same location from which to form an average. We, therefore, 
simulated the background as explained in the studies. The results of both studies show the promise 
of our method in detecting dynamic pixels that would be associated with vehicles and the 
robustness of the results to the assumed prior probabilities required by our algorithm. 

3.3.1 Simulated Images 

To illustrate our approach under a controlled setting, we simulated two images. Specifically, we 
formed two 30 x 20 images and assumed that all pixels in the images were eit_h_er shtic, 
representing the background pavement, or dynamic, representing vehicles. We assumed that there 
were two rectangular vehicles of dimensions 5 x 7 and 6 x 8 in the current image, i.e., the image 
that would be analyzed for vehicle counts. In this way, there were truly 14% (= (5 x 7 + 6 x 8) / (30 
x 29) x 1000/0) dynamic pixels and 86% (= 100% - 14%) background pixels in the current image. 
The remaining pixels in this current image were assumed to be pavement pixels. The second image 
was simulated to represent the background image. All pixels in this image were assumed to be 
pavement. We generated gray tones from normal distributions. For the background image gray 
tones for pixels in columns 4-7, columns 12-16 and columns 19-20, respectively, were generated 
from N(110,20), N(120,ZO) and N (80,20) distributions. Gray tones for all other pixels were 
generated from a N( 150,20) distribution. We considered gray tones of pixels in the current image to 
be the sum of the gray tones in the background image and a N(0,7) disturbance term. We 
considered the gray tones of the dynamic pixels to be produced by either reflectance off a vehicle 
or off the pavement covered with a vehicle shadow. The dynamic pixels produced from vehicle 
reflectance for one vehicle (a darker vehicle) were generated from a N(40,5) distribution. The 
dynamic vehicle reflectance from the other vehicle (a lighter vehicle) was generated from a 
N( 1703) distribution. The dynamic shadow reflectance gray tones were generated from a N(0,5) 
distribution for both vehicles. We regenerated values whenever a negative value or a value greater 
than 255 was obtained and quantized generated values to the nearest whole number. One realization 
octhe images is shown in Figure 3.1. 

We compared our procedure on these images, using 1- and 5-parameter transformations. We also 
compared these procedures against a variant of a thresholding procedure we had used previously 
(Merry et ul., 1996). When using the transformations, after the procedure has converged, we 
classified pixels with posterior probabilities greater than 0.5 as dynamic. For the thresholding 
procedure, we subtracted the gray tones of the pixels in the incoming image from those of the 
corresponding pixels in the background image. The assumption is that difference values of pixels 
that were static (pavement) in the two images would be closer to 0 than difference values of pixels 
that were static (pavement) in one image and dynamic (vehicle) in the other image. Based on this 

! 
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Figure 3.1. Simulated background and the incoming image used in the simulated image study. 
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assumption, we classified the pixels in the tails as dynamic, where the number of pixels chosen was 
obtained from the prior estimate of the number of dynamic pixels. 

15 

We calculated errors ofomission and errors ofcommission for each of the procedures. Errors of 
omission occur when dynamic pixels are not classified as dynamic. Errors of commission occur 
when pixels that are classified as dynamic are in reality not dynamic. That is, an error of omission 
occurs when a dynamic pixel is classified as being a background pixel, and an error of commission 
occurs when a background pixel is classified as being dynamic. 

Thresholding 7/83 (8%) 15/91 (16%) 
1 -parameter transform 10/83 (12%) 3/76'(4%) 
5-parameter transform 2/83 (2%) 3/84 (4%) 

These resulting errors of omission and commission for the three methods assuming three different 
prior probabilities of dynamic pixels (1 - qj, where Rj is defined in eq. 3.1) are presented in Table 
3.1. (As mentioned above, 14% of the pixels were truly dypnic  in the incoming image. Therefore, 
this would be the correct prior probability that a random pixel would be dynamic.) The results 
show the superior performance of the transformation methods on this simulated set of images and 
its robustness across different prior estimates. 

Table 3.1 Errors of omission and commission in determining dynamic pixels for thre-methods 

(true number (%) of dynamic pixels = 83 (14%)). 
on a simulated pair of images, by prior estimate of the percentage of dynamic pix 

The usual tradeoff between errors of omission and commission is apparent in Table 3.1 for all 
methods, but it is much less pronounced in the transformation method than in the thresholding 
method. This tradeoff occm because the chance of misclassifjmg a background pixel as dynamic 
can be reduced by classi@ng fewer pixels as dynamic, but doing so will increase the chance of .  
omitting a dynamic pixel from being correctly classified as dynamic. If the prior estimates are 
small or large enough, the thresholding procedure will have very few errors of commission or 
omission, respectively. In the limit, when the prior estimate goes to 0, no pixels will be classified as 
dynamic in the thresholding procedure, and there will be no possibility for errors of commission. 
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This occurs, however, at the expense of a large number of errors of omission, which will go to 
100% as the prior estimate goes to 0. On the other hand, as the prior estimate becomes large 
enough, so many pixels will be classified as dynamic that no dynamic pixels will be omitted. The 
percentage of errors of omission will go to 0, but the percentage of errors of commission will 
become very large, as many background pixels will be wrongly classified as dynamic. These 
extremes are apparent in Table 3.1 for the thresholding procedure. Because of tbis type of extreme 
behavior, the thresholding procedure outperforms the transformation method on errors of 
commission at low (5%) prior estimates. However, the improved performance is only mar&, and 
the thresholding procedure performs markedly poorly on errors of omission. Similarly, the better 
performance of the thresholding procedure on errors of omission is overwhelmed by its poor 
performance on errors of commission at the high (25%) prior estimate. 

When considering the errors of omission and commission together, the transformation methods 
perform much better than the thresholding procedure. Moreover, Table 3.1 indicates that the 
performance of the transformation methods is not affected much by the prior estimate of the 
percentage of dynamic pixels. This insensitivity to the prior estimate is encouraging, since it 
indicates that good results could be produced from even poor estimates of traffic conditions that 
were present when the image was obtained. 

3.3.2 Scanned Images 

We also investigated the performance of our method on a pair of air photos scanned to simulate 1- 
m resolution. We used two overlapping photos taken from 1-70. We present these two images, 
which we call Image A and Image B, in Figure 3.2. 

We conducted two experiments on these images. In one we used Image A of Figure 3.2 as the 
current image, representing the image containing dynamic and static pixels, and formed the 
background image, representing an image of static pixels, from Image B. In the other experiment, 
we reversed the roles, using Image A to form the background image and Image B as the current 
image. To form the background images, we manually replaced the gray values of what we observed 
to be pixels corresponding to vehicles and their shadows (ie.,  the dynamic pixels) with gray values 
corresponding to the surrounding pavement. 

To conduct the experiments, the images had to be registered to a common coordinate system. In 
both cases we registered the incoming image to that of the background image. Therefore, the 
registrations were independent in the two experiments. We shall see the effekt of imperfkct 
registration below. 

We ran the thresholding method and 1-, 2-, and %parameter transformations on the images for 
prior estimates of dynamic pixels (1 - qj, where nij is defined in eq. 3.1) of 1%, 3%, and 7%. (In 
reality, approximately 3% of the pixels were dynamic.) For each procedure and prior estimate, we 
calculated errors of omission and commission as we did in the experiments on simulated images in 
Section 3.3.1. 
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Figure 3.2. Images obtained by scanning air photos to represent 1-m resolution. 
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In Figure 3.3, we plot the errors of omission against the errors of commission for the procedures. 
The numbers next to the plotted points represent the value, in percent, of the prior estimate of 
dynamic pixels used in the procedures. 

Whether image A is used as the current image (Fig. 3.3a) or as the background image (Fig. 3.3b), 
the transformation procedures are seen to produce fewer errors of omission than the thresholding 
procedure for any prior estimate of dynamic pixel probability. For 1% and 3% prior estimates of 
dynamic pixel probability, the thresholding procedure produces markedly fewer errors of 
commission than the transformation procedures for the corresponding prior dynarmc probability 
estimates. This is not surprising, however, as explained in Section 3.3.1. When prior estimates are 
SO low, the thresholding procedure is expected to produce a low number of commission errors, but 
it does so at the price of a large number of omission errors. 

Moreover, the effect of many of the errors of commission would be reduced when rules, such as 
those proposed in Merry et al. (1996), are applied to determine whether the dynamic pixels are 

dynamic and static pixels appear in Figures 3.4 and 3.5. In these figures, black pixels are those 
classified as dynamic, and white pixels are those classified as static. In the transformation images, 
there are many more isolated pixels being classified as being dynamic. Comparing the images of 
Figures 3.4 and 3.5 to those of Figure 3.2, one sees that the vehicles correspond to the clumps of 
dynamic pixels seen in the processed images. The isolated pixels would be eliminated as noise 
when examined in the context of rules designed to classifj groups of dynamic pixels output from 
the transformation as being vehicle or nonvehicle elements. Moreover, one sees that the shapes of 
the groups of pixels classified as dynamic in the transformation procedures correspond closely to 
the shapes of the vehicles seen in Figure 3.2, indicating that vehicle classification rules should 
perform well when operating on the output of the transformation method. 

J. 

J associated with a vehicle or with nonvehicle elements. Images representing the classification of 

Examination of Figures 3.4 and 3.5 also shows that many errors of commission result fiom pixels 
near the median of the highway segment being classified as dynamic. The long, narrow pattern 
observed would again be conducive to rules correctly classifymg the groups of pixels as not being 

the images in the common coordinate system. The median shows up much less in Figure 3.5, where 
Image B is used as the incoming image, than in Figure 3.4, where Image A is used as the incoming 
image. (As a result there are many fewer errors of commission in Figure 3.3b than in Figure 3.3a) 
We believe that our registration was significantly better in the former case than in the latter case. 
Better registration should be available fiom satellite imagery than fiom the manually registered 
scanned images used in this study. Still, we expect that the effects of registration will need to be 
investigated in real satellite images before we feel comfortable in interpreting the outputs of our 
transformation procedures. 

The results again show the robustness of the transformation procedures. Specifically, when the 
prior estimates vary fiom 1% to 7%, the thresholding errors of commission and omission vary over 
ranges of approximately 50% in Figure 3.3a and 35%40% in Figure 3.3b. The curves produced 
from the transformation procedures vary over much smaller ranges - approximately 15% and 5%, 
for errors of commission and omission, respectively, in the two figures. Again, it appears that even 
rough estimates of trafic conditions when the images are taken can lead to good performance. 

i associated with vehicles. Moreover, this phenomenon results in large part from errors in registering 
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Figure 3.3. Percent errors of omission vs. percent errors of commission in identiwg dynamic 
pixels for the thresholding and transformation (1-, 2-, and 5-parameter) procedures using the 

images of Figure 3.2, for varying prior estimates of dynamic pixel probabilities (3% dynamic pixels 
in the image). 
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Figure 3.3. Percent errors of omission vs. percent errors of commission in identifj.ing dynamic 
pixels for the thresholding and transformation (1-, 2-, and 5-parameter) procedures using the 

images of Figure 3.2, for varying prior estimates of dynamic pixel probabilities (3% dynamic pixels 
in the image). 

21 



.. 
1 .  
I 

i 
' 4  

! 

.I 

I 

I 

-. 

- - . .  

;.e 1. 
* L  f 

I 

I 

a. Thresholchg. b. 1-parameter. 

Figure 3.4. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for the 
thresholding procedure and 1-, 2-, and 5-parameter transformations (image A used as incoming 

image; modified image B used as background image; prior estimate of dynamic pixel probability 
was IYO). 
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Figure 3.4. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for the 
thresholding procedure and 1-, 2-, and 5-parameter transformations (image A used as incoming 

image; modified image B used as background image; prior estimate of dynamic pixel probability 
was 1%). 
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Figure 3.5. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for 
thresholding procedure and 1-, 2-, and 5-parameter transformations (image B used as incqming 

image; modified image A used as background image; prior estimate of dynamic pixel probability 
was W O ) .  
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Figure 3.5. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for 
thresholding procedure and 1 -, 2-, and 5-parameter transformations (image B used as incoming 

image; modified image A used as background image; prior estimate of dynamic pixel probability 
was 1%). 
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Section 4. Use of Image Data 

As mentioned earlier, the satellite data would consist of snapshots of the highway 
segments at instants in time. Several snapshots could be obtained over time, and the 
greatest benefit in the satellite data might be found in identifjmg spatial patterns in traflic 
characteristics. For example, the data might indicate consistently high or low velocities 
on certain segments. These indications could then be confirmed with traditional spot 
speed studies. Or, the series of snapshots might show that certain segments exhibit 
temporal patterns different fiom those of other segments in the same traffic monitoring 
sampling class. Aggregate estimates could then be improved by redefining the sampling 
classes. 

Despite these potential advantages, we limit our analysis in this study to the potential of 
satellite data to improve estimates of Average Annual Daily Traffic (AADT) in 
homogeneous classes of highway segments. The AADT estimates are used to estimate 
Vehicle Miles Traveled (VMT) in the class of highway segments, and ,we also investigate 
the cbility of smpshot &ta t~ improve W estimates We base homogeneity of traffic 
classes on similarity of temporal expansion factors described below. We develop 
computer software to conduct this analysis. Our software contains two main components, 
a generation component and an estimation component, which we describe in Section 4.1. 
The generation component simulates true values of AADT and values that would be 
observed in traffic counting programs. As explained below, we consider 24-hour 
observations to be representative of data obtained from traditional ground-based sensors 
and shorter duration observations to be representative of satellite snapshots. The 
estimation component produces AADT and VMT estimates fiom the values produced in 
the generation component. 

In Section 4.2, we describe the application of our software to investigate the benefits of 
combining satellite-based data with ground-based data in the estimation component. The 
benefits are considered in terms of reduced errors when estimating AADT and VMT, and 
we investigate the reduction in errors as a function of the number of ground counts, 
amount of satellite coverage, and variability associated with expanding a satellite 
snapshot to a daily count. 

4.1 Methodology 

We consider a highway network consisting of N segments or links with length dr,I = I, 
2, ... , N. We specie N as an input to the simulation program, and we randomly generate 
the link lengths dl fiom a truncated normal distribution, dl- N(w, ud, dl 2 dmh 

4.1.1 Generation of Volume Data 

Of the N highway links, we consider that P are equipped with automatic traffic recorders 
(ATR’s) that can count and record daily volumes every day of the year. We also consider 
that two 24-hour volumes are recorded on Mdifferent links with movable traffic 
recorders. The two daily (24-hour) volumes recorded by the movable recorders occur on 
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consecutive days. The parameters P and Mdetermine the supply of ground count 
information collected and are specified as inputs. 

The supply of satellite data is determined by inputs on the time between satellite 
passes that image links in the network and the number N‘of links imaged each time the 
satellite passes. Each time the satellite images the area, $ of the total N links to be 
imaged are generated at random. A satellite that images with the p-day repeat period 
will produce images of N‘ links in the network 365/ f times per year. That is, there will 
be 365 M f l  link-images produced per year. 

An Average Annual Daily Traffic U T 1  is generated for each link I = I, 2, ..., N of the 
network fiom a uniform distribution with exogenously input lower and upper bounds, 
A A D T m b  and AADT,,. Using the generated true AADT’s and randomly generated link 
lengths, the corresponding value of the true Vehicle Miles Traveled (W) is calculated 
as: 

AADT’s are converted into 24-hour counts for day-of-the-year S, 6 E { I ,  2, ..., 3651, by 
calculating a deterministic component U of the 24-volume using day-of-the-week and 
month-of-the-year expansion factors (McShane and Roess, 1990) and imposing random 
error on U. Specifically, a set of month-of-the-year or variation expansion factors @ = 

(EPm,  m = I ,  2, ..., 12) and day-of-the-week expansion factors & = { E p d , d  = I ,  2, 
..., 7) are specified as input, where, for example, month m = I correspnds to January, 
month m = 2 corresponds to February, and so on, and day d = I corresponds to Monday, 
day d = 2 corresponds to Tuesday, and so on,. The factors are chosen so that they would 
represent expansion of the average volumes on a given month or day to the AADT - i.e., 
(1/12) C m =  I ,..., I2 @Pd-’ = (117) E d  = I  ,_.., 7 (EFD = 1 - 

The deterministic component of the 24-hour volume for link 1 on day 6is then: 

where AADZ is the AADT of the link I generated as described above, and M(s) and D(., 
respectively, represent the month-of-the-year (M(4 E {I,2, ... ,121) and day-of-the-week 
(D(S) E {1,2, ... ,71) corresponding to day-of-the year S (6 E {1,2, ... ,3651). Multiplying by 
E ~ M (  -I imposes the temporal effect associated with month M(@, whereas multiplying 
by E # ~(4- l  imposes the temporal effect associated with day-of-the-week D(@. 

The 24-hour count on link 1 on day 6is generated from the det 
considering that the true volume varies from the deterministic model of (4.2) through a 
specified stochastic model. We use two stochastic models: one uses a log-normally 
distributed error term; the other generates volumes from a Poisson model (see Appendix 
C). 

. ’stic U ~ S  by 
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4.1.1.1 Log-Normal Generation. We primarily used the “lo -normal error term” 
model in our analysis. In this model, we generate a 24-hour count 3 g, that would be 
observed from a ground sensor (either a permanent ATR or a movable sensor) on link I 
and day Sas: 

where exp () is the inverse function of the natural logarithm and .dg, - N(0, &). (This 
formulation ensures that the expectation of the error tern is one, i.e., E[exp(& - 
~@~/2)]=1.) We assume that V@ is observed without any measurement error. That is, V@ 
is both the true 24-hour volume on link I and day Sand that which is observed fiom the 
ground sensor on this link and day. 

To simulate the volume estimated fiom the satellite image, we assume that a satellite 
image of a link is converted into a 24-hour count v’”! and simulate this 24-hour count as: 

where a p  () is again the inverse function of the natural logarithm and E? - N(0, 8’). 
(Again, in this formulation the expectation of the error term is one, z. e., E[exp(p) - 
8)2/2)]=1 .) The error associated with converting the satellite image into a %-hour count 
is handled through the magnitude of d”‘ relative to o@. This process implies that, unlike 
in the case when generating 24-hour volumes fl@ obtained with ground sensors, the 24- 
hour counts V@ estimated fiom the satellite data are not necessarily the true 24-hour- 
volumes on the segment on the day of observation. We note here that determining the 
relative magnitudes of dj‘ and dg, to appropriately account for the error in estimating a 
24-hour volume fiom the satellite data is an area for future research. We present our 
results below as a function of the relative difference in these terms. 

4.1.1.2 Poisson Generatiin. The second stochastic model considers volumes to 
be Poisson distributed. To generate a 24-hour volume obtained from a ground sensor, we 
use the deterministic component UAS of Equation (4.2) as the mean of a Poisson 
distribution for 24-hour volumes and generate the volume fiom this distribution. That is: 

Vlg116- Poisson(G6). (4.5) 

Again, the 24-hour volume obtained with the ground-based sensor is assumed to be the 
true volume in this process. 

To generate satellite observations, we simulate a 5-minute volume fiom a Poisson 
distribution and convert this generated.5-minute volume to an estimated 24-hour volume. 
(Time intervals other than five minutes could be used in our program, but we used five 
minutes as a first approximation of the time interval corresponding to satellite data.) We 
assume that the 5-minute volume is observed without error, but that there could be error 
in expanding the 5-minute volume to a 24-hour volume. 
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To generate the 5-minute volume, we convert the deterministic component of the 24-hour 
volume U~,,S of Equation (4.2) to a simulated 5-minute volume obtained in hour h, h = I ,  
2, ..., 24, where, for example, hour h = 1 corresponds to 12:OOa.m. - 1:00 a.m., h-= 2 
corresponds to 1:00 a.m. 2:OO a.m., and so on. The deterministic component of the 5- 
minute count @h in hour h is obtained by factoring the 24-hour Uby an hourly ex ansion 
factor E?, taken fiom a set of exogeneously specified hourly factors @ = { E d ,  h = 
I, 2, ..., 241, and converting this hourly volume to a 5-minute count by assuming equal 
distribution among the twelve 5-minute intervals in the hour: 

As with the monthly and daily expansion factors, the hourly expansion factors E p h  are 
specified to represent expansion about average hourly Volumes - i.e., (I/24) C h  = I ,  ._., 24 

E?h-’ = 1. Dividing by 288 hi Equation (4.6) represents the fact that there are 288 5- 
minute intervals in 24 hours and assumes an equal distribution of a given hour’s volume 
into twelve 5-minute intervals. Unequal distributions could be handled by an expansion 
factor for subperiods, but since the actual volume will be a randomly generated 
realization, it would seem overzealous to consider expansion factors for such a short 
period. 

To generate a S-minute volume ffS)[& obtained in hour h on daySon link I from a 
satellite sensor, then, we use the deterministic component of Equation (4.6) as the 
mean of a Poisson distribution for 5-minute volumes and generate the volume fiom this 
distribution. That is: 

We then expand this 5-minute volume to an hourly estimate in hour h by multiplying by 
12 and then the hourly estimate to a 24-hour estimate by multiplying by 24 times an 
“estimate” of the hourly expansion factor E p  i. That is: 

In the work reported here we set E p  i, either equal to the true expansion factor used in 
generation or to E P h ,  but fbture work could hvestigak the sensitivity of the solution to 
erroneous estimates of the hourly expansion factor. In this way, the E p j l  value used is 
not truly an estimate that depends on observations, but an exogenously specified 
parameter. 

4.1.1.3 Output of Data Generation The simulation program considers one year 
as the analysis period and uses either Equation (4.3) or Equation (4.5) to generate: 

a 24-hour volume count for each of the 365 days of the year for each link assumed 
to be equipped with a permanent ATR; 
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two consecutive 24-hour volume counts for each of the links assumed to be 
covered by a movable ground sensor; these links are randomly generated (without 
replacement) fiom the set of links not equipped with permanent ATR's, and it is 
assumed that the first of the two days that a movable ground sensor collects data 
on a link is the day afler the second of the two days that the sensor collected data 
on the previously sampled link. 

The simulation program also uses either Equation (4.4) or Quation (4.8) to generate: 

an estimate of the 24-hour volume for each of N' links randomly generated with 
replacement every F days. 

One can, therefore, think of partitioning the N links in the simulated network into the 
following sets based on the types of traffic volumes assumed to be collected on links in 
the set: 

a set consisting of the links that are equipped with permanent ATR's; 

a set MS consisting of the links for which 24-volumes are obtained from a 
movable ground sensor during the year and for which at least one 24-hour volume 
estimate is obtained fiom satellite data during the year; 

a set M consisting of the links for which 24-hour volumes are obtained from a 
movable ground sensor but for which no satellite-based 24-hour volume estimates 
are obtained during the year; 

a set consisting of the links for which no ground-based 24-hour volumes are 
obtained, but for which at least one satellite-based 24-hour volume estimate is 
obtained during the year; 

a set 
24-hour volumes are obtained during the year. 

consisting of the links for which neither ground-base nor satellite-based 

We call 'Np, Nm, NM, Ns, and NR, the numbers of links in the respective &, with N p  + 
NMS + NM + Ns + NR = N. We also assume that the links have been renumbered so that 
the first Np links are those in set the next NAAS links are those in set MS. the next NM 
links are those in set M, the next Nslinks are those in set & and the final NR links are 
those in set ,R In this way, the output of the simulation program consists of "ground 
based" and "satellite-based" data. The ground-based data are comprised of: 

v " r &  
fl5 6 

S= I ,  2, ..., 365; 1 = I ,  2, ..., Np; 
S= Ago), Ag()+l; 1 = N p + I ,  Np+2, ..., N~+NM+NM; 

where Ago) indicates the day on which the first of the two consecutive 24-hour ground- 
based counts are obtained with movable ground sensors. 
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The satellite-based data are comprised of 

v”l.6 9 &&I@),  AS^@), ..., &I[@,); I = Np+It Np+2, ..., NP+NM& 
Np+Nm+NdI, ..., 
NP+N&NdNS 

where &j( l )  indicates the day on which a satellite-based estimated daily volume was 
produced on link l for the 
satellite-based estimated volume was produced on link I during the year. 

time in the yeary and I1 indicates the number of times that a 

The simulation program also produces the true values of the AADT’s and link lengths for 
each link 1 and the true VMT as output, i. e. : 

4, I = I ,  ...) N; 

I = I ,  ... N, AADTI, 

VMT. 

A listing of the generation programs can be found in Appendix D. 

4.1.2 Estimation of T r a r i  Parameters 

Our estimation programs use the output of the simulation programs as input and estimate 
Annual Average Daily Traffic (AADT) for each link I in the network and then Vehicle 
Miles Traveled (VMT) fiom these AADT’s and the corresponding segment lengths dl. 
We consider two methods - what we call the traditional method and what we call a 
model-bused method - to produce these estimates. We produce estimates when using 
only the ground-based data and when combining the ground-based and satellite-based 
data. 

4.1.2.1 Traditional Esti n Mahod 

Ground-based data on&: Estimating AADT’s using the traditional method with only 
ground-based data is similar to the commonly proposed method (U.S. Department of 
Transportation 1992, McShane and Roess 1990) of 

i) 
ii) 

iii) 

iv) 

estimating expansion factors fiom data obtained fiom permanent ATR’s; 
using these expansion factors to convert 24-hour volumes into annual 
average estimates; 
averaging the different annual average estimates for the same link to 
produce an estimate of that link’s AADT; 
estimating AADT on links with no observations from the AADT estimates 
of the links for which there were observations. 

i 

! 
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Specifically, the AADT's for the N p  links in set equipped with permanent Am's are 
estimated as the average of the 365 hourly volumes: 

where we append "('" to the AATIT variable to indicate that the AADT is estimated from 
ground data only. 

The 365 rrg! volumes on these N p  links are also used to estimate the month-of-year and 
day-of-week expansion factors as: 

where [ . ] 1 E {I, .._, ~ p f  represents the harmonic average over the N p  segments with 
permanent ATR's, and < . >M(@=m and < . >~(@d represent the arithmetic averages over 
ali days-of-the-year Sthat are, respectiveiy, in month m and on day-of-the-week d, and 
the "@" 's appended to the EFs indicate that the factors are estimated from ground-based 
data only. 

The AADT's using ground-based data only for the links in sets MS and M where counts 
have been taken with movable ground sensors are estimated as: 

that is, the average of the two 24-hour volumes obtained on the link on consecutive days 
(Ago) mi Ago) + 1) after "expanding" the 24-hour volume into an estimate of the annual 
average using the appropriate monthly and day-of-the-week expansion factors. 

The AADT's estimated when using only ground-based data for the links in sets S and & 
where no ground-based data have been obtained, are estimated as the arithmetic average 
of the estimated AADT's of the links for which ground-based data have been obtained: 

m * l =  c k  = 1, .._ , h?P+h5US+k u D f l @ k  1 @p+Ni.i+N$, 
I = NP+NM,+N& I ,  ... , N. (4.13) 

The VMT using ground-based data only TA47@ is estimated as: 

I 

Combined satellite-based and ground-based data: When combining the satellite-based 
data with the ground-based data in the traditional method, we treat 24-hour volumes 
generated from simulated satellite observations in the same way that we treat 24-hour 
volumes generated from simulated ground observations, except when simulated satellite- 
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based estimates occur on one of the Np links assumed to have permanent ATR’s. In this 
case, we ignore the satellite observation, since the ground-based data on the links 
equipped with permanent ATR’s are assumed to be error-free data. 

Specifically, the AADT’s for the Nplinks of set equipped with permanent ATR’s are 
estimated from ground data only, so that: 

AADFdI = AADPI ,  1 = I, ... , Np, (4.15) 

where AADZ@l is determined from Equation (4.9), and we now use “(’@ ’’ to indicate that 
we are considering the case where we can combine the satellite-based data with the 
ground-based data to produce estimates. The month-of-year and day-of-week expansion 
factors are again estimated using the ground-based data on the links assumed to be 
equipped with permanent ATR’s so that; 

m = I ,  ..., 12; 
d = I ,  ..., 7. 

(4.16) 
(4.17) 

where E f l f l m  and EfldDd, respectively are determined from Equations (4.10) and (4.11). 

For the NMS links on which 24-hour volumes are observed with a movable ground sensor 
and for which at least one satellite observation is obtained during the year - is., the links 
in set MS - the 24-hour volumes (whether obtained from the ground sensor or estimated 
fiom the satellite observation) are expanded to an estimate of the annual average using 
the appropriate expansion factors and then averaged. That is: 

where the average is seen to be taken over the 2 ground-based observations and the II 
satellite-based observations. 

The AADT’s for the set M of links simulated to have ground-based observations taken 
from a movable ground sensor but for which no satellite data are obtained are estimated 
from the ground-based data only as in Equation (4.12). When only considering ground- 
based data, Equation (4.12) was used to estimate AADT’s for all N&NM links where 
ground-based data were obtained with movable sensors. The equation would only be used 
for the N~l inks  in set M when considering combined satellite-based and ground-based 
data. That is: 

AADF@~ = AADF,, 1 = NP+NM,+I, ..., NP+NM,+NM’ (4.19) 

where AADZ@I is determined in Equation (4.12). 
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The AADT's for the set S of links for which no ground-based data were simulated, but 
for which at least one satellite observation is obtained during the year are estimated as the 
average of the expanded satellite-based estimates of the 24-hour volumes. That i-s: 

where the average is seen to be taken over the I1 satellite-based observations. 

Finally, as before, the AADT's of links for which no data are available - i. e., the links in 
set R - are estimated as the arithmetic average of the estimated AADT's of the links for 
whiih some data have been simulated 

M P d i  = (c k = 1, _.. . Npimsim+m m P d k  J (Np+N&Nki+Ns), 
I = N ~ + N M ~ N & N ~  + I ,  ... , N. (4.21) 

A listing of the traditional method estimation code is provided in Appendix D. 

4.1.2.2 Model-Based Estimaabn Method 

Ground-based data only: When assuming the log-normal error model as that which 
generates the link volumes, our model-based method uses a least squares approach to 
estimate AADT's. Unlike the traditional estimation method, the model-based model uses 
all observations to estimate the parameters of the model assumed to produce the 
observations. 

Specifically, when using ground-only data the model-based method assumes that 
Equations (4.2) and (4.3) produce observed link volumes. Substituting Equation (4.2) into 
EQuation (4.3) and taking the natural logaritbm of both sides produces: 

~n P4i= I ~ A A L I ~  - ~n EP&~ - ~n EP~~,,, - P2i2 + PLst 
S= I ,..,, 365' I =  1, ..., Np (4.23 a) 

for the Nplinks in set E and 

for the NMS+NM links in sets MS and M. These 365Np+2(3.!&-Nu) equations are used in 
a least squares routine to minimize the sum of the squares of the ddi,s terms and produce 
estimates of the (NP+NM+NU) In AADTis, the 12 In E F M ~ ~ ( ( ~ ' s ,  the 7 In E p ~ ( @ ' s ,  and 
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dd2 12. We denote the estimated values of the In AADT’s by In AADfi@ ’. Unbiased 
AADT estimates R4Dfid1 can be shown to be: 

where q ’is the (estimated) variance of the In AADF@ ’1 estimate. 

Unbiased estimates AADfld1 of the AADT’s on the Ns+NR links where no ground data 
were obtained can similarly be shown to be: 

where <In AADl@ *>e 1, ..., W+NMS+M and Var<ln A A D P  ’ ~ > & I . . . . ~ + W + M  , 
respectively, represent the arithmetic average and variance of the average of the 
estimated “ln AADT’s” for the links in sets P, MS, and M output from the least squares 
routine. 

The estimated VMT using ground data only Wd is then computed as: 

TAL“@ = C i = I .  .... N di * m f i ‘ i .  (4.26) 

where the AADfl@l values are determined from Equations (4.24) or (4.25), and the dl 
values were generated in the simulation program. - 

Combined satellite-based andground-based data: When assuming the log-normal error 
model and combining satellite and ground data, the model-based method parallels that 
described when using ground-based data alone and assuming the log-normal mor  model. 
Equations (4.2) and (4.3) are again assumed to produce 24-hour link volumes that are 
observed by ground-based sensors, and Equations (4.2) and (4.4) are assumed to produce 
24-hour estimated link volumes derived from satellite observations. Therefore, in 
addition to Equations (4.23a) and (4.23b), the satellite-based data can be used with 
Equations (4.2) and (4.4) to produce: 

b In P)ia= In AADfi - In EPcI,,, - In EP*(@ - &j2/2 + 
S= drlfl), ... + dr~i; 1 = Np+I, ..., Np+N~si 

Np+NmN&I, ... , N p + N ~ f i N d  Ns; (4.27) 
I 

I The 365Np+2@~fiNd equations associated with the ground-based data (Equations 
( 4 . W  and (4.23b)) and the CI=W+I ..,.._ J P + ~  c3r, + CI=W+=+M+I ..,,.., W + ~ + M + N S  PJ 
equations associated with the satellite-based data (Equations (4.27)) are used in a 
weighted least squares routine (Chambers and Hastie, 1992) to minimize the (weighted) 
sum of the squares of the d@ls and ,?)l,sterms to produce estimates of the ( n p + N ~ d N &  
N ,  In AADTI’S, the 12 In E ~ M ( @ ’ s ,  the 7 In E p ~ ( @ ’ s ,  d@’ 12, and d““ /2. (The weights 
used in the routine are inversely proportional to the variances @’ and the ds”, which are 

35 



assumed to be known as inputs for the routine in this preliminary work. In reality, these 
variances would be unknown - indeed, they are estimated in the routine, as seen in 
Equations (4.23) and (4.27). A process could be developed that iterates until the variances 
assumed when dete 
the routine.) 

. .  g the input weights are close to those that are estimated from 

We now denote the estimated values of the In AADT’s by In AADp@ ’ to indicate that 
both satellite and ground data have been used in this estimate. Similar to what we did 
above, we form the unbiased AADT estimates as: 

AAD~(“~‘I  = exgln AAD?~ ‘1 - q’12) , l=I ,  ... Np+N~s- tNdNs;  (4.28) 

where q 2  is, again, the (estimated) variance of the estimated In AADfld ;. 

The unbiased estimates of the AADT’s on the NR links in set 
were obtained are, then: 

where no ground data 

where <In ~ ~ ~ 7 “ ’ 5 > ~ 1 , . . . .  m+miw+m and VM<ln A A D I + @ * ~ ~ ~ , . . . .  N P i N M S + M i N S ,  
respectively, represent the arithmetic average and variance of the average of estimated 
“log AADT’s” for the links in sets P, MS, M, and S output from the least squares routine. 

The estimated VMT using combined satellite and ground data KA4$$ is then computed 
as: 

where the R4Dfldlvalues are determined from @uations (4.28) or (4.29), and the dl 
values were generated in the simulation program. 

We developed but did not implement the underlying theory of the methodology for 
model-based estimation when assuming volumes were generated from a Poisson 
distribution. That is, when assuming Poisson generation, we only used the traditional 
model. 

A listing of the model-based estimation code is presented in Appendix E. 

4.2 Numerical Study 

We ran our simulation program for several sets of input values. In all cases, we 
considered a network with N = IOU links and N p  = 3 links; i. e., we assumed that 3% of 
the links were equipped with permanent ATR’s, a percentage roughly equal to that in the 
Ohio Department of Transportation system. We generated the link lengths dr from a 

\ 

I 

\ 

I 
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I 

truncated normal distribution with = 1.5, od = 1.0, and dmjn = 0.3, and the true link 
AADT’s from a uniform distribution with R4DTmin = IO, 000 vehicles and AADT,, = 
90,000 vehicles (see Section 4.1 and Table 4.1). We set the variance of the error-term of 
Equation (4.3) d@ = 0.04 and the satellite repeat period at = 18.25 days. 

We considered different numbers of movable ground sensors, variance of the error term 
associated with satellite data in Equation (4.4), and number of links imaged by the 
satellite per repeat period. Specifically, we considered combinations of NM = 0, 12,25, 
38, 50; 2‘’) = 0.04, 0.16, 0.36, and = 5, IO, 15. In McCord et al. (1 995) we estimated 
that a 1-m resolution satellite would be capable of i-g roughly 0.5% of the links in 
the continental United States per day. This percentage accounts for the fact that images 
could not be obtained in cloudy conditions or at nighttime. Therefore, a 1-m sensor on a 
satellite platform would be capable of imaging 365*0.5% of the N=IOO network links per 
year. Since the satellite is assumed to image hp links each of the 365/F times per year it 
repeats its coverage of the region, we can consider the “equivalent satellite coverage” 
ESC as: 

ESC =A? * (365/F)/(365 * 0.005 *N) = 200 * (idm) / p  
= 200 * @/loo) / 18.25 = Iv‘/ 9.125. (4.3 1) 

, 

This equivalent satellite coverage represents the hction of data fiom a 1-m resolution 
sensor equivalent to that which would be produced with the assumed N‘ and values. 
For example, hz = 5 links would correspond to using roughly half (2 .  e., ESC = 

5/9.Z254.5) of the data p;oduced from a 1-m sensor on a satellite platform. 

We summarize these input parameters and the expansion factors used in Table 4.1. 

For each set of input values, we ran the simulation-generation program 100 times, 
simulating 100 independent replications of a one-year analysis period. Each run produced 
for each link I one true AADT, one AADT estimated when using the ground-based data 
only, and one AADT estimated fiom combined ground-based and satellite-based data. As 
above, we denote these values AADfi, AALIPI, and AADD?@l, respectively. We formed 
the relative AADT error for link I for each simulation run r when either using ground- 
based data only or when combinin satellite-based data with ground-based data as 

mean squared relative error in AADT across all links for a given simulation run as r: 
(AAo$)Lr -AADThJ/R4DTl,,, ‘ B =@,(“; I = Z  ,..., N : r = l ,  ... ,100; andtheroot 

From these 100 values, we formed the average of the root mean squared relative errors 
across all runs as: 

AMREaadk)  = &=I. ..., 100 RMsREaadk), f 100, = @, (’&. (4.32b) 
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Table 4.1 Values of input parameters used in simulation-estimation runs. 

Yumber of total network links (N) 
Number (%) of links equipped with 
permanent A m ' s  ( N p )  I 

Number (%) of links equipped with 
movable ground sensors (N,) 
Mean of link length distribution or(r) 
Standard deviation of link length 
distribution ( a d )  
Lower bound of link length distribution 
[dmd 
Upper bound of AADT distribution 
( A W m c c  1 
Lower bound of M T  &StrdOUtiofi 
( M T m i n )  
Day-of-the-week expansion factors (EFU = 
SEPd, d = 1, ... ,7}) 
Month-of-the-year expansion factors mM 
= (ern, m = I,..., 12)) 

100 
3 ( 3%) 

0 (O%), 12 (12%), 25 (25%), 38 (38%), 50 
(50%) 
1.5 
1.0 

0.3 

10,000 

30,000 

{ 1.072OO0,1.121000,1.108000, 1.098000, 
1.015000,0.899000,0.790976} 
{ 1.215000, 1.191000, 1.100000,0.992000, 
0.949000,0.918000,0.913000,0.882000, _ .  

HourZy expansion factors = {EFHb h 
0.884000,0.931000,1.026000, 1.152032) 
(1.011000,1.123000,1.221000,1.709000, - - l,.. , 24)) (used for Poisson generation) 

Variance of "ground-based data error term" 
(a2") 
Variance of "satellite-based data error 
termyy (d@) 
satellite repeat period (Ix) 
Number of links imaged per pass (N") 
Approximate equivalent satellite coverage 
(ESC) (determined by and N"> 

. . . . -. .. . 

2.062000,1.532000,0.925000,0.703000, 
0.33 1000,0.433000,0.825000,0.995000, 
1.601000, 1.774000,0.964000,0.734000, 
0.402000,0.373000,0.854000, 1.437000, 
1.755000,2.158000,2.105000,1.123 191) 
0.04 

0.04,O. 16,0.36 

18.25 days 
5,10,15 
0.5, 1.0, 1.5 

We used the generated link lengths to estimate the true VMT, the VMT estimated when 
using ground-based data only, and the VMT estimated when combining satellite-based 
with ground-based data as in Equations (4. l), (4.14), and (4.22)- Somewhat similar to 
what we did in s u m m ~ n g t h e  AADT CZTOTS, we formed the relative VMT error for a 
given run r and the average relative errors across all runs, respectively, as: 

I 

, -s 
I 

I 

I 

/- 

I 
/ 

i 
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(433b) 

In Figures 4.1a-4. IC, we graph the average AADT errors AMREaadt of Equation 
(4.32b) as a funetion of the number of movable groundsensors Mwhen using only 
ground-based data (solid curve) and when combining satellite-based and ground-based 
&(dashed curves). In these figures, the abscissa portrays the number of moveable 
gound sensors as a proportion of theN=lOO links in the network. That is, an abscissa 
valueof 0.2, fsr example, is obtained from M/N = 20/100. The results in these figures 
were produced using the lognormal generation and traditional estimation programs. We 
present results for equivalent satellite coverage ESC approximately equal to 0.5 satellites 
(Le., 
(z.e., A# = 15) in Figure 4. IC. 

= 5) inFigure 4.1% 1.0 satellite (z-e., N' = IO) inFigure 4.lb, and 1.5 satellites 

The different curves for the combined satellite-based and ground-based data represent the 
use of different variances of the error term in the satellite-based information. tlrs 
mentioned above, we held d@ = 0.04 for all runs. The lowest combined satellite-based 
and ground-based data curves in the figures were produced with 8) = 0.04, representing 
a case where the 24-volume estimates from the satellite data would be as good as those 
obtained fiom ground sensors. This would be an unrealistic case, but it serves as a lower 
bound on the combined satellite- and ground-data case. The middle and highest combined 
satellite-based and ground-based data curves were produced with d") = 0. I6 and = 

0.36, respectively. As mentioned above, an appropriate relation between 8) and d@ is 
-own at this time, and dete 
we note that when 8') = 0.36 the variance of the error term used in producing satellite- 
based estimates would be nine times that of the error term used in producing the ground- 
based volumes, which could be considered a large increase. 

. * g such a relation would require future research. Still, 

In Figures 4.la-4. IC, we see that all the curves produced when combining satellite-based 
and ground-based data lie entirely below the curve produced when using only ground- 
based data. (The ground-based data only curve is the same in the three figures, since the 
figures differ only in the amount of equivalent of satellite coverage.) More specifically, 
even when covering up to 50% of the links per year with movable sensor (Proportion of 
movable ATR's - 0.50) and when using the equivalent of only one-half of available 
satellite data (Figure 4.1 a), using satellite data markedly decreases AADT error fiom that 
produced when using ground-based data only, even when the error associated with 
scaling up the satellite snapshot to a 24-hour volume is considered high (d") = 0.36). 

Note also that the error associated with using only ground-based data when the 
proportion of movable ground sensors is 0.50 (50% of the N links) is greater than that 
associated with combined satellite-based and ground-based data when the proportion of 
moveable ground sensors is 0.12 (12% of the N links), even in the d'') = 0.36 case and 
when using only half the available satellite data (Figure 4. la). Since we are considering a 
time period of one year, a 0.12 proportion of movable ground sensors represents a 
scenario in which all the links of the network would be covered with movable counts 
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approximately every eight years, whereas a 0.50 proportion represents one in which the 
network would be completely covered with movable counts every two years. According 
to these results, then, incorporating satellite data into the estimation of AADT’s would 
allow ground crews to operate on an %year cycle and still produce better estimates than if 
they operated on a 2-year cycle without satellite data, even when there is great variability 
in scaling up satellite snapshots to 24-hour volume estimates. Fewer DOT resources 
would be required for an 8-year cycle (ie., the “with satellite data7’ scenario) than for a 2- 
year cycle (ie.,  the “without satellite data’7 scenario). 

In Figure 4.2 we graph the average relative VMT errors AREvrnt’s of Equation (4.33b) 
for equivalent satellite coverage of 1.0. Again, we see that the combined satellite-based 
and ground-based data curves lie below the ground-based only data curve. From the 
figure, we see again that the error when a proportion of 0.12 of the links is covered with 
movable ground sensors on the $(‘)=O. 36 combined satellite-based and ground-based 
data curve is no worse than the error at a 0.50 proportion on the ground-based data only 
curve. That is, covering the links of the network with movable ground sensors on an 8- 
year cycle when incorporating satellite data would lead to VMT estimates that are as 
accurate on average as those produced when covering the network on a 2-year cycle 
when not using the satellite data, even when scaling up satellite snapshots to 24-hour 
estimates is very ccnoisy’7 (high d(”). 
In Figure 4.3 we graph the average VMT errors ARMSREvmt of Equation (4.33b) when 
using the traditional estimation method, but when assuming that volumes are generated 
fiom a Poisson distribution. We again graph as a function of the number of movable 
ground sensors Mwhen using only ground-based data (solid curve) and when combining 
satellite-based and ground-based data (dashed curve). Since there is only one parameter 
of the Poisson distribution (the mean), we cannot parameterize the simulation by 
vitsiances, as in the log-nor-xnal case. Therefore, there is only one curve for the combined 
satellite-based and ground-based data estimation. 

Under this different set of assumptions (Poisson generation) the value of the satellite data 
in reducing the error in AADT estimation is again strikingly apparent. The curve 
produced when combining the satellite-based data with the ground-based data lies below 
that produced when using only the ground-based data. Again, covering the network with 
ground-based counts on an 8-year cycle when coupled with satellite data produced better 
results than covering the network on a 2-year cycle without satellite data. 

We also investigated the improvements that would stem fiom using the model-based 
estimation procedure with the log-normal generation assumption (see Section 4.1.1.1). As 
we did in Figures 4.la-4.1~’ we plot in Figures 4.4a-4.4~ the average AADT errors 
AWREuadt  of Equation (4.32b) as a function of the proportion of movable ground 
sensors when using only ground-based data (solid curve) and when combining satellite- 
based and ground-based data (dashed curves). Whereas the results in Figure 4.1a-4. IC 
were produced when using the traditional estimation method, the results graphed in 
Figures 4.4a-4.4~ were produced when using the model-based method. 
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The results in this set of figures again show that adding satellite data is markedly reduces 
estimation errors even in the high variance (d(’)=0.36) case and when using only half the 
satellite data (ESC - 0.5). Once again, lower average error is produced from covering the 
network with ground counts on an 8-year cycle with only half the satellite data @SC = 
0.5) than on a 2-year cycle without satellite data, even in the hgh variance case (see Fig. 
4.4a). 

A comparison of the Figures 4.4a-4.4~ curves to their counterparts in Figures 4.la-4.1c 
shows that our model-based estimation method improved on the traditional estimation 
method. The improvement was most pronounced when using ground-based data only and 
seemed least pronounced for the combined satellite-based and ground-based data curves 
with high variance in the satellite error term (df”=O.36) with the highest satellite 
coverage (ESC=l.5). 

We also note that the d(’)-0.36 combined satellite-based and ground-based data curve 
produced when using the traditional estimation method has smaller errors than the 
~ I U U U U - U ~ ~ ~  ulLly dab zwve p d w e d  whex~ 1mhg ?!x model-based estimation method. 
That is, even when the satellite-based data are “noisy,” using these noisy data with an 
inferior (traditional) estimation method decreases AADT estimation errors more than 
using a better (model-based) estimation method without the data,. 

---.-A L..,,A ..-l., 

, 

The errors graphed in Figures 4.4a-4.4~ are based on averages over 100 replications of a 
one-year analysis period. In Appendix F, we present scatter plots of the 100 paired 
(traditional method vs. model-based method) WREaadt values of Equation (4.32a) 
when using only ground-based data and when combining the satellite-based and ground- 
based data at various do) values for 0.25 @4=25) and 0.50 (M=50) proportion of links 
covered with moveable ground-based sensors, and at ESC=l.J. Comparing the results of 
Figures 4.4a-4.4~ to Figures 4.1a-4. IC, we saw that our model-based estimation method 
performs better on average than the traditional method. The scatter plots confirm that the 
model-based method does better than the traditional method in most individual 
replications. Still, there are many cases where the traditional method outperforms the 
model-based method, and we feel that future improvements could be made to our model- 
based method. 

I 

i 
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Section 5. Summary and Future Work 

In this report, we documented progress on three issues that would need to be addressed 
before high-resolution satellite imagery could be used to complement trafKc monitoring 
programs: 

demonstrating that vehicles can be identified and classified accurately from real 
satellite imagery; 

developing efficient image processing methods; 

. .  dete g methods to integrate the imagery with ground-based data and assessing 
the value of this integration. 

Although substantial progress has been made, we feel that further work is needed in each 
of these areas. 

We have been developing a methodology to compare vehicle classifications obtained 
from satellite images with those obtained from traditional ground counts and writing 
software that would automate much of the analysis. The results of field tests designed to 
demonstrate the methodology, where we used scanned aerial photographs to simulate 
satellite imagery, were encouraging and instructive. 

When high-resolution satellite data becomes available, the methodology we have been 
developing should be applied to show that vehicles could in fact be identified and 
classified in hgh-resolution satellite imagery. Because of the different types of data - 
data obtained over space at an instant of time in the images, and data obtained over time 
at a point in space in the ground data - discrepancies can occur between the two 
classifications. These discrepancies can occur even if every vehicle is correctly identified 
and classified in the satellite imagery. Therefore, we suggest that more work be devoted 
to reducing the size of this discrepancy and developing a maximum size of discrepancy 
that can be tolerated and still conclude that vehicles are being classified acceptably in the 
two data sets. When pl g for tests with real satellite data, additional thought will also 
have to be given to differences that can arise when using real satellite data. For example, 
thought should be given to differences in data format, the ease with which the 
appropriate highway segments can be identified in large area images, and an edge 
detection algorithm to efficiently determine the highway edge lines. 

We are also encouraged by the progress made in our image processing approach. 
Specifically, we have developed a means to transform the steady-state background image 
of a highway segment to those of a time t-image that is to be analyzed for vehicles. Our 
objective is to classifL the subtracted pixel values of the two images into dynamic and 
static pixels, where the dynamic pixels would serve as an indication of movement 
attributed to vehicles. Experiments on simulated images and scanned aerial photographs 
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produced encouraging results and demonstrated the robustness of the results to prior 
estimates of traffic density, estimates required as input to our approach. 

Future work would be necessary to develop, test, refine, and code the image processing 
algorithms we have been developing. Until now, we have used simulated images or 
scanned aerial photographs to serve as the steady-state background images of the 
highway pavement. In practice, we would expect that the background image would be 
constructed from a series of images taken over time. For example, the background image 
could be obtained by averaging images of a specific segment acquired at different times. 
Each time a new image is acquired, it would be combined with the present background to 
form an updated background image. Averaging the images should substantially reduce 
the contribution of the dynamic signals (principally, vehicles) after a sufficient number of 
observations, leaving a background image that corresponds almost entirely to an average 
of pavement signals. This averaging procedure could be tested using a series of satellite 
images when such images become available. Until then, a series of scanned aerial 
photographs or digital photographs of the same highway segment at different times could 
be used. Tiis approach is motivated by a~ iissmptim &!zit the d p ~ m i c  (vehicle) si-gnals 
are sufficiently few that they would be filtered out after averaging a few images. This 
should be the case on lower vehicle density highways. However, it is also necessary to 
determine a good procedure for constructing the background image on highways with 
higher vehicle densities. 

It appears that our transformation procedure is working well. Still, it should be tested 
more systematically and under a variety of conditions. It would be more efficient to 
conduct large-scale testing on simulated images, but some real images - either scanned 
aerial photographs, digital images taken fiom an aircraft, or real satellite images - should 
also be investigated to ensure reasonableness of the process generating the simulated 
images. 

m 

The transformation and subtraction procedure must also be integrated with a vehicle 
classification module. The classification module would operate on the pixels that 
received a sufficiently high probability of being dynarmc after subtracting the 
transformed background image fiom the time t-image. Decision rules can be used to 
determine whether groups of such dynarmc pixels constitute a vehicle or a nonvehicle 
object. If the group of pixels is identified as a vehicle, the group of pixels must then be 
classifiedrby vehicle type. Previously, we developed rules to operate on a binary output of 
a thresholding procedure (Merry et al. 1996). These rules worked well in conditions 
where vehicle shadows were pronounced. We feel that it will be possible to modi@ these 
rules to work well with our transformation and subtraction approach under a wider set of 
conditions, but other methods should also be investigated. 

Further work is also warranted in determining the value that imagery data would add to 
traflic monitoring programs and to integrating these data with those obtained from 
ground sensors. We have been concentrating on estimating Average Annual Daily Traffic 
(AADT) and Vehicle Miles Traveled (VMT). Based on results produced from the 
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simulation and estimation programs we have developed, it appears that adding satellite 
data to ground-based data would improve the quality of the AADT and VMT estimates 
while requiring fewer ground personnel to collect ground-based traffic counts. - 

Y 

These encouragmg results were obtained even when using methods similar to those 
traditionally employed, methods that were not designed to take advantage of the two 
different types of data. Our first attempt at “model-based” methods improved the 
estimates further. However, we expected to see greater improvement with the model- 
based method, and we therefore feel that this method can be refined in the future. Also, 
the method should be investigated for robustness to data that are not entirely compatible 
with the assumed model. More radically different methods should also be investigated for 
combining ground-based and image-based data more effectively - for example, methods 
that take advantage of spatial correlation in the traffic patterns that can be observed in the 
satellite images. 

We also feel that slight modifications in the generation and estimation software we have 
developed would produce powem tools for investigating other questions. For example, 
this type of software could be used to identrfy temporal patterns in traffic flows that lead 
to especially large or small additional value that could be contributed by the satellite 
data. Such knowledge would ultimately be useful in deciding which highway segments to 
target with pointable satellite sensors. The software could also be used to assess the 
relative effectiveness of ground-based sampling patterns when using satellite data. This 
idormation could then be used to design sampling strategies in state Departments of 
Transportation (DOT’S), or other agencies interested in estimating AADT and VMT. 

In addition, other issues not addressed in this study should be investigated if satellite 
imagery is to be incorporated in traffic monitoring or other transportation programs. For 
example, institutional issues associated with obtaining data in standard formats on a 
long-term and reliable basis, preprocessing these data, making them accessible to state 
DOT’s, and having the DOT’S integrate them into their operations would need to be 
addressed. Moreover, exploring the use of the imagery data to identi@ parameters other 
than AADT or VMT seems 
developing classes for volume or weight samples, targeting resources for speed studies, 
detecting high truck volumes on alternative routes to those passing open weigh stations, 
or calibrating flow prediction models. 

ted. For example, the image data could be useful in 
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Appendix A. Description of the Software Code for Computing Traffic Measures 

! 

Introduction 

We developed software that computes tr&c measures at a location on the highway 
during a time interval from a snapshot of the highway. We called this software COUNT. 
The basic input data for COUNT are the highway axis, vehicle records, count location, 
and the time interval during which the measures are to be computed. The output data are 
traffic measures during this time interval at the specified location. Additionally, this 
software has the capability to compute the maximum time interval allowed by the 
highway limits for extracting W i c  measures. COUNT is written in FORTRAN and is 
complied and linked using a FORTRAN-77 compiler on a workstation platform. It can 
easily be adapted to any other FORTRAN compiler or other platforms. 

In th is  chapter we describe the input data required by this software, the output, and the 
code of the software. The next section describes the input and output data and gives 
examples of the data format. The following sections describe the various modules of the 
program- 

Software Input Data 

In this section we describe the input data for COUNT and provide examples to illustrate 
these data. The data format described is that read by the version of COUNT used at the 
time of this writing. This version is the one described in here. All the components of the 
data must be included as input to COUNT; however, the format and order of the 
components can be changed. The modules that read the input data may be modified to 
read the input in different formats. Thus, the input format would have to be changed to fit 
the requested input format by that version. 

In this section, we first explain the highway axis data, then the vehicle record data, the 
highway count data, and the highway limit data. 

Highway Axis Data 
Highway axis data are used as an axial reference for all the vehicle locations on the 
highway at different times. The Euclidean distance computed using the coordinates of two 
locations would determines the straight line distance between these two locations on the 
highway. However, distances on highways are not necessarily straight. For example, a 
vehicle does not travel in a straight line when navigating a horizontal curve. The highway 
geometry can be represented by the highway axis. The axis is a linear feature of the 
highway. We found it usell to have this axis correspond to the inner edge of road 
pavement. In this research, we refer to this highway inner edge axis as axis for simplicity. 



Highway axis data used in this software are a highway datum point and the digitized 
highway axis coordinates. The datum point is an arbitraxy distance corresponding to the 
first point of the axis. It could, for example, be the linear distance from a known- landmark 
on the road to the point, the mile marker distance of the point, or any other arbitrary 
distance specified. The coordinates of each digitized point are denoted (xq,y%), where x% 
refers to the xa coordinate of the ith digitized point and ya; refers to the ya coordinate of 
the ith point on the axis. These coordinates could be given with reference to any 
coordinate system, but the digitized axis coordinates for one highway segment should 
refer to the same coordinate system and datum. 

This version of COUNT assumes that the datum point is given in units of meters because 
this software is set to process images with resolution given in Metric units. Figure A-1 
shows an example of a highway axis input data file corfesponding to the images shown in 
Figure A-2. The first line in this data is the datum point distance, which was arbitrarily 
set to a value of 2000. If desired, the real mile marker distance could have been used as the 
reference distance for the datum point. We choose the datum value to be some distance 
greater tban zero so that if an extension beyond the beginning of the highway axis is 
extended by some distance from the starting end, the axis distance in the extended part of 
the axis  will remain positive. We explain this aspect in more detail when we talk about the 
highway axis module. 

Axis coordinate data start on the second line in Figure A-1. This line contains the 
coordinates of the datum point of the highway axis whose arbitrary distance was given in 
the first line. In this example, the point-at xa = 1087 and ya = 6106 is 2000 m from some 
datum. The coordinates of the following points along the axis follow in order. 

, 
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Vehicle Record Data 
Location and time data for imaged vehicles are also required as input for this software. 
Using the location of a vehicle on an image, the time when the vehicle was imaged at that 
location, the location of the count point, and the speed of the vehicle, the time when the 
vehicle would pass the count point is estimated. (Count point is where vehicles are to be 
estimated to pass during the time interval of interest.) Using time and location records of a 
vehicle in two consecutive images, the average speed of the vehicle when traveling 
between these two locations can be estimated. 

Each vehicle observed in an image receives a record. Records of vehicles in different 
vehicle classes are saved in separate lists. The version of COUNT described here only 
considers two classes of vehicles, large vehicles and small vehicles. For simplicity we refer 
to them as trucks and cars in this research. Thus, the vehicle records are sorted into two 
lists, one list for cars and one list for trucks. A record contains information that identifies 
the vehicle with an integer identity number, locates it in the coordinate system through its 
x and y coordinates, and indicates when the vehicle was at the given location with a time 
stamp. 

A vehicle that is imaged more than once will have more than one record. However, the 
integer identification number would be the Same for different records corresponding to 
this vehicle. Identiwng the same vehicle at different locations in different images leads to 
velocity estimates of the vehicle. The velocity is estimated as the distance traveled 
between the image when the vehicle was at these locations. 

Vehicle coordinates are the coordinates of the vehicles located with reference to the 
coordinate system used for the highway axis. The vehicle coordinates are referenced by 
(xvj, y"j), where xvj represents the x coordinate of the jth vehicle and yvj represents the y 
coordinate of the jth vehicle. The time when the vehicle is seen at the specified location 
(xvj, yvj) is the time when the vehicle was imaged at these coordinates. 

To illustrate, consider the vehicle record data in Figure A-3. The first line in the file is a 1 
to indicate that the following are records of cars, which are identified as class 1 of vehicles 
in this study. The first line in the records of cars contains the record of a vehicle that is 
identified as car 4. The following two numbers are the x and y coordinates of the location 
of this car. The last number in the record is the time when this car 4 was at these 
coordinates, represented in h0urs:minutes:seconds. This line indicates that car 4 was at 
x=1018 and y = 5846 at time 10:54:3 1. The second line contains the records of vehicle 5.  
This record indicates that vehicle 5 was at x=1017 and ~ 5 8 2 8  at 10:54:31. Line 7 
contains the records of car 1 1 , which indicates that car 1 1 was at x=921 and y=545 1 at 
10:54:3 1. Lines 17 and 24 also contain records of car 1 1. However, these records 
correspond to car 1 1  being imaged at times 10:54:36 and 10:54:41, respectively. Line 27 
has the values (-1, -1, -1,  -1, -1, -1). This is the indictor for the end of car data. The next 
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line contains a 2, which indicates that the following data are data records of trucks, the 
record category of vehicles in this study. The truck data are arranged in the same format 
as the car data. Like the car data, the last line has the values (-1, -1, -1, -1, -1, -l), which 
indicate the end of the data in this class. If more vehicle classes are eventually used, then 
class numbers can be added. The module that reads the data would have to be modified to 
read data of more classes. We will indicate the lines code where this module needs to be 
modified to read more data when we explain the modules in the following sections. 

Vehicle data are listed in order of the time when the images were taken. The records of the 
vehicles imaged at an earlier time are listed before the records of the vehicle imaged at a 
later time. The soha re  assumes that the data are arranged in this time ascending format 
in the input data file. Ifvehicles are not arranged in an ascending order, we could write a 
module to rearrange it in this ascending format. 

Highway Count Data 
To compute level of service measures at a !mz!im, tkc sakmiie requires highway 
parameters, count location data, and count interval. Highway parameters are the number 
of lanes of the highway and the passenger car equivalent of trucks. The number of lanes of 
the highway must be recorded for the specific highway at the given location. The 
passenger car equivalent of a truck is also predefined for the specific highway depending 
on the terrain of the highway at the specific location. @@way terrain is classified as 
level, rolling, or mountainous, and each type of terrain has a different passenger car 
equivalent of trucks for different highway class (see Highway Capacity Manual (TRB, 
1997).) Count location data consist of the x and y coordinates at the location on the 
highway where the traffic measures are estimated. (Traffic measures are estimated at a 
point location on the highway to compare the measures estimated from the image data to 
the measures estimated from at ATR location at this point. This work was motivated in a 
large part by our desire to compare measures estimated from satellite data to those 
estimated from ATR data.) The time interval is the time during which tr&ic measures are 
computed at the count location. We denote the beginning of this time interval by t' and 
the end by ?. 

To illustrate, consider the example of highway count data in Figure A-4. These data 
corfespond to the same highway for which the axis and vehicle data in Figures A-1 and A- 
3 were obtained. The highway has three lanes (line 1) and has a passenger car equivalent 
of trucks of 1.5 (line 2) (The passenger car equivalent of 1.5 was obtained from Table A-1 
of the HCM for level terrain. The three lanes and 1.5 passenger car equivalent are entered 
to this input file manually.) The count location coordinates are (x=903, y=5393) and the 
time interval for the count begins at10:54:30 (line 5) and ends at 10:55:00 (line 6). 

Highway Location and Limit Data 
We mentioned earlier that the COUNT software has the capability to compute the largest 
time interval allowed by the highway limits for extracting measures. Given images of a 
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highway segment we can estimate traffic measures at any location on this highway. Time 
interval for computing these traffic measures is limited by the length of the highway 
segment imaged or by ramps. This software requires the limits of the highway and the 
count location as an input to compute the largest possible time interval for computing 
traffic measures. The highway location is defined by the x and y coordinates of the count 
location. Highway limit data include the farthest points of the highway that have been 
imaged. Figure A-5 shows an example of count location and highway limit data. The first 
two lines present the coordinates (x=1011, y=5795) of the count location. The next two 
lines indicate the coordinates of the limits of the highway. For exabple, the first limit of 
the highway is at (x=lOSO, y = 6077) and the other limit is at (x=947, y= 5530). 

SOFTW MODULES 

In this section we describe the main program of the COUNT software and its various 
modules. We present the general logic in flowcharts and explain the code in detail. 
COUNT first reads the highway axis from input files described in the previous section 
and computes the linear distances of these points from the datum. It then reads the 
vehicle coordinate data from input files and projects the vehicle coordinates to locations 
along the highway axis defined by the highway axis coordinates. Then the sofhare gives 
the user the option to compute traffic measures during a specified time interval at a 
specified location, or to compute the largest time interval possible for computing traffic 
measures at a specified location for given highway limits. Ifthe user chooses to compute 
M i c  measures during a specified time interval, the software requires the user to input 
the count location and count time interval. If the user asks the software to compute the 
time interval, the software requires the user to input the count location and the highway 
limits. Figure A-6 shows the general flowchart of this sohare.  

TheMain Rocam 
The main program declares variables and calls modules. This program is listed in 
Appendix Al. Lines 4 through 63 in this listing declare the variables used in the program. 
Comment lines have been added to explain where each variable is first used in the 
program. 

The main program first calls the module CENTERLINE. This module reads the highway 
axis data and computes the axial distances fiom the original data of the coordinates in the 
highway axis data file. The command to call this module is in line 66 of the main program 
listing found in Appendix Al. In line 67, the main program then calls --Cy the 
module that uses the axial distance to find the minimum and maximum distance of the axis 
coordinate point in the output from CENTERLINE. 

The main program then calls the VEHICLE, LOG-VEH, ORDER WH, DIRECTION, 
and SPEED modules to read the vehicle data and process them to determine the individual 
vehicle speeds and average speeds of cars and trucks. The commands to call these 
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modules and associated comment are in lines 68 through 100. These are 12 command lines 
to call modules in these lines are only 12. These 12 lines call 7 modules, 5 of which are 
called twice, once for cars and once for trucks. Some of the call command lines take more 
than one line of program list lines due to the large number of variables being passed to and 
from these modules and due to the length of the variable names. (Most of the command 
lines that call modules require more than one program list line and there are comment lines 
that explain the program within the command lines.) 

Next the main program calls CNT-TYPE, the module that asks the user to choose 
between computing traffic measures during a time interval or computing the time interval 
for the given highway limits. It does this by asking the user to respond with 1 to compute 
traffic measures during a time interval and with 2 to compute the time interval for the 
given highway limits. CNT-TYPE also accepts the user’s response. Depending on the 
user’s choice, the main program calls different sets of modules. The flowchart in Figure 
A-6 depicts the options. Line 104 in Appendix A1 is where the call is made to the module 
that gives the user the choice and reads the user’s response. If the user chooses “l”, the 
main module calls the.modules to compute the traffic measures for the given count 
location, and lines 106 through line 124 are processed. If the user chooses “2”, it calls the 
modules that compute the time interval for given highway limits, and lines 126 through 
line 187 are processed. 

Highway Axis Module 
The CENTERLINE module, which process the highway axis data to compute linear 
distances along the axis, is listed in lines 1 through 74 of Appendix A2. This modie reads 
the coordinates of the points that define the highway axis contained in Highway Axis 
Data Input file and computes the distances of these points from the same reference datum 
as the first point in the file. The x and y coordinates of the points are saved in arrays XC 
and YC. The distances at these axis points are saved in an array, LOC-CL. The 
coordinate values and the distance for a given point are saved at the same reference 
location in their respective arrays. 

The XC, YC, and LOG-CL arrays are sized at the beginning of the main module and the 
highway axis module. The statement to declare the sizes of the arrays is found in line 6 of 
the main module (Appendix Al) and in line 5 of the highway axis module (Appendix A2). 
Presently these arrays are sized to 800 spaces. If there are more than 800 points that 
define the highway axis, the statements to set the sizes of these arrays should be modified 
in these two arrays. (The FORTRAN compiler used to compile this software does not 
allow for dynamic allocation of memory and has problems with global variables. 
Therefore, we allocate a memory size for the arrays at the beginning in the main module. 
For the same reason we allocate the memory size at the beginning of each module for the 
m y s  that are being used in that module.) 
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After reading the data and assigning distances to the coordinate points, the axes are 
extended at the edges and an extra point is added to each end of the highway axis. The 
axes are extended so that vehicles that lie around the beginning or end of the axis can be 
projected to the axis. This extension becomes important when the highway axis is at an 
angle with reference to the coordinate axis of the images. (This case is explained in more 
detail in the LOG-VEH module section.) The need to do this will become clear when we 
explain the method of assigning distances to vehicles with reference to the highway axis. 
To allow for these “extensions”, the first place in each array is saved for the extension of 
the beginning of the highway axis. The extension at the end of the axis is saved in the 
place following the last point of the axis. 

CENTERLINE first asks the user for the name of the file that contains the centerline data 
in line 13 and accepts the user’s response in line 14 (see Appendix A2). After reading the 
name of the file, the CENTEXLINFi module calls the command to open the file (line 16 of 
Appendix A2). If the file is opened with no problem, lines 26 through 68 are processed. 
Otherwise, a failure message is printed at line 70, and the entire program is terminated. 
When the file containing the axis data is opened, the value in the first line of the data file is 
read (line 26) and saved in the second space in the array of centerline distances. As 
explained above, this number represents the distance from some exterior datum to the first 
axis point, the coordinates of which are listed in the second line of the axis data file. As 
mentioned above, the first space in the LOG-CL array is kept vacant to save the distance 
at the extended point of the axis. 

Next, CENTERLINE reads the coordinates of the highway axis points in a loop (lines 29 
through line 38 of Appendix A2). After reading the first line of the data file the loop 
starts. The x and y coordinates of each point are read and saved into arrays XC and YC 
sequentially through th is  loop. While reading the data the module checks for invalid data. 
Any data other than numerical values are considered invalid. Alphanumeric characters or 
any other symbol characters in the data are considered invalid data. Similarly numerical 
data with more than one decimal point, for example 2.2.0 or 2.2.0.0 are considered invalid 
input. If any invalid data are read the program is terminated. 

In addition to reading the data and checking for validity, the module checks for the end of 
file within the loop and counts the number of axis points. The number of axis points is 
used to define the size of the axis arrays to be used to save the data and to read data from. 
A counter is used to count the number of axis points and this counter increments by 1 
every time a new coordinate set is read. When the end of file is encountered the counter 
stops incrementing and the loop is terminated. These checks are performed through 
decision statements listed in lines 31 through 38. 

When the loop is terminated two extra data records are added to the array. The first is 
added at the first location, and the second is added at the location following the last record 
in the array. These records are for the extension of the axis. The beginning of the axis is 
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extended by creating a point located at a distance from the first point of the axis data that 
is equal to three times the linear distance between the first two points of the input data. 
The end is also extended in a similar manner, by creating a point located at a distance from 
the last point of the axis that is equal to three times the linear distance between the last 
two points of the axis. The beginning of the axis is extended by adding x and y coordinates 
to the first space in the arrays XC and YC. This is done in lines 43 and 44 of Appendix 
A2. The last point is extended by adding x and y coordinates to the spaces following 
those where the last point of axis had been saved. This is done in lines 47 and 48. 

The distance read from the first line in the axis data input file was assigned to the second 
space in array LOG-CL because the coordinates of the point with this distance (Le., the 
second line in the axis coordinate data file) are saved in the second spaces of arrays XC 
and YC. Given the coordinates of this point and those representing the extension of the 
axis explained above, the Euclidean distance of the extended chord is computed. This 
distance is subtracted from the distance of the first axis point to yield the distance at the 
exter?ded first p i n t  cfaxis. Tt.,e &stace is szvd in the LC;G-CL a m y  in &e first space. 
The software then processes a loop (lines 61-68 in Appendix A2), beginning with the 
third point., that computes the distances of each point and saves them at the appropriate 
locations in the distance may, LOG-CL. The distances are determined by computing the 
Euclidean distance between each point and the previous point and adding this incremental 
distance to the cumulative distance of the previous point. The logic of this module is 
illustrated in the flowchart shown in Figwe A-7. 

Within the same loop (lines 61-68) the module checks for the largest distance in the x or y 
direction between two consecutive points. This distance is used later in the module that 
computes the distance of vehicles along the road axis. The largest distance is assigned to a 
variable called DINC. The module initializes DINC to zero (line 10). Whenever, the loop 
increments to compute the distance at a point on the axis, the linear distance between the 
present point and the previous axis point is checked to determine if it is larger than DINC 
(lines 65 and 66). E the distance is larger than DINC, this distance value is assigned to 
DINC. When the loop is terminated, the value of DINC is the largest difference in either x 
or y direction between the coordinates of consecutive points. This value is saved and 
passed to the main program. 

When completed, CENTERL,INE returns the control to the main program. It also returns 
the values of the axis coordinates, the distances along the axis, and DINC to the main 
module of the software. After completing the CENTERLANE module, the main program 
calls the MINMAX C module that determines the minimum and maximum values of the 
array LOG-CL. Th&e values are needed in later modules. They are saved in variables 
CMIN and CMAX and passed to the main program. 

. . a  

A8 



Vehicle Modules 
There are six modules that read vehicle data and process them to obtain vehicle speeds 
and then the average speed of each class of vehicles. We call these modules the vehicle 
modules. The first vehicle module is called only once. The other five are each called twice, 
once for processing car data and again for processing truck data. The first module, called 
VEHICLES, reads the car and truck data and saves them in arrays. The other five modules 
use these arrays to determine distance and speeds of cars and trucks. The flowchart 
shown in Figure A-8 illustrates the order in which these modules are called. The first of 
these five modules is LOG-VEH. This module uses the vehicle data arrays and the 
centerline data to compute locations of vehicles, represented as distances, along the 
centerline. This module is called once for each class of vehicles, cars and trucks in this 
research. Module ORDER-VEH is called next for each class of vehicles. This module 
sorts the vehicle data by their ID numbers and returns the vehicle data in the sorted 
format. After sorting the vehicle data the DIRECTION module is called. This module 
returns a value of +1 for the variable DlRECT if the distances of the vehicles increase as 
they travel downstream, otherwise it r e m s  a -1 for the value of the variable DIRECT; 
that is, a +1 if the distances are measured in the direction of traffic flow and -1 if the 
distances are measured opposite to the direction of flow. This is important in computing 
the speeds of vehicles to ensure that the speed values are all positive. It is also important 
when estimating the times when vehicles pass the count location. We explain this in more 
detail when we explain the modules that estimate the time when vehicles pass the count 
location. Once the direction of the increase in the vehicle distances is determined, the 
SPEED module is called to compute the speeds of the vehicles. Again, SPEED is called 
once for each class of vehicles. After the speeds of individual vehicles have been 
computed, module AVG-SP is called. This module computes the average of all the speeds 
of the vehicles. It computes the average speeds of each class of vehicles separately and is 
called once for each class. The commands to call the vehicle modules are listed in lines 68 
through 100 of Appendix Al. Next, we describe these modules in more detail. 

VEHICLES Module. This module reads the data in the format explained in the 
VEHICLE RECORD DATA section. Every vehicle has a record for every time when it 
was imaged. The record contains the vehicle identification number, x and y coordinates of 
location of the vehicle, and the time when the vehicle was at that location. 

The code for this module is listed in lines 76 through 132 of Appendix A2. This module 
first asks the user for the name of the file that contains the vehicle data (line 88). After 
reading the name of the file input by the user (line 89), the module calls the command to 
open the file (line 91). If the file is opened without problem, lines 94 through 129 are 
processed. Otherwise, a failure message is processed and printed (line 132), and the 
program is terminated. 
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When the file is successfully opened the counters for cars and trucks are set to initial 
values of l(lines 95 and 96), and a loop to read the data is executed. (The counters are 
defined by variables CRS and TKS for cars and trucks, respectively.) One large loop 
(lines 98 through 124) is executed once for each class of vehicles. This loop starts by 
reading the class of the vehicles and, depending on the value of the class, one of two 
smaller internal loops is executed. If the class is 1, the loop that reads the car data is 
executed (lines 102 through 107), and if the class is 2, the loop that reads the truck data is 
executed (lines 1 10 through 1 15). 

The loop to read car data starts by reading the first car identification number, the x and y 
coordinates of the car location, and the time when th is  car was at this location. The time is 
given in a format consisting of three numbers that represent the hours, minutes, and 
seconds. The time is then converted to.units of hours by calling module T C O W .  The 
car data is saved in the space defined by the counter for cars, which starts with 1, in the 
arrays CAR-ID, XCAR, YCAR, and CAR-TIME-ID. The values saved in these arrays 
are &e car identificatior? xmber, x cc?or&n~?es zfhe GZ-!SCZ~~U=ZI, y ccxx&nms ~ f k c  GK 
location, and the time in the units of hours. If the car identification number is not -1, the 
counter for the number of cars is incremented by one (line 106) and the loop is repeated. 
The next time through the loop the data of the next vehicle is read and saved in the arrays 
at the location defined by the counter. If the car identification number is -1, which 
indicates the end of car data records (see the Highway Axis Module section), the loop 
terminates. 

- 

The loop to read the truck data is similar to the loop that reads the car data. The truck 
data is saved in the arrays TRK-ID, XTFUC, YTRK, and TRK TIME - ID at the 
locations defined by the counter for trucks. The values saved in-these arrays are the truck 
identification number, x coordinates of the truck location, y coordinates of the truck 
location, and the time in the units of hours when the truck was at that location. 

After both the car and truck data are read, the larger loop is terminated and the module 
passes the data to the main program. This module presently considers only two vehicle 
classes, cars and trucks. It can be expanded to accommodate more classes of vehicles. 
More loops can simply be added to read data for more classes. The new loops would 
have to be added within the larger loop that contains the smaller read loops. 

LOG- VjEH Module. The module LOG-VEH computes the linear distances (Le., 
distances measured along the road axis) of the vehicles with respect to the externally 
defined datum. The input data for this module are the arrays that contain the highway axis 
and vehicle data and the value of DJNC. (Recall that DINC was defined in module 
CENTERLINE above and represents the largest distance in the x and y direction between 
two consecutive points on the axis line.) The LOG - VEH module passes back to the main 
program the array of linear distances that represent the vehicle locations along the 
highway axis. To calculate the linear distance of a vehicle, a perpendicular to the centerline 
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is projected fiom the x and y coordinates of the vehicle to the centerline axis. Then, the 
distance from the external datum to the point where the perpendicular line intersects the 
axis is computed and assigned as the vehicle location distance. 

A flow chart of this module is presented in Figure A-9. The code for this module is listed 
in lines 1 through 181 in Appendix A3. The distances of all the vehicles are computed 
through a loop that repeats once for each vehicle record. 

To determine the distance of a vehicle, the road axis points that are within a given 
proximity of the vehicle location are identified. The module defines a search proximity 
box with the vehicle location coordinates in the center and a width and height that are 
equal to 4 times DINC, which was determine in module CENTERLINE. Any chord that 
is partially within the search box is inspected. Imaginaq perpendicular lines to these 
chords are drawn from vehicle location. The point of intersection between the 
perpendicular line and the chord or its extension is determined by calling module 
INTERSECT (line 26 of Appendix A3). If the point of intersection between the chord 
and the perpendicular is on the chord, this is defined as the point to reference the vehicle 
by. If the point of intersectin is on the extension of the chord, the chord is disregarded, 
and the next chord is checked. 

To illustrate, consider the schematic of a highway axis and a car represented in Figure A- 
10. In this figure highway axis is represented by points C1, C2, C3, and C4 by the chords 
(Cl,C2), (C2,C3), and (C3,C4), where C1, C2, C3, and C4 are the points whose 
coordinates are saved in arrays XC and YC that represent the highway axis. The car 
location is represented by the center of the rectangle labeled CARl . The perpendicular 
drawn from the car location to the chords (Cl,C2), (C2,C3), and (C3,C4) or their 
extension are points X1, X2, and X3, respectively. Points X2 is on chord (C2,C3), while 
X1 and X3 are on the extension of the chords (Cl,C2) and (C3,C4), respectively. 
Therefore, we consider point x2 to represent the location of the vehicle. We determine 
the distance of CARl location as being the distance at C2 added to the Euclidean distance 
between point C2 and X2. 

This process is done through a loop that goes through many checks. Lines 3 1 through 174 
are the list of the different check code lines for the intersection point of the two lines. 
When the intersection is determined on axis chord, module DLOG is called to compute 
the distance along the intersection point on the axis. This is done by adding the Euclidean 
distance fiom the intersection to the chord edge point to the distance at the end of the 
chord. This distance is then assigned to the vehicle as its location distance. 

Lines 15 through 178 are the commands that process the loop to find the distance location 
of one vehicle. The large loop determined by lines 12 through 179 is processed once for 
each vehicle. When all the vehicle distances are computed, the module passes the new 
vehicle records to the main program. The new vehicle records contain the vehicle 
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identification number, the vehicle distance along the highway axis, and the time when the 
vehicle was at this location. Figure A-1 1 presents car record data, for the vehicles in 
Figure A-2, in the format passed from this module to the main program. 

Module INTERSECT takes the coordinates of the end points of the two lines, the 
highway axis chord line and the perpendicular line, as input and returns the coordinates of 
the intersection point. This module listed in lines 183 through lines 197 uses basic 
trigonometry to find the intersection of two lines. It takes line 1, which represents the 
chord on the highway axis, and line 2, which represents the perpendicular to the chord 
from the vehicle location, and finds their intersection. Line 1 is defined by coordinates 
(xl,yl).and (x2, y2) and line 2 is defined by coordinates (x3,y3) and (x4,y4). Point of 
intersection is defined by point (x5,yS) and the equation to compute these coordinates are 
listed in lines 194 and 195. 

In determining the vehicle location distance with reference to the road axis for the vehicles 
that !ie zt begixii~g er cnC c ; f h  a i s ,  die pixpendicuiar may intersect at a point on 
the first chord outside themcis limits. When the axis of the highway is at an angle with 
reference to the coordinates of the first image, locations of some vehicle could be out of 
the range of the axis. This case is represented in the schematic of Figure 12. The schematic 
represents a case of a first image in a series of images. The axis of the highway in this 
image is at a sharp angel with the respect to the image X axis of the image. Truck-1 is out 
of the ranges of the highways axis. When a perpendicular is dropped fiom the location of 
Truck-1 to, @e axis, the intersection of the axis and the perpendicular lies outside the 
ranges of the image limits and thus the range of the axis. 

This case is treated in our work by extending the axis beyond the starting point at the 
limit of the image. This extension should be long enough to ensure that the intersection of 
the axis and the perpendicular on the axis of the highway lie on this extension. 

Recall, we explained in the Highway Axis Module section that the highway axis are 
extended at the ends to consider the vehicles that may lie at the beginning and end of the 
highway. This was the reason for extending the axis at the beginning and the end in the 
CENTERLW module. - 

ORDER-VEHModule. Module ORDFR-VEH sorts the vehicle data in 
ascending order of vehicle identification number. The new sorted vehicle data and 
identification numbers are saved in new arrays. Vehicle data are ordered such that vehicles 
with similar identification numbers are in consecutive locations. Figure A-13 presents the 
vehicle records of Figure A-1 1 in the new format. 

The general process of this module is presented in the flowchart shown in Figure A-14. 
The code for this module is listed in Appendix A3 in lines 229 through 297. As seen in 
the flowchart, we determine a vehicle to be the present vehicle under consideration. We 
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call the vehicle that is being processed the present vehicle and use the variable 
LATESTVEH to indicate the ID of this vehicle. We start the loop by defining the present 
vehicle to be the vehicle with the smallest identification number of all the vehicles in the 
class (line 254 in Appendix A3). The smallest identification number is defined by calling 
module h4INMAX with the array that contains vehicle identifications (line 249 of 
Appendix A3). This array returns the smallest and largest vehicle identification numbers. 

The vehicle records are sorted through two nested loops. The outer loop changes the 
present vehicle ID every time the loop is incremented. The inner loop checks the entire 
set of vehicle records to find all the vehicles with the same identification number. Each 
vehicles with identification numbers identical to the present vehicle identification number 
is saved in a new array N - VEH ID in the order that it is found in VEH-ID each in the 
next available cell. At the same ;me these vehicles are marked for deletion in the old array 
vEH_ID of identification number. These vehicles are marked for deletion so that this cell 
will not be checked the next time we go through the array to check a different vehicle 
identification. When the last vehicle in the array VEH-ID has been checked to find all the 
vehicles with identical ID as the present ID, the LATEST-VEH variable is incremented 
(line 266) and the smaller loop is terminated. The larger loop checks for the 
LATEST-VEH to be less than or equal to the largest vehicle ID. When an ID greater than 
that of the LATEST-VEH is found there are no more vehicles left to be ordered, and the 
larger loop is terminated. 

As the vehicle identification numbers are saved, their distances and time data are also 
saved in the same reference location in new arrays N-VEH-LOG, and 
N-VEH-TIM€-ID, respectively. This module process all the vehicle data and passes the 
new set of arrays that contain the vehicle data sorted by vehicle identification number to 
the main program. These new vehicle data are used in the next modules. 

SPEED Module. This module computes the speed of every vehicle that is listed 
more than once in the vehicle data. A vehicle is repeated more than once when its 
identification number is repeated more than once in the list of identification numbers. This 
would be the case when the vehicle is imaged more than once. Vehicles that do not appear 
more than once are given a speed of zero. The speed of every vehicle is saved in a new 
array called VEH-SP in the same reference location as that of the corresponding vehicle as 
the other arrays. The vehicle location and identification are saved in N-LOG-WH and 
N-VEH-ID in a location marked by the vehicle counter. The speed is saved in the array 
VEH-SP at the location marked by the same counter. The data used in this module are the 
sorted data that were passed from module ORDER-VEH. The process of this module is 
presented in the flowchart of Figure A-14. The code for this module is listed in lines 290 
through 3 12 of Appendix A3. 

Speeds are computed in a loop that starts at the second location in the vehicle 
identification array. If the identification of the vehicle in this record is equal to the 
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identification number of the vehicle in the first location, the speed of the vehicle is 
computed and saved in array IEH-SP. Otherwise, the vehicle is assigned a speed of zero 
and the module proceeds to process the next vehicle. Only consecutive vehicle . 

identifications have to be checked because the vehicles have been ordered in the previous 
module such that the consecutive appearances of the same vehicle are in consecuthe 
locations in this list. 

Speed is computed by dividing the difference in the location distances by the time 
difference of these two vehicle locations. Recall that the distances are linear distances, 
since the vehicles locations were projected to the axis in module LOG-VEH. The 
calculated speed represents the average speed between these two locations during the time 
when the vehicles were imaged at these locations. The speeds of the vehicles are saved in 
the array in the same reference location parallel location to the second appearance of the 
vehicle. The speed in the location referenced by the same reference location as first 
appearance of the vehicle is given a zero in the speed array. The speed of the vehicle is 

assumed to be meters and the time in hours; therefore, speed is divided by 1000 (line 303) 
to convert the speed to units of kilometers per hour (KPH). 

I 
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This module passes the array of speeds of vehicles to the main program. These speeds are 
used in later modules. 

AVG-iYPD Module. This module computes the average speed of all the vehicles 
in the array that contains the speed data. This module calculates the average speed as the 
sum of the speeds divided by the number of non-zero speed values. This gives the average 
speed of the vehicles in the class for which the data are being processed. This average 
corresponds to the space mean speed of the vehicles. The code for this module is listed in 
lines 314 through line 329 of Appendix A3. 

This space mean speed is then substituted for the speed of vehicles that have been imaged 
only once. The speeds of these vehicles had been temporarily set to zero. Recall that the 
speeds of speeds of cars are generally greater than speeds of trucks; therefore, 
substituting the average speed of cars for the speeds of a cars would tend to lead to more 
accurate results than when substituting the average speeds of all the vehicles. Similarly, 
substituting the average speed of trucks for the speeds of trucks would tend to lead to 
more accurate results than when substituting the average speeds of all the vehicles. For 
this reason, we compute the average speed of each vehicle class separately by calling this 
module to compute the average speeds of cars once and to compute the average speed of 
trucks once. 

Count Type 
This is a simple module that asks the user to enter the choice of modules to run. It 
requires the user to enter a 1 to compute traffic measures at a given location and time 
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interval or to enter a 2 to compute the largest time interval for which parameters can be 
estimated for the given road location highway limit. The user might not be able to define 
the count interval from the data, in this case the user can define the highway limits from 
the image and determine the maximum count interval that this highway limits would - 

allow. This interval then can be used to determine the count intervals, within this interval, 
that the user wishes to use to get traffic parameters. 

This is the module that represents the choice in the general flowchart of the program 
shown in Figwe A-15. This module is listed on lines 1 through 37 of Appendix A4. Ifthe 
user enters a 1 or a 2 as a response, the module returns the control to the main program 
and passes the response back too. If the user’s response is anything else other than a 1 or 
a 2, a message is presented to indicate that the response is invalid, and the response is 
requested from the user again. 

According to the user’s response, different sets of lines are processed in the main 
program. When the user’s response is 1, lines 107 through 148 of the main program, listed 
in Appendix A1 , are processed. These lines call a series of modules called COMPUTE-1. 
When the user’s response is 2, lines 15 1 through 188 are processed. These lines call a 
series of modules called COMPUTE-2. 

COMP -1 Modules 
Compute modules are modules that read the highway data file and compute traffic 
m 
Figwe A-16 shows the general process of this set of modules. 

at the given location during the giva time interval. The flowchart presented in 

In COMPUTE-1, trflic measures are computed from the estimated times of when the 
vehicles pass the count location. Since this work is motivated in large part by a desire to 
compare measures estimated from satellite images to those that would be estimated from 
an ATR (Automatic TrafEc Recorder), we refer to the count location a ATR location. The 
count location does not have to correspond to a true ATR location; it could be any 
location on the given highway. This name is used for simplicity to identifjl the count 
location. 

The times when the vehicles would pass the ATR locations are estimated from the given 
location and time data in arrays N-VEH-LOG and N-VEH- ID. When a vehicle 
has more than one location and time data, the closest location of thevehicle to the ATR 

either use the average speed of the vehicles of the class or the speed of the individual 
vehicle at the location where it resides to estimate the time it would take to travel from 
the given location to the ATR location. We use these options to compare the measures 
that we estimate using each speed to check the accuracy of both versus the measures 
estimated from an ATR. 

!? 

Y location is used to estimate the time when it would pass the ATR location. The user can 
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In COMPUTE-1 series of modules, the first module called is XYATR, which reads the 
highway data from a data file and passes the data back to the main program. Then, the 
user is given a choice of which speed to use to project the vehicles to the ATR location. If 
the user chooses to use the average speed of vehicles, then the BRING-TO-ATR_A_SP 
module is called twice, once with truck data and once with car data. Otherwise, if the user 
chooses to use individual speeds of vehicles, BRING-TO-ATR module is called twice, 
again once for truck data and once from car data. The BRING-TO-ATR and 
BRING-TO-ATR-A-SP modules pass the estimated time when the vehicles pass the 
ATR location to the main program. When these modules are completed, the COW-PAR 
module, which computes the parameters and prints them, is called. 

In the following sections we present details of the modules used in COMPUTE-1 in the 
order that these modules are called. . 

Count Locations Module, This module is called XYATR and it is listed in lines 1 
through 48 of Appendix A4. XYATR first mb the user fer the m a 2  afthe file &at 
contains the count location data (line 15) and accepts the user’s response (lines 17). M e r  
reading the filename, the module calls the command to open the file (line 2 1). If the file is 
opened successfblly, lines 21 through 42 are processed. Otherwise, a failure message is 
printed at line 44, and the module and the entire program are terminated. 

When the file is opened, the module reads the data. The number of lanes and the 
passenger car equivalent of trucks are read and assigned to variables NL and Et, 
respectively, in lines 21 and 22. Line 23 reads the ATR location x and y coordinates, start 
of count interval, and end of count interval. Each of the times is read in three numbers that 
represent hours, minutes, and seconds. Module T C O W  is called to convert each of the 
times to one number in hour units. This module, called twice (lines 29-30), converts each 
of the times - count start time, and count end time - to hour units. These times are 
returned as values of the variables T1 and T2. 

Module LOG-LOCATION, called in line 34, computes the count location distance along 
the highway axis and assigns it to DIS-ATR. After determining the count location 
distance, this XYATR module terminates and passes all the data to the main program. 

BRING_TO_ATR_A_SPModule. The BRING-TO - ATR-A-SP module 
estimates the time when each vehicle passes the ATR location using the average speed of 
the vehicles of the class of the vehicle being estimated. When a vehicle has only one 
location record, this location is used to estimate the time when it passes the ATR 
location. When a vehicle has more than one location record, the location closest to the 
ATR is used to estimate the time when the vehicle passed the ATR location. The time 
when the vehicle was at the location of the ATR is computed by estimating the time that 
the vehicle would take to travel from the defined location to the ATR location and adding 
this time to the time when the vehicle was imaged at the location of record closest to the 

I 
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ATR. The speed of the vehicle while traveling to the ATR location is the average speed of 
the vehicles of the class of vehicles that are being processed. Recall that when the user 
chooses to use the average speed of vehicles, module BRING-TO-ATR-A-SP is called. 
Figure A-17 presents a flowchart of the process of this module. The code for this module 
is listed in lines 49 through 200 in Appendix A4. (The data that are used in this module 
are the data that are sorted in the ORDER-VEH module. Thus, the location and time 
records of a vehicle are listed in consecutive order.) Line 93 is the start of a large loop that 
repeats with every vehicle record. Each time through this large loop, a small loop listed in 
lines 96 through 102 is processed. This smaller loop checks whether the vehicle has more 
than one record. The first and last records of the same vehicle are determined in this small 
loop. 

If the vehicle has only one record the time when it would have passed, the ATR location 
is computed in the equation listed in lines 106 and 107. In these lines, ab-t-veh is the 
variable representing the estimated time when the vehicle pass the ATR location, 
n-veh-timejd is the variable representing the time when the vehicle was imaged, log-atr 
is the variable representing the location of the ATR, n-log-atr is the variable representing 
the location of the vehicle, and spd is the variable representing the average speed of 
vehicles. 

If the vehicle has more than one record, lines 105 through 15 1 are processed. In these lines 
first the location of the ATR is checked (lines 114 through 133) to determine whether it is 
located between any consecutive locations of the vehicle. Ifthis is the case, then the time 
when this vehicle passed the ATR is estimated using the first one of these two locations 
for this vehicle. This is done in the loop that is listed in lines 11 1 through 122. If the 
location of the ATR is not between 2 consecutive locations of the vehicle, then the 
location record closest to the ATR location is determined and used to compute the time 
when the vehicle would have passed the ATR. This is done in lines 123 through line 150. 

The new times when the vehicles are estimated to pass the ATR location are saved in a 
new array called ATR-T-VEH. The minimum and maximum values in this array are 
determined in line 158 and 159 and saved in variables TMIN and TMAX, respectively. 
The identification numbers of these vehicles are saved in array ,ATR V-ID in parallel 
locations to their times in the array ATR-T-VEH. When the data ofthe vehicle with the 
Same identification have been processed, the loop finishes one cycle at line 163 and 
increments to run the for a vehicle with new identification number. If the last vehicle has 
been processed, this loop terminates and line 164 is processed. The check for more 
vehicle data is performed at line 160. 

After the times that the vehicles are estimated to pass the ATR locations have been 
determined, the number of vehicles estimated to pass the ATR location during time 
interval [t',?] is determined. This is done in a loop that starts at line 173 and runs through 
line 179. The vehicle identification numbers and speeds for the vehicles that are in the 
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time interval are saved in the new arrays ID-IN-T and SP-IN-T, respectively. Then the 
vehicles that have speeds are counted and the average of these speeds is computed. This 
is done in a loop listed in lines 185 through line 194. 

After computing the average speeds of vehicles in the count interval, this module 
terminates and passes the data to the main program. 

BMNG-TO-ATR Module. The BRING-TO-ATR module estimates the time 
when each vehicle passes the ATR location using the individual speed of the vehicle. 
Recall that when the user chooses to use the individual speed of vehicles, module 
BRING TO-ATR is called. This module uses the individual speeds to project the 
vehiclest0 the ATR location. 

This module works in the same manner as the previous module, 
BRING-TOARTA-SPY except that the speed used to bring the vehicle to the ATR 

record and no speed was estimated for this vehicle, the average speed of the vehicles of 
the class is used in the equation to estimate the time at the ATR. If the vehicle has only 
one speed record, this speed is used to estimate the time at the ATR location. When a 
vehicle has more than one speed record, the speed of the vehicle at the location closest to 
the ATR, as explained in module BRING-TO ATR-A-SO, is used to estimate the time. 
This module is listed in lines 202 through 363 if Appendix A4. 

. .  imbon 1s &e average sped of& icdkv<&i v&ic!c. If&e \p&ic!e hss en!y gfie 

C0Wm-P' Module The COMPUTE-PAR module computes the trfiic 
parameters at the given ATR location during the time interval given. Module 
BRING-TO-ATR or BRING-TO-ATR-A-SP computed the number of cars and the 
number of trucks that are estimated to pass the ATR location in the given time interval 
[t',?]. The average speeds of ail the vehicles that pass this location in this time interval 
was also computed. Module COMP-PAR takes this speed and the number of cars and 
trucks that are estimated to have passed the ATR location during time interval [t',?] and 
the highway count data described in the Highway Count Data section and computes 
traffic parameters. The parameters computed in this module are the volume of cars in time 
interval [ti,?], the number of trucks, total number of vehicles, percent of trucks, flow in 
passenger car equivalent (PC), the space mean sp&, and the density in vehicles and in 
PC. This module then lists the output to the screen. 

The code for this module is listed in lines 1 through 41 in Appendix AS. Traffic 
parameters are computed in lines 15 through 23 and printed out in lines 25 through 39. 
Figure A-18 shows an example of an output printed out by this module. 

COMPUTE-2 Modules 
Compute modules are modules that read the highway data file and compute the largest 
count time interval for the given data. In COMPUTE-2, the time interval is determined. 
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As in BRING - -  TO ATR and BRING - -  TO ATR - -  A SP, explained in the COMPUTE-1 
Modules section, the times when the vehicles pass the specified location, ATR location, 
are estimated. From these times the earliest time and the latest time when a vehicle passes 
the ATR are determined. These earliest and latest times determine the allowable time 
interval for the count. Module X1X2 is called to read the count location time and highway 
limits data explained in the Highway Location and Limit Data section. Modules 
BRING-TO-ATR X1X2 - AS and BRING - -  TO ATR X1X2 are called to estimate the 
time when the vehicles pass the ATR location using theaverage speed of vehicles and the 
individual speeds of vehicles, respectively. Module CHECK-TlT2-XlX2 is called to 
determine the maximum allowable time interval for the count. 

The first module called is XlX2. This module reads the highway limit data and passes the 
data back to the main program. (Highway limits data are the coordinates of the first and 
last location on the highway segment under consideration.) Then the user is given a choice 
of which speed to use to project the vehicles to the ATR location. If the user chooses the 
average speed of vehicles, then BRTNG - -  TO ATR_XlX2_AS module is called once with 
truck data and once with car data. Otherwise, the individual speeds of vehicles are used to 
project these vehicles to the ATR location. In this case BRING-TO-ATR-XlX2 module 
is called. Both modules pass the estimated time when the vehicles pass the ATR location 
to the main program. Then CHECK-TlT2-XlX2 module, which prints out the time 
interval is called. 

XlX2 Module. The X1X2 module is listed in lines 1 through 57 of Appendix A6. 
Module X1X2 starts by prompting the user for the name of the file that contains the 
count location data and waits for the user to enter the filename. The commands for this 
prompt and response are listed in lines 21 and 22 of Appendix A6. After reading the 
filename in line 23, the module calls the command to open the file. Ifthe file is opened 
successfully lines 27 through 51 are processed. Otherwise, a failure message is printed at 
line 53, and the module and the entire program are terminated. 

Y 

When the file is opened, the module reads the data. The loop listed in lines 29 through line 
38 reads the x and y mrdinate data for the count location, the beginning limit of the 
highway, and ending limit of the highway. Module LOG_LOCATIONis called next to 
compute the distances along the highway axis for the location and limits of the highway. 
After being determined, the location distances are printed and module X1X2 terminates 
and passes the ATR location and highway limits data to the main program. 

k 

- 
BRING TO-ATR_xIxzAs Module. The code for the 

BRING - -  TO A k  XlX2-AS module is listed in lines 59 through 21 1 of Appendix A6. 
This module estimates the times when the vehicles pass the ATR location using the 
average speeds of vehicles. It has the same logic as modules BRING - -  TO ATR - -  A SP 
used in COMPUT-I, which was explained in the BRING-TO-ATR-A-SP Module 
section. It differs in that the estimated time that a vehicle passes the ATR in 

A19 



BRING-TO-ATR-XlX-AS is checked against the maximum and minimum times. If 
the estimated time that a vehicle passes the ATR is larger than the maximum time, this 
time is set to be the maximum. Similarly, if the estimated time that the vehicle passes the 
ATR is smaller than the minimum time, this time is set to be the minimum time. The 
maximum time is determined to be the latest time when the vehicles of the class pass the 
ATR locations. The minimum is determined to be the earliest time when the vehicles of 
the class pass the ATR location. These minimum and maximum times are the times to 
determine the count interval to estimate trafllc measures from the given satellite data. The 
values of the minimum time and the maximum time are passed to the main program ;when 
each of the modules terminates. This module is called twice, once for cars and once for 
tucks. 

BRZNG-TO-ATR-Xlx2 Module. The code for the BRING-TO-ATR-XlX2 
module is listed in lines 213 through 374 of Appendix A6. This module estimates the 
times when the vehicles pass the ATR location using the individual speeds of vehicles. It 
has &e same !q$c as module BRING - -  TO ATR used in COMPUT-1, which was 
explained in the BRING TO-ATR Module section. As in 
BRING-TO-ATR-Xll6-AS, this module checks the estimated time that the vehicles 
pass the ATR location against the maximum and minimum times. Ifthe time that a vehicle 
passes the ATR is larger than the maximum time, this time is set to be the maximum. 
Similarly, if the time that the vehicle passes the ATR is smaller than the minimum time, 
this time is set to be the minimum time. The maximum time is determined to be the latest 
time when the vehicles of the class pass the ATR locations. The minimum isdetermined 
to be the earliest time when the vehicles of the class pass the ATR location. As explained 
in the previous section, these minimum and maximum times are the times to determine the 
count interval to estimate traflic measures from the given satellite data. The value of the 
minimum time and the maximum time is passed to the main program when each of the 
modules terminates. This module is called twice, once for cars and once for tucks. 

CHECK-TlT2-XlX2 Module. The code for the CHECK-TlT2-XlX2 
MODULE module is listed in lines 104 through 129 in Appendix A7. This module takes 
the minimum and maximum times that cars and trucks would have passed the ATR 
location, which were estimated in modules BRING - -  TO ATR-XlX2 or in 
BRING-TO-ATR-X1X2-ASy and determines the maximum allowable interval for the 
count. The largest of the minimum car and trucks times is considered the start of the 
count interval and the smallest of the maximum car and truck times is considered the end 
of the count interval. 
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Figure A1 . Sample of highway axis data. 
LUUU 

1087, 6106 
1080, 6077 
1071, 6040 
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1007, 5775 
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991, 5713 
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931, 5465 
930, 5459 



Figure A2. Photographs 94 and 95. 
The reference axis of the photographs and the first axis point. 

Photo # 94. Time 1054:31 

Photo # 95. Time 10:54:36 



Figure A3. Sample of vehicle record data. 
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Figure A6. General flowchart of the COUNT software. 
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Highway axis data include: 
0 HighwayDatumpoint 

Highway axis coordinates (xc,yc) 

Vehicle record data contains: 
Vehicle coordinates (XVJV) 

0 

0 

Time vehicle was at (xv,yv) coordinates 
Identifier of vehicle at ( x v , ~ )  coordinates 
Class of vehicle at (XV, yv) coordinates. 

Highway data include: 
HighwaynumberoflanesNI 

0 Truck Terrain factor Et 

Count location data include: 
Traffic estimate location (A) coordinates (qya) 
Time -pint A was imaged 

Interval data include: 
Time interval limits [tl,t2] 

Couut location data include: 
0 

TimepointAwasimaged 

Highway limits data include 

0 

Traffic estimate location (A) coordinates (qya) 

Highway limits coordinates (x17yl)7 (x2,y2) 
Time when these limits of the mad were imaged. 

Traffic measures at the fmed location in time interval [tl,t2]: 
Volumeofcan 
Volumeoftrucks 
Total volume 
Percentoftrucks 
Equiv. Ofpassenger car flow 
Spacemeanspeed 
Equivalentpassengercardellsity 



A- AXIS MODULE 
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Figure A7. Flowchart of highway axis module. 



B- WHICLE MODULES 

-B4- DIRKTION 
DetermineDktionof IncreaseDistances 

Determioe vehicle velocities aud append 
them to vehicle records 

I 8 6 -  AVG-SP 
Determine average velocity of vehicles I 

e records sorted by identifier 
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0 Average velocities of vehicles 
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Figure AS. Flowchart that shows the order for calling the vehicle modules. 



B- LINEAR DISTANCES OF VEHICLES 

Find linear distanEe of projected vehicle 
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Figure A9. Flowchart of LOG-VHE module. 



-B2- SORT VEHICLE RECORDS BY IDENTFIER \ 
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Figure A14. Flowchart of the general process of Module ORDER-VEH. 
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Figure A15. Flowchart of SPEED module. 
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individual speeds 
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Figure A16. Flowchart that shows the process of calling the set of COMPUTE modules. I 
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Figure A17. Flowchart of the BRING-TO-ATR-A-SP module. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

! 

! 

! 
! 

! 

! 

! 

! 

! 

! 

! 

program count 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
variables introduce for the first time in centerline subroutine 
integer numcl 
real xc(800),yc(800),lo~c1(800), dinc 
variables introduce for the first time to find min and max 
of CL points 
real cmin,cmax 
variables introduce for the first time in Vehicles subroutine 
integer crs.tks,car-id(400),trk-id(400) 
real xcar(400),ycar(400),xtrk(400),ytrk(400) 
real trk-time-id(400),car,time-id(400) 
variables introduce for the first time in minmax-veh-times 
real tt_st,tt,end,tc_st,tc-end,t-s~~,t-end 
variables introduce for the first time in log-veh subroutine 
real log~car(400),log-trk(400) 

i d  XC;(~OO j,y~l;4OO;,xe2;4OOj,jic2j4OOj 
real xt1(400),yU(400),xt2(400),yt2(400) 
variables introduce for the first time inorder-veh subroutine 
integer n-car-id(4OO). n-trk-id(400) 
real n-log-car(400).n-~og-t,trk( 400) 
rea I n-trk-time-id( 400), n-ca r-time-id( 400) 
variables introduce for the first time in direction subroutine 
integer direct 
variables introduce for the first time in speed subroutine 
real car-sp(400),trk-sp(400) 
variables introduce for the first time in avasp subroutine - 
real a-sp-cars, a-sp-trks 

! variables introduce for the first time in cnt-type subroutine 

! variables introduce for the first time in xlx2 subroutine 
integer f-type 

integer NL 
real dis-atr,dis-xl .dis-x2, Et 
real to, tl.t2 

! variable inrtoduced to choose the speed to use to bring vehicles back 
! to the ATR location 

integer speed-type,ie 
! variables introduce for the first time in bring-to-atr-xlx2 subroutine 
! integer c-nxlQ,t-nxl& 
! integer x12~car~id(400),x12~trk~id(400) 

integer -b-c-id(400), atr-t-id(4OO) 
real tminc-xl2,tmaxc-xl 2.tmint-XI 2,tmaxt-x12 

! real x12~car~tid(400),x12~trk~tid(400) 
! real x i  2~car~log(400).x12~c~sp(400) 
! real x i  2-trk~bg(400),~12-t-sp(400) 

! variables introduce for the first time in xyATR subroutine 
! None 
! variables introduce for the first time in bring-to-atr-a-sp subroutine 

real a t r ~ c ~ ~ 4 ~ ) . a t r ~ t ~ ~ 4 ~ ) , a t r ~ c ~ s p ( 4 O O ) , a t r ~ t ~ s p ( 4 0 0 )  

integer cars-in-t,c-sp-i-t,trks-in-t,t-sp-i-t 
real tminc,tmaxc,tmint.tmaxt, a-sp-c-in-t,a-sp-t-in-t 

! variables introduce for the first time in volume subroutine 
! 

integer trks-in-xlx2,cars-in-xl x2 

I 

, 
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I 
i- 

57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
I09 
110 
111 
112 
113 
114 
115 

integer cnt_trk_id(400),cnt-car-id( 400) 
real cnt~trk~log(400),cnt-trk~sp(400) 
real cnt-car-log( 4OO),cnt-car-sp( 400) 
real tl_t,Q-t,tl-c,t2-c 

! 
! variables introduce for the first time in check-tit2 subroutine 

integer fail 

! 
call centerline(xc,yc,log-cl.numcl,dinc) 
call minmax-cl( numcl,log-cl,cmin.cmax) 

call vehicles(xcar.ycar;xMZytrk, 

call log-veh(dinc,xc,yc,log-cl,numcl,xcar,ycar,locar, 

call lo~veh(dinc,xc,yc,log_cI,numcl,~,ytrk,~g~trk, 

+ car_id,trk_id.tks,cn,trk_time_id,car_time_id) 
! ,tmin,tmax) 

+ crs,car-id,car-time-id.xcl,ycl,xc2,yc2) 

+ tks,trk_id,trk_tme_id,~,ytI,ytl,xt2,yt2) 
! 

call minmax(crs,car-time-id&-st,tc-end) 
call minmax(tks,trk-time-id,tt-st,tt-end) 

t-end =tt-end 

if(tc-end.gt.tt-end) t-end = tc-end 

call order-veh(log-car,crs,car-id.car-time-id. 

call order-veh( log_~tks,trk_id,trk_time_id, 

This subroutine gets the direction of the Center Line Increase 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
call direction(direct,crs.n-log-car,n-car-id,n-car-tim-id) 

! The following subroutine will compute the speeds of vehicles 
prinr.' 
prinr,'CARS ' 
call speed(crs,n_log_car,n_car_id,n_car_time_id,car_sp.direct) 
call speed(tks, n_log-trk,n_trk_id,n_Mr_time_id,trk_sp,direct) 

! The following will get me the average speed if trks (L and cars 
prinv,' 
call avg_sp(crs,car-sp.a-sp-cars) 
call avg-sp(tks,trk-sp,a,sp-trks) 

prinP,'average speed of cars = ', a-sp-cars,' Kmph' 
print*,'average speed of trucks = '.a-sp_trks.' Kmph' 

prinr,'type of count is :', f-type 
if(f-type.eq. 1 )then 
call xyATR(NLEtdinc.numcl,xc,yc,log_cl.dis-a~,t0,tl ,Q) 
call which-sp(speed-type) 

if(speed-type.eq. 1) then 
call cars 
read' 

t-start = tt-st 

if(tc-st.ktt-st) t-start = tc-st 

! 

+ n_log_car,n_car_id,n_car_time-id) 

+ n-log-trk. n-trk-id,n-trk-time-id) 

I 

I 

call cnt-type(f_type) 

! 
! 

print.,' Your start time is = '$1 
print.,' Your end time is = ',t2 

call bring-to-atr-a-sp( crs. n-log-car, 

Page 2 of 4 



APP-A1 arev.xls 

116 
117 
118 
119 
120 
121 
122 
123 
1 24 
125 
126 
127 
128 
129 
130 
131 
1 32 
133 
134 
135 
136 
! 37 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
1 52 
153 
154 
155 
156 
157 

158 
159 
160 
161 
1 62 
163 
164 
165 
166 
167 
168 
169 
170 
171 

+ n-car-id,n-car-tme-id, 
+ car_sp,direda_sp_carr,dis_atr, 
+ atr-c-id,atr-c-t,tl ,Q,tminc,tmaxc. 
+ cars_in-t,a-sp-c-in-t,c-sp-i_t) 

call trucks 
call bring-to-atr-a-sp(t, n-log-trk, 

+ n-trl-id.n-trk-time-id, 
+ trk_sp,direda_sp-trksks,dis-atr, 
+ atr-t-id,atr-t-t,tl ,t2,tmint,tmaxt, 
+ trks-in-t,a-sp-t-in-t,t-sp-i-t) 

else if(speed-type.eq.2) then 
call cars 
read* 
call bring_to-atr(crs,n-log_car,n-car-id,n-car-time-id. 

+ car-sp,direda-sp-can,dis-atr, 
+ atr-c-id,atr-c-t,tl ,Q,tminc,tmaxc, 
+ cars-in-t,asp,c,in_tc-sp-i-t) 

read* 
call trucks 
call bring_to_atr(tks,n-log_trk,n_trk-~,n-trk-time_id, 

+ f~-sp,dire~t,as,q_!rks,dis_atr, 
+ atr-t-id.atr_t_tt,t1,t2,tmintbmaxt, 
+ trks-in-t,a-sp-t-in-t,t-sp-i-t) 

end if 
call out-times(t1 ,t2,tminc,tmaxc,tminttma~) 
call check-cl_limits(direct,tl .t2,tminc,tmaxc,tmint,tmaxt, 

+ a_sp-cars,a-sp_trks,dis_atr, 
+ log_cl(2),log_cl(numl-l), 
+ tc-st, tc-end,tt-st,tt-end) 

call check-tW(t1 ,t2,tminc,tmaxc,trnint,~~,~il) 
if (fail.gL0) stop 
ca I1 compgar( NL,Et, t i  ,t2, ca rs-in-t. trks-in-t, 

+ a_sp-c-in_t.c_sp_i_t,a-sp_t_in_t,t_sp-i-t) 

elseif(f-type.eq.1 )then 
call xlx2(NL.Et,dinc,numcIci,xc,yc,locl, 

call check_xlx2(dis_xl ,dis_x2,direct,log-cI,numcl) 
call veh-in-xlx2(dirfl ,Q,d-xl ,d-x2,crs,n-car-id. 

n_log_car,n_car_time_id,car-sp, 
x12~car~tl2~idc,x12~lgc~t12~tc,x12~spc) 

call veh_in_xlx2(dir,tl ,Q,d-xl ,d-x2,tkS,n-trk-id, 
n_loamcn_trk_tirne-~,tp, 
xl2~~x12~idt,x12~lgt,x12~tt,x12~spt) 

call which-sp(speed-type) 
iyspeed-type.eq.1 )then 
call cars 
call bringJo-atr-xlx2as(cw.n-log_car,n-car-id, 

+ dis-xl,dis-x2,dis_atr,tO,tl,t2) 

+ n-car-time-id. 
+ car_sp,direct.a_sp_cars.dis_atr,dis-xl ,dis-x2, 
+ tminc-x12,tmaxc_xl2, 
+ atr-c-id,atr-c-t,atr-c-sp, 
+ cars-in-t,a-sp-c-in-t,c-sp-i-t) 

+ n-trk-time-id, 
+ trk_sp.direct,a_sp_trks.dis-atr,dis_xl ,dis-x2, 
+ tmint_xl2,tmaxt_xl2, 

call trucks 
call bring_to-atr-xlx2as(tks,n-log-trk,n-trk-id. 

c 

. 
I 
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+ atr-t-id,atf-t-t,atf-t-sp. 
+ trks-in-t,a-sp-t-in-t,t-sp-i-t) 

else iqspeed-type.eq.2) then 
call cars 
call bring-to-atr-xlx2(crs, n-log-car,n-car-id. 

+ n-car-time-id, 
+ car_sp,direct,a-sp_can.dis-a~,dis-xl ,dis-x2. 
+ tminc~xl2.tmax~xl2. 
+ atr-c-id,atr-c-t,atr-c-sp, 
+ cars-in-~a,sp-c-~n-t,c-sp-i-t) 

call trucks 
call brin~to-~r-xlx2(tks.n-log-trk.n-trk-id, 

+ n-trl-time-id, 
+ trk-sp.direct,a-sp-trks,dis-atr.dis-xl ,dis-x2, 
+ tmint-x12,tmaxt-x12, 
+ atr-t-id,atr-t-t,ap, 
+ trks-in-t,a,sp-t-in-t,t-sp-i-t) 

+ tmint-xl2,tmaxt-x12) 

endif 
call check-tlt2-xlx2(tl,t2, tminc~x12.tmaxc~x12, 

end if 
999 stop 

end 

i 

I 
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!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine centeriine(xc, yc,log-cl, k,dinc) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
real xc(8OO),yc(8OO),log~c1(800),dist,dinc 
integer iof, ior, k, kk,sig n 
charactem0 cent-file 
data iof,ior/O,O/ 
sign = 1 
dinc = 0.0 
k = 2  
print+,'@ 
prinr.'* 
read(5,lO) cent-file 

10 format(a) 
open(unit =l 1 ,file=cent_fle,status='old',iostat=iof) 

Please Enter the Center Line Data File name: ' ' 

! 
! 
! 
! 
! 
! 
! 

! 
! 
! 
! 

if(iof.ge.0) then 
....................................................................... 
Reading the mileage of the first point of the C L  
It is the second point in the array because I am going 
to add a point at the beginning of the C L  Therefore, 
the first point that we read for the CL is the second 
point of the array. 
This value, the mileage or distance of the first point, 
is the value given on the first line of the CL data file. 

read( 11 ,*,iostat=ior) loacI(2) 
prinr,'Mileage at first point of CL is ',log-c1(2) 
dowhile(ior.ge.0) 
read( 11 .*,iostat=ior)xc(k).yc(k) 
if(ior.k.0)then 

elseif(ior. gt0)then 
print+,'Error in reading data STOP' 
stop 
else 
k =  k+l 
end if 

end do 
prinr,' Center line points k ='. k 
close( 1 1 ) 
! !!!!!!!!!!!!!!!!!!! 
Adding one point at the beginning of the Cener Line 

Xc(1) = xc(2)-(xc(3)-xc(2))3 
Yc(1) = Yc(2HYc(3)-Yc(2))'3 
!!!!!!!I!!!! !!!! !!! ! 
Adding one point at the end of the Center Line 
XC(k+l) = Xc(k)+(Xc(k)-Xc(k-l))'3 

!!! !!!!!!!!!!!!!!!!! 
k = k + l  
!!!!!!!!!I !! !! !!!! ! !! 
At this point if we want to input the mileage at the 
beginning of the CL we can read it in here instead of 
reading it from the data file. 
just use the following 2 lines. 
print+,'Enter the mileage distance at beginning of the CL :' 

k =  k-1 

Yc(k+l) = Yc(k)+(Yc(kFYc(k-1 ))*3 

i 

I 

/' 

I 

i 

I 

1 

I 
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i oa 

! read',log_cl(2) 
! 
! dist = sqrt((xc(2)-xc( 1 ))H2+(yc(2)-yc( 1 ))Y) 

log-cl(1) = log-cI(2) - dist 

d ist = sq rt( (xc( kk)-xc( kk-l))T+( yc( kk)-yc( kk-1 ))T) 
log_cl(kk) = log-cl(kk-1 )+dist 
if(kkgt.2.and.kklt.k) then 
if(abs(xc(kk)-xc(kk-1 )).gt.dinc) dinc = abs(xc(kk)-xc(kk-1)) 
if( abs(yc(kk)-yc(kk-1 )). gt.dinc) dinc = abs(yc(kk)-yc(kk-1 )) 
end if 
end do 
else 
prinr.%enter Line Data File failed to open ' 
STOP 
end if 
return 
end 

subroutine vehicles(xcar,ycar,xtrk,yt& 

dOkkZ3.k 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~!!!!!!!!!!!!!!!!!!!!!!!!!! 

+ car_id,trk_id.tks,crs,trk_tme-id,car_tme_id) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicii none 
integer car-id(400).trk-id(400) 
integer iof2,ior,car-trk,tks,crs,pho-n .classes 
real trk-time-id(4OO),car-tim-id(400), pho-t,hh,mm,ss 
rea I xca r(400), yca r(400),xtrk( 400), ytrk(400) 
character20 veh-file 
data iof2,ior10,01 
classes = 2 
Print+,'Please Enter the Vehicle Location Data File name:' 
read(5,lO) veh-file 

open(unit =12,file=veh-file,status='old',iostat=iof2) 

if(iof2.ge.O) then 
ior = 0 
tks = 1 
crs= 1 
dowhile( ior.ge .O) 
read( 12, *, iostat=ior) p ho-n , h h, mm, ss 
call t-conv(pho-t.hh,mm,ss) 
if(ior.ge.0) then 
car-trk = 1 
do while(car-trk.lt.classes ) 
read( 12:)car-trk 
if(car-trkeq.1) then 
car-id(crs)= 0 
dowhile (car-id(crs). ne.-1 ) 
read( 12,*)car_id( cn),xcar(crs), ycar( crs) 
car-tirne-id(crs) = pho-t 
if(car-id(crs).ge.O) CIS = CIS +l 
end do 

else if(car-trk.eq.2) then 
trk-id(tks) = 0 
dowhile(trk-id(tks).ne.-1 ) 
read( 12,+)trk_id(tks).xtrk(tks),ytrk(tks) 
trk-time-id(tks) = pho-t 

! + .tmin,tmax) 

10 format(a) 

! 
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if(trkid(tks).ge.O) tks = tks+l 
end do 

! If we have more classes than 2 then we should add an 
! if statement here and have more arrays to save the data 
! inthem. 

else 
print*,'Error in data format' 
print*.'At photo # : ', pho-n 
print-. car-id(crs-I ),xcar(crs-I ), ycar(crs-1) 
print-, trk-id(tks-1 ),xtrk( t ks-1 ), ytrk( tks-1 ) 

end if 
end do 
else 
prinr,'End of Vehicle data File ' 
end if 
end do 
crs = crs - 1 
tkS = t k ~  - 1 
print-,' 
prinr,' number of cars = ',CIS 
print-,' number e? t ! s  = '.tks 
print-,' 
else 
print*,'Vehicle Location Data File failed to open' 
STOP 
end if 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine minmax(n,yarray,ymin,ymax) 
implicit none 
integer i.n 
real ya nay( n), y mi n , ymax 
ymin = yarray(1) 
ymax = yarray( 1 ) 
do i = 2,n 
if (yarray(i).gt.ymax) then ! elements. 
ymax = yarray(i) 
elseif (yarray(i).lt.ymin) then ' 

ymin = yarray(i) 
endif 
enddo 
return 
end !End of subroutine. 

subroutine minmax-cl(nc.carray,cmin,cmax) 
implicit none 
integer i.nc 
real carray(nc).cmin,cmax 
cmin = carray(2) 
cmax = carray(2) 
do i = 3,nc 
if (carray(i).gt.cmax) then !elements. 
cmax = carray(i) 
elseif (carray(i).lt.cmin) then 
cmin = carray(i) 
endif 
enddo 

stop 

t 

. 

!Set ymin and ymax to 
! first array element. 

!Test balance of array 

! 

!Set cmin and cmax to 
!second array element 

!Test balance of array 

I 

\ 

\ 

I 
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return 
end !End of subroutine. 
. . . . . . . . . . . . . . . . . . . . . . . .  I !!!!!!!!!!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
subroutine t-conv(t-con, hh,rnm,ss) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
real hh,mrn,ss,t-con 
t-con = hh + mm160. + ssL3600. 
return 
end 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  
subroutine t-conv-back(tt-con, h h h ,rnmm, sss ) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
implicit none 
real hhh, mmm,sss,tt-con 
hhh = int(tt_con) 
rnmm = int((tt-con-hhh)%O.) 
sss = (((tt-con-hhh)%O)-mmm)%O. 
retu m 
end 
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subroutine log-veh(dinc,xc,yc,log_cl,nc,xv,yv,logv,veh. 
+ v-id.v-time-id,xl, y l  ,x4,y4) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer veh,i,ii.flag,nc 
integer v-id( ve h ) 
real v-time-id(veh) 
real xc(800),yc(800),1og_cl(800),xv(400),yv(400),logv(400) 
real angle,anglel ,xvl ,yvl ,x5,yfi,d,dinc,dd 
real x i  (400).yl(400).x4(400),y4(400) 
dd = dinc '2 
do i = 1, veh 
ii= 1 
flag = 1 
dowhile(flag.eq.1) 
if(ii.eq.nc) then 
flag= 0 
else 
~ ! ! ~ c ! i l ! . ! e . ~ ! i ? + ~ ~ . ~ n ~ . ~ ~ i i ! . g e . w ! i ~ d !  

+ .and.(yc(ii).le.yv(i)+dd.and.yc(ii).ge.yv(i)-dd))then 
angle = atan2d((yc(ii+l )-yc(ii)),(xc(ii+l )-xc(ii))) 
if (angle.gt.360) angle = angle - 360 
anglel = angle+90. 
xvl  =xv( i)+dinc'cosd(anglel ) 
yvl=yv( i)+dinc*sind( anglel ) 
call intersed(xv1 ,yvl .xv(i),yv(i),xc(ii),yc(ii), 

+ xc(ii+l ),yc(ii+l),x5,y5) 
! !!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! FIRST CHECK SEE IF XC1= XC2 & IF Y5 IS INBETWEEN YCl & YC2 
! THEN CHECK IF YCl = YC2 8 IF X5 IS INBETWEEN XCl & XC2. 

+ y5.le.yc(ii)) .or. 
+ (xc(ii).eq.xc(ii+l).and.y5.le.yc(ii+l).and. 
+ y5.ge.yc(ii))) then 

+ log-cl( ii), log_cl( ii+ 1 ), logv( i),xl (i), y l  (i)) 

if((xc(ii).eq.xc(ii+l ).and.y5.ge.yc(ii+l ).and. 

call d-log(xc(ii),y5,xc(ii),xc(ii+l),yc(ii),yc(ii+l), 

x4(i) = xvl 
y4(i) = yvl 
flag = 0 
elseif((yc(ii).eq.yc(ii+l ).and.x5.ge.xc(ii+l ).and. 

+ x5.le.yc(ii)). or. 
+ (yc(ii).eq.yc(ii+l).and.x5.le.xc(ii+l).and. 
+ x5.ge.yc(ii)))then 

+ log_cl(ii),lo~cl( ii+l ),logv(i),xl (i), y l  (i)) 
call d~log(x5.y5,xc(ii).xc(ii+l).yc(ii),yc(ii+l) 

x4(i) = xvl 

flag = 0 
Y4(i) = yvl 

else if((x5.ge.xc(ii).and.x5.le.xc(ii+l ).and. 
+ y5.ge.yc(ii).and.y5.le.yc(ii+l)).or. 
+ (x5.ge.xc(ii+l).and.x5.le.xc(ii).and. 
+ y5.ge.yc(ii+l).and.y5.le.yc(ii)).or. 
+ (~5.ge.xc(ii+l).and.x5.le.xc(ii).and. 
+ y5.ge.yc(ii).and.y5.le.yc(ii+ 1 )).or. 
+ (x5.ge.xc(ii).and.x5.le.xc(ii+l ).and. 
+ y5.ge.yc(ii+l ).and.y5.le.yc(ii))) then 

\ 

- 

/ 

6 

I: 
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call d_log(x5,y5,xc(ii),xc( ii+ 1 ), yc( ii),yc(ii+l) 
log-cl(ii).log_cl( ii+l ).logv(i),xl (i), y l  (i)) 

x4(i) = xv l  
y4(i) = yv l  
flag = 0 

else iy 

+ 

+ (x5.ge.xc(ii).and.x5.le.(xc(ii)+0.5).and. 
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+O.5)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+0.5).and. 
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+O.5)).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)+0.5).and. 
+ y5.1e.yc(ii).and.y5.ge.(yc(ii)+OS)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+0.5).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+O.5)).or. 
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l)+0.5).and. 
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)+0.5)).or. 
+ (~5.le.xc(ii+l).and.x5.ge.(xc(ii+1)+0.5).and. 
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)+0.5)).or. 
+ (x5.ge.xc(ii+l ).and.x5.le.(xc(ii+l )+OS).and. 
+ y5. le. yc(iii 1 ).and.y5.ge.( yc(ii+ 1 )+0.5)).or. 
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l )+OS).and. 
+ y5. le. yc(ii+ 1 ). and.y5. ge.(yc(ii+ 1 )+OS)).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-0.5).and. 
+ y5.ge.yc(ii).and.y5.Ie.(yc(ii)-OS)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-0.5).and. 
+ y5.ge.yc(ii).and.y5.Ie.(yc(ii)-OS)).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-O.5).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)-OS)).or. 
+ (~5.Ie.xc(ii).and.x5.ge.(xc(ii)-O.5).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)-0.5)).or. 
+ (x5.ge.xc(ii+l ).and.x5.le.(xc(ii+l)-0.5).and. 
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l>0.5)).or. 
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-O.5).and. 
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)-0.5)).or. 
+ (~5.ge.xc(ii+l).and.x5.le.(xc(ii+1)-0.5).and. 
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)-O.5)).or. 
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-O.5).and. 
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)-0.5)))then 

call d-log(x5,y5.xc(ii),xc(ii+l ),yc(ii),yc(ii+l) 
log-cl( ii),log-cl( ii+l ),logv( i),xl (i),yl (i)) 

x4( i) = xvl 
y4(i) = yvl  
! flag=O 
else if ((x5.ge.xc(ii).and.x5.le.(xc(ii)+l).and. 

+ y5.ge.yc(ii).and.y5.le.(yc(ii)+l)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+l).and. 
+ y5.ge.yc(ii).and.y5.le.( yc(ii)+ 1 )).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)+ 1 ).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+l)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+l).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+l)).or. 
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l )+1 ).and. 
+ y5.ge.yc(ii+ 1 ).and. y5.le.( yc( ii+ 1 )+1 )).or. 
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l )+l).and. 
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)+l)).or. 
+ (x5.ge.xc(ii+ 1 ).and.x5.le.(xc(ii+l)+ 1 ).and. 
+ y5.le.yc(ii+ 1 ).and.y5.ge.( yc(ii+l )+1 )).or. 
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116 
117 
118 
119 
120 
121 
122 
123 
1 24 
125 
126 
127 
128 
129 
130 
131 
1 32 
133 
134 
135 
1 36 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
1 52 
153 
154 
155 
1 56 
157 
158 
159 
160 
161 
162 
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164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 

+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l )+l).and. 
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)+l)).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-l).and. 
+ ydge.yc(ii).and.y5.1e.(yc(ii)-l )).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii>l).and. 
+ y5.ge.yc(ii).and.y5.le.(yc(ii)-l)).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-l).and. 
+ y5.le.yc(ii).and.y5ge.( yc(ii)-l )).or. 
+ (x5.le.xc( ii).and.x5. ge. (xc(ii )-1 ).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)-l )).or. 
+ (~5.ge.xc(ii+l).and.x5.le.(xc(ii+l )-l).and. 
+ y5. ge. yc(ii+ 1 ).and. y5.Ie.( yc(ii+l)-l )).or. 
+ (~5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-l ).and. 
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)-l)).or. 
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l )-l).and. 
+ y5.le.yc(iiil).and.y5.ge.(yc(ii+l )-l)).or. 
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l )-l).and. 
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)-l)))then 

+ log-cl(ii),log-cl(ii+l),logv(i),xl(i),yl(i)) 
call d~bg(x5,y5,xc(ii),xc(ii+l ),yc(ii),yc(ii+l ) 

x4( i) = xvl 
y4( i) = yl 
else if ((x5.ge.xc(ii).and.x5.le.(xc(ii)+5).and. 

+ y5.ge.yc(ii).and.y5.le.(yc(ii)+5)).or. 
+ (~5.le.xc(ii).and.x!5ge.(xc(ii)+5).and. 
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+5)).or. 
+ (~5.ge.xc(ii).and.x5.le.(xc(ii)+ti).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+5)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+5).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+5)).or. 
+ (xb.ge.xc(ii+l).and.x5.le.(xc(ii+l )+$).and. 
+ y5. ge. yc(ii+ 1 ).and.y5.le.( yc( ii+ 1 )+5)). or. 
+ (x5.lexc(iii I ). and.xfi.ge.(xc(iii 1 )+5).and. 
+ y5.ge.yc(iiil).and.y5.le.(yc(ii+l)+5)).or. 
+ (x5.ge.xc(ii+ 1 ).and.x5.le.(xc(ii+l )+5).and. 
+ y5.le.yc(ii*l).and.y5ge.(yc(ii+l)+5)).or. 
+ (x5.lexc(iiil ).and.x5.ge.(xc(ii+l)+5).and. 
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)+5)).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-5).and. 
+ y5.ge.yc(ii).and.y5.le.(yc(ii)-5)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-5).and. 
+ y5.ge.yc(ii).and.y5.le.(yc(ii)-5)).or. 
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-5).and. 
+ y!Lle.yc(ii).and.y5.ge.(yc(ii)-5)).or. 
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-5).and. 
+ y5.le.yc(ii).and.y5.ge.(yc(iiw)).or. 
+ (x5.ge.xc(ii+l).and.x5.le.(xc(iiil )-5).and. 
+ yfi.ge.yc(ii+l).and.y5.Ie.(yc(ii+l)S)).or. 
+ (x5.le.xc(iiil).and.x5.ge.(xc(ii+l)-5).and. 
+ y5.ge.yc(iiil).and.y5.le.(yc(ii+1)5)).or. 
+ (~5.gexc(ii+l).and.xti.le.(xc(ii+l)-5).and. 
+ y5.le.yc(ii+ 1 ).and.y5.ge.(yc(ii+ 1 )-5)).or. 
+ (x5.le.xc(ii+l ).and.x5.ge.(xc(ii+l)-tj).and. 
+ y5.le.yc(ii+ l).and.y5.ge.(yc(ii+l *)))then 

+ log-cl(ii).log-cl(ii+l ).logv( i),xl (i),yl (i)) 
call d-log(x5,y5,xc(ii),xc(ii+l ),yc(ii),yc(ii+l ) 

x4(i) = xvl 
y4(i) = yvl 
end if 
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176 
177 
178 
179 
180 
181 
1 82 
183 
184 
185 
186 
187 
188 
189 
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191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
21 0 
21 1 
212 
21 3 
214 
21 5 
216 
217 
21 8 
21 9 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 

end if 
ii = ij+1 
end if 
end do 
end do 
retum 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine intersect(x1, y l  , ~ , y 2 , ~ 3 , ~ 3 . x 4 , ~ 4 , ~ 5 , ~ 5 )  
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
real x l  ,x2,x3,x4.x5,yl ,y2.y3,y4,y5 
real al,bl,cl,a2,b2,~2 
a1 = y2-yl 

c l  = x2”yl- XlW 
a2 = y4y3 

c2 = x493 4 9 4  
x5 = (bl*c2-b2W)/(al’b2-a2’bl) 
y5 = (cl*a2 - @a1 Y(aPb2-aPbl) 
retum 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine d-log(x5.y5,xcl ,xc2,ycl ,yc2.logcl ,logc2.logv,xl,yl) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
real x5,y5.xcl,ycl,xc2,yc2,logcl ,logc2.logv,xl.yl,d 
XI = x5 
yl = y5 
if(logc1 .gt.logc2)then 
d = ((xCi-xc2)T?+(y5-y~2)T)~.5 
logv = d + logc2 
else 
d = ((x5xcl)W+(ySycl)T)“S 
logv = d + logcl 
end if 
retu m 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine dis_xy(x5,y5,xcl ,xc2,ycl .yc2, logcl , logc2,logv) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
real ~5.y5.xcl ,ycl .xc2,yc2,logcl .logc2.logv.d 
if(logc1 .gt.logc2)then 
d = ((x5xc2)”2+(ySyc2)”2)”.5 
logv = d + logc2 
else 
d = ((x5xcl )T+( y5ycl)”2)“. 5 
logv = d + logcl 
end if 
return 
end 
..................................................................... 
subroutine order-veh(log-veh,veh,veh-id,veh-time-id, 
+ n-log_veh.n-veh-id,n-veh-time-id) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer iii.ii,i, veh.veh-id(4OO),n-veh-id(400) 

b l  = x i  -x2 

b2 = ~3 -x4 
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234 
235 
236 
237 
238 
239 
240 
24 1 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 

integer rnin-veh-id, max-veh-id 
integer flag,flag2,latestveh,veh-de1(400) 
real veh-time-id(400),n-veh-tirne-id(400) 
rea I log-ve h(400), n-log-ve h( 400) 

100 fonnat(/.60(1-'),/, 
+ ' ID DistanceLog Time '/60('-'),/, 
+ i9EO('-')) 

do i= 1,veh 
veh-del(i) = 0 
end do 

! This loop will organize the data in the vehicle ID assending order format 
! that we want 
! 

call minrnax(veh,veh-id,min-veh-id,max-veh-id) 
print.,' I 

print*,'rninimum vehicle ID is = ',min-veh-id 
print*.'maximurn vehicle ID is = '.max-veh-id 
print..' * 
latestveh = min-veh-id 
i = l  
dowhile( i. le.veh. a nd. latestveh . le. max-veh-id ) 
flag = 0 
ii = 1 
do while(flag.eq.0.and.ii.le.veh) 
if(veh-id(ii).eq.latestveh.and.veh-del( ii).eq.O) then 
n-veh-id(i) = latestveh 
n-logveh( i)' log-veh( ii) 
n-veh-time-id(i) = veh-time-id(ii) 
veh-del(ii) = 1 
flag = 1 
latestveh = latestveh + 1 
i = i+1 

! 

! 
else if(ii.eq.veh) then 

latestveh4atestveh + 1 
end if 

end do 
flag2 = 0 

do while(flag2.eq.O.and.iii.le.veh) 
iyveh-id(iii).eq.latestveh-1 .and.veh-del( iii).ne. 1. 

flag2= 1 
latestveh = latestveh - 1 

end if 

if(flag.eq.0) latestveh = latestveh + 1 
end do 
end do 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine speed(veh.n-veh-lg, n-veh-id,n-veh-tirne,veh-sp,direct) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 

ii= ii+l 

iii = ii 

+ and.iii.le.veh)then 

iii = iii+l 

I 
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I 

% 

i 

293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
31 0 
31 1 
312 
31 3 
314 
31 5 
316 
31 7 
31 8 
31 9 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 

integer veh,i, direct 
integer n-veh-id(400) 
real ve h-sp(4OO).n-ve h-lg(400). n-ve h-time(400) 
real dt-time 

write( 6.300) 
veh-sp(1) = 0 
do i= 1. veh-1 
if@-veh-id(i).eq.n-veh-id(i+l)) then 
dt-time = (n-veh-time(i+l)-n-veh-time(i)) 
veh-sp( i+ 1 )=( n-ve h-lg( i+ 1 )-n-veh-lg( i))/dt-time11 OOO*di rect 

iyveh-sp(i+l).It.40) veh-sp(i+l)= 0. 
if(veh-sp(i+l).gt.lSO) veh-sp(i+l)= 0. 
else 
veh-sp(i+l)= 0 
end if 
end do 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine avg_sp( n'veh-sp, a-sp-vehs) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Now We request the time difference between the set of photos. 

! 3.6)*direct 

implicit none 
integer n,i,nn 
real veh-sp(n),a-sp-vehs,sum 
sum = 0 
nn=O 
do i=l ,n 
if(veh-sp(i).ne.O) then 
nn = nn +l 

sum = sum + veh-sp(i) 
end if 
end do 
a-sp-vehs = sum Inn 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine direction(direct,veh,n-log-veh,n-veh-id,n-veh-time) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer direct ,veh.n-veh-id(veh).i. n 
real n-log_veh(veh). n-veh-time(veh). sp 
n=O 
direct = 1 
do i= 1. vehn 
if@-veh-id(i).eq.n-veh-id(i+ 1)) then 
sp=(n-Iog-veh( i+l )-n-log_veh(i))/lOOO/ 

if(sp.lt0) n = n-1 
if(sp.gt.0) n = n+l 
end if 

end do 
if(n.lt0)direct = -1 

! print'.' 
! print*.'n is = ', n 
! print*,'Direction is = ', direct 
! print',' 

return 

+ (n-veh-time(i+l )-n-veh-time(i)) 

I 
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end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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23 
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25 
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29 
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31 
32 
33 
34 
35 
36 
37 
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39 
40 
41 
42 
43 
44 
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46 
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50 
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52 
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56 

! 
! 

10 

+ 

! 

101 
+ 
+ 
+ 

subroutine xyATR(NL.Et,dinc,nc.xc,yc.log-cl,dis-atr,t0,tl .t2) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer NL,nc , iof,ior 
integer p-id(2) 
real xc(nc),yc(nc),log-cl(nc),xp(l ).yp(l ) M A 1  1 
real xpl( l),ypl( l),xp4(1 ),yp4( 1 ),p-time(l),dinc 
real hh,mm,ss,to,tl,hhl,mml,ssl,t2,hh2,mm2,ss2 
real dis-atr, Et 
charactelr0 xy-atr . 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
ASK FOR A F I E  WITH XY-ATR AND to DATA FILE AND FIND THE 
COORDINATES WITH REFERNCE TO THE CENTER LINE. 

prinP,'Please Enter the name of the file that has @ 

prinr,'XY-ATR,to, ti, t2 e 

read(5,lO) xy-atr 
format(a) 
open(unit =9,file=xy-atr,status='old',iostat=iof) 
if(iof.ge.0) then 
read( 9,+, iostat=ior)NL 
read(g.*,iostat=ior)Et 
read(9,', iostat=iir)xp( 1 ),yp( 1 ), hh,mm,ss. 

if(ior.ne.0)then 
print*,'Check data format in data file???' 
stop 
end if 
call t-conv(to.hh.mm,ss) 
call t-conv(t1 ,hhl ,mml ,ssl ) 
call t-conv(t2,hh2,mm2,ss2) 
p-time( 1 ) = to 
p-id( 1 ) = 1 
call log-location(dinc.xc. yc,locl,nc,xp. yp,logg, 1) 

mml ,ssl,H14,mrn2,ss2 

dis-atr = logg(1) 
print*,' 
print101 , dis-atr,hh,mm,ss, hh l  .mmI ,ssl .ti ,hh2,mm2,ss2.t2 
format(@ ATR is at distance : '.flO.2/ 

' Base time is :@.f4.0,f4.0,f6.3/ 
' Starttime is :@,f4.0.t4.0,f6.3,fl1.5/ 
' End time is :@.f4.0,14.O,R3.3,fl1.5) 

I 

else 
prinr,Xi,X2,t data file failed to open ' 
STOP 
end if 
return 
end 

! !!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
! NOTES 
! This Subroutine brings all the vehicles to the atr location 
! using the average speed of all the vehicles in the same 
! class to compute the time by taking distancekpeed 
! !!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

subroutine bring-to-atr-a-sp(veh.n-log-veh, 
+ n-veh-id,n-veh-tirne-id, 
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+ veh-sp,dir,a-sp-veh,log-atr,atr-v-id.atr-t-veh, 
+ tl,t2,tminv,tmaxv.iii,a-sp-in,i-sp) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer dir,veh,k.i.il j2,flagl .flag2,flag3,iii,i-sp 
integer n-veh-id(veh), atr~v~id(400).casev(400) 
integer id_in-t(400) 
real sp-in-t(400) 
real n-log-veh(veh),veh-sp(veh),n-veh-time-id(veh) 
real atr-t-veh(veh), atr-v-sp( 400) 
real a-sp-veh,spd 
real loaatr.tl ,t2,tminv,tmaxv 
real Lil, I-Q 
real tmin,tmin-diff,t-diff,t-diff2,tt 
real a-sp-in.sum-sp 
a-sp-in = 0 
i-sp = 0 
tminv = 9999 
tmaxv= 0 
print1 3,log_atr,tl,t2 

+ fStart tjm for count is = '.fl 1 .?. 
+ rEnd time for count is = ',fll.7, 
+ //The values of the log and speed are:'// 
+ ' #  ID Dist-veh Speed'lGO('-')) 

do i=l .veh 
print*,i,n-veh-id( i), n-log-veh( i),veh-sp(i) 
end do 
tmin = 1 J(3O.WOO.) 
tmin-dm = 5s3600. 
flag1 = O  
i = O  
il = 1 
i 2 = 1  
spd = a-sp-veh 
do while(flag1 .eq.O) 

flag2 = 0 
do while(flag2.eq.O) 
if(n-veh-id( il ).eq.n-veh-id( i2+ 1 ))then 
i2= i2+1 
else 
flag2= 2 
end if 
end do 
atr-v-id(i) = n-veh-id(i1) 
if(i1.eq.Q) then 
casev(i) = 1 
atr-t-veh(i) = n-veh-time-id(i1) + 

atr-v-sp(i) = 0.0 

flag3 = 0 
do k = il ,i2-1 
if( (n-log-ve h( k).ge.log-atr.and. 

+ n-log_veh( k+ 1 ).le. log-atr). or. 
+ (n-log-veh( k). le. log-atr. and. 
+ n-log-veh(k+l).ge.log-atr))then 

13 format(6O('-'),/'ATR dist inside the subroutine is:',f9.1, 

i = i+1  

+ (log-atr - n-log-veh(J4))1(1000*spd)* dir 

elseif(i2.gt.il) then 

. .  . 

I 

I .. 
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123 
124 
125 
1 26 
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131 
1 32 
133 
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160 
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165 
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167 
168 
169 
170 
171 
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173 
174 

atr-t-veh(i) = n-veh-time-id(k) + 

atr-v-sp(i) = veh-sp(k+l) 
flag3 = 1 

end if 
end do 
if(flag3.eq.O) then 
I-il = n-loaveh(i1) 
1-Q = n-log-veh(i2) 
if (dir.gt0) then 
if( l-i2. le. loaatr) then 
atr-t-veh(i) = n-veh-time-id(i2) + 

atr-v-sp(i) = veh-sp(i2) 

elseif(1-il .ge.log-atr) then 
atr-t-veh(i) = n-veh-timeJd(i1) + 

atr-v-sp(i) = veh-sp(il+l) 
casev(i) = 4 

end if 
else if(dir.lt0)then 
if(l-il .le.log-atr) then 
atr-t-veh(i) = n-veh-time-id(i1) + 

atr-v-sp(i) = veh-sp(il+l) 

elseif(l-G.ge. log-atr) then 
atr-t-veh(i) = n-veh-time-id(i2) + 

atr-v-sp(i) = veh-sp(i2) 
casev(i) = 6 
end if 
end if 
end if 
else 
print.,' 
print','" SOME THING IS WRONG IN THE CHECK * 
print.,'" AT VEHICLE # 'A' 
print..' 
end if 
if(atr-t-veh(i).gttmaxv) tmaxv = atr-t-veh(i) 
if(&-t-veh(i).ktminv) tminv = atr-t-veh(i) 
if(i2.eq.veh) Rag1 = 10 
il =i2+1 
i2 = il 
end do 
prinr, 
print'." Direction is = ', dir,' * 
print',". # of vehicles = ', i , ' * 
print., 
do k = 1,i 
write(6,130)k.atr-v-id( k),atr-t-ve h(k),atr-v-sp( k),casev( k) 
end do 

iii = 0 
do k = 1,i 
if( atr-t-veh(k).ge.tl .and.atr-t-veh(k).le.Q) then 

+ (log-atr - n-log_veh( k)y( 1000'spd)'dir 

casev(i) = 2 

+ (log-atr - n-logveh(i2))/(100Ofspd)*dir 

casev(i) = 3 

+ (log-atr - n-Iog_veh(il))/(lOOO*spd)*dir 

+ (log-at1 - n_log_veh(il))/(lOOO*spd~dir 

casev(i) = 5 

+ (log-atr - n_log_veh(d5)y( 1000*spd)*dir 

t+( 

130 format(i5, i7,3x.fl2.7,f9.3.i4) 

I 

i 



Ap p-A4 rev. xls 

175 
1 76 
177 
178 
179 
180 
181 
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184 
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1 92 
193 
194 
195 
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198 
1 99 
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21 1 
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21 3 
214 
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217 
218 
21 9 
220 
221 
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223 
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228 
229 
230 
231 
232 
233 

1- I J O  

iii = iii + 1 
id-in-viii) = atr-v-id(k) 
sp-in-t(iii) = atr-v-sp(k) 
end if 
end do 
printl40,tminv. tmaxv 

140 fomat(6O('-')fFor this segment Tmin is = ',fl1.7/ 
1 8 Tmax is = ',fl1.7// 

6OO('-')/'Vehicles that are included in the count are', 
/60('-'y # ID SPEED(kmph) 'EO('-')) 

i-sp = 0 
sum-sp = 0 
do k = 1,iii 
print1 50.k,id-inJ(k),sp-in,t(k) 
if(sp-in-t(k).gt.O) then 
i-sp = i-sp + 1 
sum-sp = sum-sp + sp-in-qk) 
end if 
end do 
if(i-sp.ne.O) a-sp-in = sum-sp I i-sp 
print160,a_sp_in, i-sp 

. .  

:52 fanat(62i'-')me sve,.=ge speed c!!?hese vehic!es is:', 
+ f9.4,' kmph './'This is for',i4.' Vehicles'BO('-'Y) 

150 format(2( i5),f11.4) 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
NOTES 
This Subroutine is based on the fact the same vehilce that 
sppears more than once is organized in the format that the 
the vehicle's first appearance is listed firts. 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine bring-to-atrfve h. n-log-ve h, n-veh-id , n-veh-time-id, 

+ veh sp.dir,a-sp_veh,log_atr,atr-v-id,atr-t-veh, 
+ tl,t2Timinv,tmaxv,iii,a_sp_in,i_sp) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer dir,veh,k,i.il ,i2.flagl .flag2.ftag3.iii.i-sp 
integer n-veh-id(veh), atr~v~id(400),casev(400) 
integer id_in-t(400) 
real sp-in-t(400) 
real n-log-veh(veh),veh-sp(veh),n-veh-time-id(veh) 
real atr-t-veh(veh), atr-v-sp( 400) 
real a-sp-veh,spd 
real loaatr,tl ,tZ.tminv,tmaxv 
real 1-il, 1-Q 
real tmin,~in_diff,t_dit-d~,~ 
real a-sp-in,sum-sp 
i-sp = 0 
spd=o 
tminv = 99999 
tmaxv=O 
print13,log_atr,tl ,t2 

13 format(GO(?-')./'ATR dist inside the subroutine is:'.f9.1, 
+ tStart time for count is = l.fll.7. 
+ /'End time for count is = ',fl1.7. 
+ Inhe  values of the log and speed are:'// 

I 
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234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
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245 
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248 
249 
250 
251 
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254 
255 
256 
257 
258 
259 
260 
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262 
263 
264 
265 
266 
267 
268 
269 
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271 
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283 
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285 
286 
287 
288 
289 
290 
291 
292 

+ ' #  ID Dist-ve h S peed'/60('-')) 

do i=l .veh 
print., i, n-veh-id( i). n-log-veh( i),veh-sp(i) 
end do 
tmin = 1 ./(30.'3600.) 
tmin-diff = 5.13600. 
flag1 = 0 
i = O  
il = 1 
i 2 = 1  
do while(flagl.eq.0) 
i = i+ l  
flag2 = 0 
do while(flag2.eq.O) 
if(n-veh-id( il ).eq.n-ve h-id( i2+1 ))then 
i2= i2+1 
else 
flag2= 2 
end if 
end do 
atr-v-id(i) = n-veh-id(i1) 
if(i1.eq.E) then 
casev[i) = 1 
atr-t-veh(i) = n-veh-time-id(i1) + 

atr-v-sp(i) = 0.0 

flag3 = 0 
do k = il,i2-1 
if(( n-loave h( k). ge.1opatr.a nd . 

+ n-loaveh( k+l ).le.lopatr).or. 
+ (n-log_veh(k).le.log-atr-and. 
+ 

+ (lopatr - n-log-veh(J4))l( 1000'a-sp-vehp dir 

elseif(i2.gtil) then 

n-loaveh( k+ 1 ).g e. log-atr))then 
spd = veh-sp(k+l) 
if(veh-sp(k+l).eq.O) spd = a-sp-veh 
atr-t-veh(i) = n-veh-time-id(k) + 

atr-v-sp(i) = veh-sp(k+l) 
tlag3 = 1 
casev(i) = 2 
end if 
end do 
if(flag3.eq.O) then 
1-i1 = n-Ioaveh(i1) 
I,s2 = n-bg-veh(i2) 
if (dir.gt.0) then 
if(l-i2.le. lopatr) then 
spd = veh-sp(i2) 
if(veh-sp(P).eq.O) spd = app-veh 
atr-t-veh(i) = n-veh-time-id(i2) + 

atr-v-sp(i) = veh-sp(i2) 
casev( i) = 3 
elseif(l-il .ge.log-atr) then 
spd = veh-sp(il+l) 
if(veh-sp(il+l).eq.O) spd = a-sp-veh 
atr-t-veh(i) = n-veh-time-id(i1) + 

+ (log-atr - n-lo~veh(il))/(lOOO*spd)*dir 

+ (lopatr - n-Iog_veh(k))/(lOOO*spd)*dir 

+ (l-atr - n-Ioaveh(ii))/(lOOO*spd)'dir 
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294 
295 
296 
297 
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31 0 
31 1 
312 
31 3 
314 
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316 
317 
31 8 
31 9 
320 
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328 
329 
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337 
338 
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344 
345 
346 
347 
348 
349 
350 
351 

atr-v-sp(i) = veh-sp(i1 +l ) 
casev(i) = 4 
end if 
else iqdir.tt.0)then 
if(l_il .le. log-atr) then 
spd = veh-sp(il+l) 
if(veh-sp(il+l).eq.O) spd = a-sp-veh 
atr-t-veh( i) = n-veh-time-id( il ) + 

+ (log-atr - n-log-veh(il))/(lOOO*spd)*dir 
atr-v-sp(i) = veh-sp(il+l) 
casev(i) = 5 
elseif(I-i2.ge.log-atr) then 
spd = veh-sp(i2) 
if(veh-sp(i2).eq.O) spd = a-sp-veh 
atr-t-veh(i) = n-veh-time-id(i2) + 

atr-v-sp(i) = veh-sp(i2) 
casev(i) = 6 
end if 
end if 
end if 
e!se 
print*,'*' 
print*.'* SOME THING IS WRONG IN THE CHECK *' 
prinP;* AT VEHICLE # ',i; 
prinr,** 
end if 
if(atr-t-veh(i).gttmaxv) tmaxv = atr-t-veh(i) 
if(atr-t-veh(i).lttminv) tminv = atr-t-veh(i) 
if(i2.eq.veh) flag1 = 10 
il = i2+1 
i 2 = i l  
end do 
print*,** 
print*,'* Direction is = ', dir,' 
print*,'* # of vehicles = ', i , ' 
prinr,m' 
do k =  1,i 
write( 6,13O)k, atr-v-id( k). a tr-t-ve h( k), atr-v-sp( k). casev( k) 
end do 

+ (loaatr - n_log_veh(J5))/( 1000*spd)*dir 

m 

HI 

130 

140 
+ 
+ 
+ 

format&, i7,3x,f12.7,f9.3,i4) 
iii = 0 
do k = 1,i 
if(atr-t-veh( k). ge. t i  .and. atr-t-veh( k).le.t2) then 

sp-in-t(iii) = atr-v-sp(k) 
end if 
end do 
printl40,tminv. tmaxv 
format(60('-'~For this segment Tmin is = ',fl1.7/ 

iii = iii + 1 
id-in-t(iii) = atr-v-id(k) i -  

I & Tmax is = '.fll.7// 
60('-'yVehides that are included in the count are', 
/60('-')l # ID SPEED(kmph) 'BO('-')) 

i-sp = 0 
sum-sp = 0 
do k = 1 .iii 
print1 50, k,id_in-t( k),sp-in-t( k) 
if( sp-in-t( k). gt.0) then 
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387 
388 
389 
390 
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393 
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i-sp = i-sp + 1 
sum-sp = sum-sp + sp-in-t(k) 
end if 
end do 
a-sp-in = sum-sp / i-sp 
printl60.a-sp-in. i-sp 

160 fonnat(60('-')l'The average speed of these vehicles is:', 
f9.4,' kmph ',/'This is for',i4.' Vehicles'/6O('-'Y) 

150 format(2( i5).fl1.4) 
print*,'Cars with Speed = ',a-sp-in ,' Speed='.i-sp 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
NOTES 
This Subroutine computes that earlist time and the latest 
time that we can do the count in. Based on the first and last 
points of the CL and using the speeds of the cars and the speeds 
of the trucks. 

+ 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine t-cl_b_e(d-strt,d-end,dirr,tmin,tm, 

+ +  a-sp-cars,a-sp_trks,dis-a~,tl ,t2) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer din 
real d-strt,d-end,dir,tmin,tmax 
real a-sp_cars,a-sp-trks,dis-atr,tl ,t2 
real car-s~-tcar-end-t,t~-s~-ttrk-end_t 
print*,'lnside the subroutine ' 
prinr.' Your start time is = ',ti 
print-.' Your end time is = '.a 
if( dirr.gt.0)then 
car-sttt-t = tmax+(dis-atr - d-end)/ (lOO[ra-sp-cars) 
car-end-t = tmin+(dis-atr - d-strt)/(l OOO'a-sp-cars) 
trk-strt-t = tmax+(dis-atr - d-endy (1 OOO'a-sp-trks) 
trk-end-t = tmin+(dis-atr - d-strtY( 1 OOO'a-sp-trks) 
else if(dirr.tt.0) then 

car-strt-t = tmax-(dis-atr - d-strty (1 000-a-sp-cars) 
car-end-t = tmin-(dis-atr - d-end~(lOOO*a-sp-cars) 
trk-str-t = tmax4dis-atr - d-strty (lOOO*a-sp-trks) 
trk-end-t = tmin-(dis-atr - d-end)/( 1 OOO'a-sp-trks) 

end if 
print205,d-s~d_end,dis-atr,tmin,tmax,din, 

print21 O,car-~-~car_end_t,trk_strt_ttrk_end-~n ,t2 
if(t1.It.car-strt-tor.tl.ttrk-strt-t) then 
prinr.'Your start time is invalid ' 
print*.lEnninating process ' 
stop 
end if 
if(t2.gt.car-end-torJ2.gt.trk-end-t) then 
prinr,'Your end time is invalig ' 
prinr.'TErminating process 
stop 
end if 

+ a-sp-cars.a-sp-trks 

205 format(/,70('-')/ 
+ 
+ 

' Start distance of CL is =',fll.2 
' End distance of CL is =',fl 1.2 

! '  



41 1 
41 2 
41 3 
414 + ' Direction is =',PI I 
41 5 + 'Average speed of cars is =',f10.2/ 
416 + 'Average speed of Trucks is =',flO.U) 
41 7 210 format(1,70('-')/ 
41 8 + ' Start time of Car count =',fl1.71 
41 9 + ' End time of Car count =',fl1.71 
420 + ' Start time of Truck count =',fl1.7/ 
421 + ' End time of Truck count =',fl 1.711 
422 + ' Your start time is = '.fl 1.71 
423 + 'Yourend time is =',fl1.7/70(,-')/) 
424 return 
425 end 
426 !!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

+ 
+ 
+ 

' Distance of ATR is = ',fl I .2/ 
' Start time of photos is =',fl I  .7/ 
* End time of photos is =',fl 1.71 

App_/wrev.xls 
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subroutine compgar(N/Et t l  ,t2,vol-c,vol-t, 
~ 

a_sp_c,c,i,a,sp_t,t_i) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer vol-c,vol-t,c-i,t-i,tot-vol 
integer NL 
real t l  ,t2,t-intew.hl,ml.s1 
real a-sp-c,a-sp,t,s-m-sp 
real Et, per-t,fhv, flow-toteggc-fl,density,densgc-ln 
print+,'cars with speed = ',c-i,', Their speed=',a-sp-c 
prinr,'trucks with speed = 'j-i,'. Their speed=',a-sp-t 
print*,'Number of lanes = ',NL 
prinP,'The value of Et read from data file :',Et 
Et = 1.5 

s-m-sp = (a-sp-c c-i + a-sp-t + t-i)/((c-i+t-i)*1.)/1.609 
t-intew = (t2 - t1 )W 
per-t = vol-Pl. /tot-vor 100. 
fhv = l/(l+per-t/lOO+(Et-1)) 
flow-tot = tot-vol 60 /t-intew 
eepc-fl= flow-tot /fhv/NL 
densty = flow-tot / s-m-sp 
densgc-In = density / NL/fhv 
call t-conv-back(tl,hl,ml,sl) 
print500,hl ,ml ,si ,tl ,t_intew,vol-c,voI_t,tot-vol,per-t, 
eepc-fl.s-m-sp,densky,densjc-ln 

tot-vol= vol-c + vol-t 

500 format(//sO(l-'y 
+ ' Measure/ Parameter [units] '/SO('-')/ 
+ ' lnitila Clock Time to [hh:mmss]',ll~33.0,f3.0,f6.2,f10.6/ 
+ ' Time interval dt [mins] ',llx,f7.2/ 
+ ' Volume of Cars Vc [veh] '.1 lx,i6/ 
+ ' Volume of Trucks Vt [veh] ',1 lx.61 
+ ' Total Volume Vveh [veh] ',llx,i6/ 
+ ' Percent Trucks Ptrk [%I ', 1 lx.V.21 
+ ' Equiv Passenger Car Flow Qpcpl[pcphpc~,5x,f7.21 
+ ' Space Mean Speed Us [mph] ',l lx.ff.21 

+ ' Equiv Passenger Car Density Kpcpl[pcpmpll',4x,V.21 
+ ' Density K [veWmi] ',l lx,f7.2/ 

+ SO('-')) 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

compgar 
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subroutine xlx2(NL,Et,dinc,nc,xc,yc,log_cl, 

....................................................................... 
+ dis-xi .dis-x2,dis_atr,tO,txl ,W) 

implicit none 
integer nc , iof.ior,i 
integer NL 
real xc(nc).yc(nc),loacl(nc),x~(3),~~(3).10~(3) 
real Et, dinc 
real h(3),m(3),~(3),tO,bl .W,dis-xl. dis-S,dis-atr 
charactef20 xlx2-file 

! The following variables can be deleted if we delete the variables 
! in the subroutine loaveh 
! These are being used here only because I have to pass then to 
! this Subroutine. 

! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
! ASK FOR A FILE WITH X 1 8  X2 POINTS AND THEN FIND THESE POINTS 
! WTH REFERENCE TO THE CENTER LINE. 

iof = 0 
print*,'Please Enter the name of the file that has ' 
print*,'Xl ,X2 points' 
read(5,lO) xld-file 

open(unit =9,file=xlx2-file,status='old',iostat=iof) 
if(iof.ge.0) then 
read(g.'.iostat=ior) NL 
read(Q'.iostat=ior) Et 
do i = 1.3 

real XP1(3),YP1(3),XP4(3),YP4(3) 

10 format(a) 

! 
! 
! areneeded. 

read( 9?, iostat=ior)xp( i),yp( i), h( i). m( i), s( i) 
if(ior.ne.0)then 
prinP.'Check data format in data file??? 
stop 
end if 
end do 
call t_conv(tO,h(l ),W),s(l)) 
call t_cOnv(al ,h(2),m(2),s(2)) 
call t_conv(a2,h(a),m(3),~(3)) 
pr inr.W. IO; xtl =',txl.' xt2 =',W 
call lo~location(dinc,xc.yc,lo~cl.nc.xp.yp,logg,3) 
dis-atr = l o w (  1 ) 
dis-xl= loag(2) 
dis-x2 = IOgg(3) 
print.,' 
print'.' x l  and x2 points are: ' 
print*,logg(2),' 8 ',lOgP(3) 
print',' AlR at :',log_p(l) 
print.,' 
else 
print*,'Xl J2.t data file failed to open ' 
stop 
end if 
return 

only the value of Xp and Yp are needed for the ones in the 
report But for the later more comprehensive one these values 

I 

\ 
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end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! NOTES 
! This Subroutine is based on the fact the same vehilce that 
! appears more than once is organized in the format that the 
! the vehicle's first appearance is listed firts. 
! This subroutine is only for the vehicles that are between 
! the Xl-X2 locations. 
! This subroutine brings all the vehicles back to the ATR 
! using the individual speeds of vehicles. 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine bring~to~atr~xlx2as(xl2~veh,xl2~lgv,xl2~idv, 

+ xl2~tv,x12-spv, 
+ dir,a-sp-ve h.x-atr,xl ,x2, 
+ tminv-xlx2,tmaxv-xlx2, 
+ atr-v-id,atr-t-veh,atr-v-sp, 
+ i,a-sp-in.i-sp) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer dir,xl2-veh, k,i.il ,i2,flagl ,flag2,flag3,iii,i_sp 
integer xl2-idv(xl2-veh), atr-~-id(400),casev(400) 
integer id-in-t(400) 
real sp-in-t(400) 
real xl2~lgv(xl2~veh).x12~spv(x12~veh).x12~tv(x12~veh) 
real atr-t-veh(xl2-veh),atr-v-sp(400) 
real a-sp-veh,spd 
real x-atr,xl ,x2,tminv-xlx2,tmaxv-xlx2 
real 1-il, I-i2 
real tmin,tmin-diff,t-diff,t-diff2,tt 
real a-sp-in,sum-sp 
real log_min,log_max 
i-sp = 0 
spd = 0 
tminv-xlx2 = 9999.9999 

printlB,x-atr,xl ,x2 
tmaxv-xlx2 = 0 

13 format(6O('-'),rATR dist inside the subroutine is:',f9.1, 
+ /Start distance for count is = ',fl1.5, 
+ rEnd distance for count is = ',fll.5, 
+ //The values of the log and speed are:'// 
+ ' # ID Dist-veh time-veh Speed'/60('-')) 

tmin = 1 J(30.*3600.) 
tmin-diff = 513600. 
flag1 = 0 
i = O  
H = 1 
i2=1 
do while(flagl.eq.0) 
i = i+ l  
flag2 = 0 
do while(flag2.eq.O) 
i f (x l l idv( il ).eq.x12_idv( i2+ 1 ))then 
i2= i2+1 
else 
flag2= 2 
end if 
end do 
atr-v-id(i) = xl2_idv(il) 

! 
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if(il.eq.i2) then 
casev(i) = 1 
atr-t-veh(i) = x12-tv(il) + 

atr-v-sp(i) = 0.0 
elseif(i2.gt.il) then 

flag3 = 0 
do k = il ,i2-1 
if( (x i  2-lgv( k).ge.x-atr.and. 

+ xl2~lgv(k+l).le.x-atr).or. 
+ (xi 2-lgv(k).le.x-atr.and. 
+ x i  2_lgv( k+l ).ge.x-atr))then 

spd = a-sp-veh 
atr-t-veh(i) = x12-tv(k) + 

+ (x-atr - x12_lgv(k))/( 1000+spd)*dir 
atr-v-sp(i) = xl2-spv(k+1) 
flag3 = 1 
casev(i) = 2 
end if 
end do 
if(flag3.eq.O) then 
!-i! = x! 2-!gv(il) 
1-i2 = xl2Jgv(i2) 
if (dir.gt.O) then 
if(l-i2.le.x-atr) then 
spd = a-sp-veh 
atr-t-veh(i) = x123i2)  + 

atr-v-sp(i) = xl2_spv(i2) 
casev(i) = 3 
elseif(l-il .ge.x-atr) then 
spd = a-sp-veh 
atr-t-veh(i) =xl2-tv(il) + 

atr-v-sp(i) = xl2-spv(il+l) 
casev(i) = 4 
end if 
else if(dir.lt.0)then 
if(l-il .le.x-atr) then 
spd = a-sp-veh 
atr-t-veh(i) =x12-tv(il) + 

atr-v-sp(i) = xl2-spv(il+l) 
casev(i) = 5 
elseif(l-i2.ge.x-atr) then 
spd = a-sp-veh 
atr-t-veh(i) =x12-tv(i2) + 

atr-v-sp( i) = x i  2_spv( i2) 
casev(i) = 6 
end if 
end if 
end if 
else 
print.,' 
print*,* SOME THING IS WRONG IN THE CHECK 
print.," AT VEHICLE # 'A' 
print*,'* 
end if 

+ (x-atr - x12_lgv(J4))/(1 OOO+a_sp-veh)' dir 

+ (x-atr - x12~lgv(i2))/(1000*spd)+dir 

+ (x-atr - xl2_lgv(il))/(l000+spd)*dir 

+ (x-atr - xl2Jgv(il))/(l000'spd~dir 

+ (x-atr - x12_lgv(J5))/( 1000+spd)+dir 

-' 
-1 

i 

'rn 
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if(atr-t-veh(i).gttmaxv-xlx2) tmm-xlx2 = atr-t-veh(i) 
if(atr-t-veh( i).lttminv_xlx2) tminv-xlx2 = atr-t-veh( i) 
if(n.eq.xl2-veh) flag1 = 10 
il = i2+1 
i2 = il 
end do 
prinr,' 
print*.'" Direction is = ', dir,' * 
print.,'" # of vehicles = ', i , ' * 
print.,' 
prinr,'# ID Time Speed Case' 
do k = 1,i 
write(6,130)k.atr-v-id( k).atr-t-veh( k).atr-v-sp( k),casev( k) 
end do 
print1 4O.tminv-xl x2, tmaxv-xi x2 

+ *  8 Tmax is = ',fl 1.711 
+ 
+ BO('-')r # ID SPEED(kmph) 'EO('-')) 

I 

140 format(GO('-'YFor this segment Tmin is = '$71.71 

60('-'yllehicles that are included in the count are', 

130 format(i5, i7,3x,fl2.7,f9.3,i4) 
i-sp = 0 
sum-sp = 0 
do k = 1,i 
write(6,l BO)k,atr-v-iid( k).atr-t-veh(k), atr-v-sp( k),casev( k) 
if(atr-v-sp(k).gt.O) then 
i_sp = i-sp + 1 
sum-sp = sum-sp + atr-v-sp( k) 
end if 
end do 
a-sp-in = sum-sp I i-sp 
printl60,a-sp-in. i-sp 

160 format(GO('-')PThe average speed of these vehicles is:', 
+ 

150 format(2(i5),fll.4) 
19.4,' kmph ',/'This is fOr'.i4,' Vehicles'BO('-'Y) 

print*,'Cars with Speed = ',a-sp-in ,' Speed=',i-sp 
return 
end 

! 
! 
! 
! 
! 
! 
! 
! 

+ 
+ 
+ 
+ 
+ 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
NOTES 
This Subroutine is based on the fact the same vehilce that 
appears more than once is organized in the format that the 
the vehicle's first appearance is listed firts. 
This subroutine is only for the vehicles that are between 
the Xl-X2 locations. 
This subroutine brings all the vehicles back b the ATR 
using the individual speeds of vehicles. 
!!!!+!!!!!!!!!!!!!!!!!!!!!~!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine bring-to_atr-xlx2(xl2-veh.xl2-lgv,xl2-idv, 

x i  2-tv,xl2-spv, 
dir.a-sp-veh,x-atr,xl ,x2, 
tminv-xlx2,tmaxv-xlx2, 
atr-v-id.atr-t-veh,atr-v-sp. 
i, a-sp-in, i-sp) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer dir,xl2-veh,k.i,il ,i2,flagl ,flag2.flag3,iii.i-sp 
integer xl2-idv(xl2-veh). atr~v~id(400).casev(400) 
integer id_in-t(400) 

I 

! 

i 

I 
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real sp_in-t(400) 
real xl2-lgv(xl2-ve h),xl2~spv(xl2~veh),xl2~tv(xl2~ve h) 
real atr-t-veh(xl2-veh),atr-v-sp(400) 
real a-sp-veh.spd 
real x-atr.xl ,x2.trninv-xlx2,tmaxv-xlx2 
real I-il , I-i2 
real tmin , trnin-diff, t-di ff, t-d iff2,tt 
real a-sp-in, sum-sp 
real log-min,log_rnax 
i-sp = 0 
spd = 0 
tminv-xlx2 = 9999.9999 
t m - x l x 2  = 0 
printl3,x~atr,xl ,x2 

13 fomat(GO('-'),/ATR dist inside the subroutine is:',fQ.l, 
+ /Start distance for count is = ',fll.5, 
+ /End distance for count is = ',fl 1.5, 
+ //The values of the log and speed are:'// 
+ '#  ID Did-veh time-veh Speed'lGO('-')) 

tmin = I /@Q.*.?rOO.! 
tmin-diff = 5./3600. 
flag1 = 0 
i = O  
il = 1 
i 2 = 1  
do while(flagl.eq.0) 
i=i+ 1 
flag2 = 0 
do while(flag2.eq.O) 
if(xl2_idv(il ).eq.x12_idv( 'a+ 1 ))then 
Q= i2+1 
else 
flag2= 2 
end if 
end do 
atr-v-id(i) = xl2_idv(il) 
if(il.eq.i2) then 
casev(i) = 1 
atr-t-veh( i) = x i  2 3 4  1 1 ) + 

atr-v-sp(i) = 0.0 

flag3 = 0 
do k = i1.Q-1 
if((xl2-@( k).ge.x-atr.and. 

+ x12-lgv(k+l).le.x-atr).or. 
+ (x12-lgv( k). lex-atr.and. 
+ xl2-lgv(k+l).ge.x-atr))then 

+ (x-atr - xl2~lgv(#REF!))/(l000*a~sp~veh)* dir 

elseif(iigti1) then 

spd = xl2_spv(k+l) 
if(xl2-spv(k+l).eq.O) spd = a-sp-veh 
atr-t-veh(i) = x12-tv(k) + 

+ (x-atr - x12-lgv(k)~(l00Ofspd)*dir 
atr-v-sp(i) = xl2_spv(k+l) 
flag3 = 1 
casev(i) = 2 
end if 
end do 
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if(flag3.eq.O) then 
I-il = xl2-lgv(il) 
I-i2 = x i  2_lgv( i2) 
if (dir.gt.0) then 
if(lJ2.le.x-atr) then 
spd = x12_spv(i2) 
if(xl2_spv( Q).eq.O) s pd = a-s p-ve h 
atr-t-veh(i) = x12-tv(i2) + 
+ (x-atr - x12~lgv(i2)~(1000'spd)'dir 
atr-v-sp(i) = xl2_spv(Q) 
casev(i) = 3 
elseiyl-il .ge.x-atr) then 
spd = xl2-spv(il+l) 
if(xl2~spv(il+l).eq.O) spd = a-sp-veh 
atr-t-veh(i) = xl2-tv(il) + 

atr-v-sp(i) = xl2-spv(il+l) 
casev( i) = 4 
end if 
else if(dir.lt0)then 
if(l-il.le.x-atr) then 
spd = xl2-spv(il+l) 
if(xl2_spv( il + 1 ).eq.O) spd = a-sp-veh 
atr-t-veh(i) = xl2_tv(il) + 

+ (x-atr - xl2~lgv(il)~(1000+spd)*dir 
atr-v-sp(i) = xl2-spv(il+l) 
casev(i) = 5 
elseif(l-i2.ge.x-atr) then 
spd = x12_spv(i2) 
if(xl2-spv(i2).eq.O) spd = a-sp-veh 
atr-t-veh( i) = x i  2,YQ) + 

atr-v-sp(i) = x12_spv(i2) 
casev( i) = 6 
end if 
end if 
end if 
else 
prinr.' 
print.,'" SOME THING IS WRONG IN THE CHECK 
prinr.m AT VEHICLE # 'A,' 
prinr, 
end if 
if(atr-t-veh(i).gt.tmaxv-xlQ) tmaxv-xlxZ = atr_t_veh(i) 
iyatr-t-veh( i).lttminv-xld) tminv-xlx2 = atr-t-veh( i) 
if(i2.eq.xl2-veh) flag1 = 10 
il = i2+1 
i2 = il 
end do 
print., 
prinr,'" Direction is = ', dir,' 
prinr,* # of vehicles = I, i , ' 
print., 
print+.'# ID Time Speed Case' 
do k = 1.i 
write(6,l 30)k,atr-veid( k).atr-t-ve h( k), atr-v-sp( k),casev( k) 
end do 

+ (x-atr - xl2~lgv(il))/(1000*spd)~dir 

+ (x-atr - x12~lgv(J216))/(1000*spd)*dir 

I 

-' 
.rw 

*' 

130 fomat(i5, i7,3x.fl2.7.f9.3,i4) 
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140 
+ 
+ 
+ 

160 
+ 

printl40,tminv-xlx2, trnaxv-xlx2 
format(GO('-'YFor this segment Tmin is = ',fll.7/ 

60('-'YVehicles that are included in the count are', 
nSO('-'yl # ID SPEED(kmph) '/60('-')) 

1 8 Tmax is = ',fl 1.7// 

i-sp = 0 
sum-sp = 0 
do k =  1,i 
write(6.130)k,atr-v-id( k),atr-t-veh(k),atr-v-sp( k).casev(k) 
if(atr-v-sp(k).gt.O) then 
i-sp = i-sp + 1 
sum-sp = sum-sp + atr-v-sp( k) 
end if 
end do 
a-sp-in = sum-sp I i-sp 
print 160,a_sp_in, i-sp 
format(GO('-')/The average speed of these vehicles is:'. 

f9.4,' kmph ',/This is for'.i4;' Vehicles'lGO('-')/) 

print*,'Can with Speed = ',a-sp-in ,' Speed=',i-sp 
return 
end 

150 format(2(i5),fll.4) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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> 3 0  
31 
32 
33 
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50 
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52 
53 
54 
55 
56 

48 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine cnt-type(f-type) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer iof, f-type, ior 
iof = 0 
do while(iof.eq.0) 
print 133 

133 format(B6('=')/ 
+ 4x.You have 2 choices to choose from. These are: 'I/ 
+ 4x.Y- Enter (X,Y) of ATR and tl,t2 data. '// 
+ 4x,'2- Enter (X,Y) of XI, X2 points and t value.'/ 
+ 4x.' This will compute traffic measures as in l'/ 
+ 4x.' but after eliminating the values outside X1, X2'// 
+ 4x,'PLEASE Enter which method you want 1, or 2 : ',$) 

read(5,',iostat = ior)f-type 
if(ior.eq.0)then 
prinP,p 
if(f-type.ne.1.and.f-type.ne.2)then 
prinr,'- 
prinP,'- Invalid data try again. - 
print*,'- Hit retum to continue - 
print*,'- 
read* 
else 
iof=9 
end if 
else 
prinP.- 
priW,- Invalid data try again. - 
print*,'- Hit retum to continue - 
prinr.' 
reap 
end if 
end do 
retu m 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine out-times(t1 ,t2,tminc,tmaxc,tmint,tmaxt) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~! 
i m p l i  none 
real tl ,t2,tminc,tmaxc,tmint,tmaxt 
print 31, t l  .t2,tminc,tmaxc,tmint,tm& 

31 fonnat(/'The value of t i  is = '.f9.5,' and t2 is = '.f3.5/ 
+ 
+ 

The times of cars, min = 'J9.5.' and max =',f9.5/ 
The times of trucks, min = 'J9.5,' and max "$9.5) 

retum 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine check-cl-limits(dir,tl ,t2,trninc,tmaxc,tmint,tma 

+ a_sp-~rs,a_sp-trks,dis-atr, 
+ cl-I stcl-last. 
+ tc-st,tc_end,tt,st,tt-end) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer dir 
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real t l  ,t2,tminc,tmaxc,tmint,tmaxt 
real a-sp-cars.a-sp-trks,dis-atr, cl-lst,cl-last 
real tc-st,tc-end.tt-sttt-end 
real cl_st-car_sp,cl_end_car_sp,cl_st-~-sp,c~end-trk-sp 
cl-st-car-s p =tc-st+ (dis-atr-cl-1 sty( 1 OOO'a-sp-cars)*dir 
cl_end-car-sp=tc-end+ (dis-atr-cl_last)/( 1 OOO'a-sp-ca rs)*d ir 
cl-st-trk-s p %-st+ (dis-atr-cl-1 st)/( 1 OOO'a_sp-trks)*dir 
cl_end-trk-sp=tt-end+(dis-atr-cl_last)/( 1 OOO'a_sp-trks)*dir 
if(trninc.gt.cl-st-car-sp) tminc = cl-st-car-sp 
iytrnaxc. It.cl-end-car-sp) tmaxc = cl_end-car-sp 
iytrnint.gtd-st-trk-sp) tmint = cl-st-trl-sp 
iytmaxt#cl_end-trk-sp) tmaxt = cl-end-trk-sp 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine save-xl2-t12(dis-x1 ,dis-x2,tl ,t2,dxl ,dx2,txl ,ba) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
real dis x i  .dis-)Q.tl ,t2.dx1:d)QO.kl ,tx2 

w=t2 

dx2 = dis-x2 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine check-tlt2(tl,t2.trninc,tmaxc,trnint,trnaxt,fail) 
.... 1111+l11111l111111~1llllllllll~~~~~llllllllllllllllllllllllllllllllll~l ............. ........... .................................... 
implicit none 
integer fail 
real t l  ,t2.tminc.tmaxc,tmint,tmaxt 
fail = 0 
if(tminc.gt.tl) print 21 
if(trninc.gtt1) fail = 1 
if(trnaxc.tt.t2) fail = 1 
if(tmaxc.It.t2) print 22 
if(trnint.gtt1) print 23 
if(trnint.gtt1) fail = 1 
if(tmaxt.ltt2) fail = 1 
if(trnaxtltt2) print 24 

kl = t1- 

dx! = disx! 

21 fonnat(/7ime t i  is smaller than the limit of the cars. '/) 
22 format(lTrime t2 is.greater than the limit of the cars. '/) 
23 format(/Time t i  is smaller than the limit of the trucks. I/) 
24 format(l7ime t2 is greater than the limit of the trucks. I/) 

return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~!!!!!!!!!!!!!!!! 
subroutine check-tlt2-xlx2(tl,t2, 
+ dir,a-sp-cars,a-sp_trks, 
+ dis-atr,tO,dxl ,dx2,b<l ,bQ) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer dir 
real tl ,t2,klc-atr,tx2c-atr,bl t-atr.tx2-atr 
real a-sp-cars,a-sp-trks,center-l ,center-1st 
real dis-atr,Qdxl ,dx2,txl ,W 
txlc-atr = txl + (dis-atr - dxl)/(lOOO.*a-sp-cars)+dir 
Wc-atr = tx2 + (dis-atr - dx2)/(1000.*a-sp-cars)fdir 
txlt-atr = kl + (dis-atr - dxl)/(lOOO.*a-sp-trks)*dir 

' I  

I 

! 
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Wt-atr = tx2 + (dis-atr - 
if(txlt-atr.lt.tx2t-atr)then 
t i  = klt-atr 
if(tx1c-atr.gttx1t-atr) t l  = klc-atr 
t2 = tx2t-atr 
if(bQc-atr.ktx2t-atr) t2 = bQt-atr 
else 
t i  = tx2t-atr 
if(tx2c_atr.stbat_atr)atr.gttx2t-atr) t i  = hoc-atr 
t2 = hit-atr 
if(txlc-atr.tttxlt-atr) t2 = txl t-atr 
end if 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine swap-xlx2(xl .x2,dir) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer dir 
real xl.x2,swapxl2 
if(xl*dir.gt@dir)then 
swapxl2 = x i  
x l  =x2 
x2 = swapxi2 
end if 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

lOOO.*a-sp-trks)*dir 

16 
+ 

17 
+ 

subroutine check-xl Q(x1 ,x2,dir,log_cl,numcl) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer numcl. dir 
real log_cl(numcl), xl.x2.swapxl2 
H(x1 *dir.gtedir)then 
swapxl2 = x i  
x i  =x2 
x2 = swapxi2 
end if 
if(dir.gt0) then 
iyxl *dir.ltdif log-cl(2))then 
print 16 
fonnat(//.'The first point, X1, is before the limits of/ 

'the center line first point'/) 
STOP 
end if 
if(Q*dir.gt dir.log_cl( numcl-1 ))then 
print 17 
fonnat(//,The second point, X2, is before the limits of/ 

STOP 
end if 
else if(dir.tt.0)then 
if(x1 *dir.ltdif logcl( numcC1))then 
print 16 
STOP 
end if 
if(Q*dir.gt diPlog_cl(2))then 
print 17 
STOP 

yhe center line last point'/) 
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175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
21 1 

, 212 
213 
214 
21 5 
216 
21 7 
21 8 
21 9 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 

end if 
end if 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
This subroutine will eleminate all the vehicles that are outside 
Xl-X2 limits. 
After this then we will bring the vehicles back to the ATR 
locations and find the times. 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine veh_in_xlx2(dir,tl ,t2,d_xl ,d-x2,veh,n_veheid, 

+ n-log_veh,n-veh_time-id,veh-sp, 
+ x i  2~veh,x12~idv,x12~lgv,x12~tv.x12~spv) 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!! 
implicit none 
integer veh,xl2-veh,dir 
integer n-veh-id(veh),xl2-idv(200) 
real tl,t2, d-xl ,d-x2,swapt 
real n-log-veh(veh),n-veh-time-id(veh),veh-sp(veh) 
real x i  2~lgv(200).x12~tv(200),x12~spv(200) 
integer k 
I!(!!.g?.q?!?en 
swapt = t l  
t i  =t2 
t2 = mrapt 
end if 
dok=l .veh 
if(keq. 1 .and.n-veh-id( k).eq.n-veh-id( k+l ))then 
veh-sp(k) = veh-sp(k+l) 
elseif(kkveh.and.n-veh-id(k).eq.n-veh-id(k+l). 

veh-sp(k) = veh-sp(k+l) 
end if 
end do 
xl2-veh = 0 
do k = 1.veh 
if( n-veh-time-id(k).ge.tl .and.n-veh-time-id( k).le.Q.and. 

1 

+ and. n-veh-id( k).ne. n-veh-id( k-1 ))then 

+ n-log-veh(k)*dir.ge.d-xl*dir.and. 
+ n-log-veh(k)*dir.le.d-Qdir) then 

xl2-veh = xl2-veh + 1 
xl2-idv(xl2-veh) = n-veh-id(k) 
xl2~lgv(xl2-veh) = n-log-veh(k) 
x i  2-tv(x12-ve h) = n-veh-time-id( k) 
xl2-spv(xl2-veh) = veh-sp(k) 
end if 
end do 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine which-sp(speed-type) 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
integer ie. speed-type 

print*,'Please indicate which speed you want to use to' 
print*,'bring vehicles to the ATR location: ' 
print*,'Enter 1 to use average speed of vehicles' 
print','Enter 2 to use individual speeds of vehicles' 
print. 

- I  

165 prinr,' . 

.. . 
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234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 

read(5,',iostat= ie)speed-type 
if(ie.ne.O.or.(speed-type.ne.1 .and.speed-type.ne.2)) then 
prinr,'Your response is invalid. ' 
prinr.'Renter response ' 
go to 165 
end if 
return 
end 
!!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine spdtype(a-sp-veh,spdnew,spdyn) 
!!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 

integer iof, spdyn. ior 
real a-sp-veh,spdnew 
iof=O 
do while(iof.eq.0) 

print 133,a-sp-veh 
133 133 format(/sS('=')I 

+ 4x,What average speed do you want to use:'// 
+ 4x,'1- The average speed of the vehicles which is:',f7.2, 
+ I4x.2- An average speed that you define? 'I 

4x,'PLEASE Enter 1 or 2 to spec@ your choice : I,$) 

read(5,+,iostat = ior)spdyn 
if(ior.eq.0)then 
print*, 
if(spdyn.ne. 1 .and.spdyn.ne.2)then 

prinr,' 
print*,'- Invalid data try again. - 
prinr,'- Hit return to continue -' 
prinr,' 
read' 

iof = 9 
else 

end if 
else 

print', 
prinr,"" invalid data try again. mu 

prinr.- Hit return to continue - 
prinr, 
rea@ 

end if 
end do 
iof = 0 
if(spdyn.eq.2) then 

do while(iof.eq.0) 
print134 
read(5.'.iostat = ior)spdnew 

if(ior.ne.0)then 
print*. 
print*,- Invalid data try again. - 
print*,- Hit return to continue - 
prinr, 
read* 

iof = 10 

134 format( //,4x,'Please enter the speed in Kmph : ',$) 

else 

end if 
end do 

else 
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293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
31 0 
31 1 
312 
313 
3 4  
31 5 

spdnew = 0 
end if 
return 
end 

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine cars 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
print'.' 
prinv,' CARS ' 
print.,' 
return 
end 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
subroutine trucks 
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
implicit none 
prinr,' 
print',' TRUCKS ' 
print*,' 
return 
earl 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

, 

' 

# 

' 
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Appendix B. Pattern Recognition for Stationary and Dynamic Pixels - Statistical 
Description and Program Listings 

1 Notations 

In chis appendix, we provide the detail description of various components of the statistical pattern 
recognition procedure discussed in Chapter 3. We will use the notations of Section 3.1. However 
for compieteness, we ut? reproducing some of these notations here. 

Bij: the gray-level of the pixel of she 1m x 1m in row i and column j in the estimated 
background image B. 

0 I$j: the bay-Ievel in the same pixel of the current image. 

Bij: transformed value of the brightness matching transform +(Bij) for the background pixel 
( & j ) ,  where d(-) is unknown and must be estimated. 

&j = xj - B;,: differenced current image and the transformed background image. Note that 
& j . E  [-255,255]. 

p ~ :  distribution of R for pixels that are given to be stationary. 

0 p y :  distribution of R for pixels that are given to be dynamic. 

0 X,: (unobservable pixel labels, in general), 

(1) 
1, if pixel ( z , j )  in the image Y is a stationary pixel, 
0, otherwise, (dynamic pixel). 

Xij = 

Tij = Prob(Xij = 1): the prior probability that the pixel ( i , j )  in the current &age is a 
stationary pixel. 

The conditional distributions of the diferenced gray-levels: 

u .  It is clear that p ~ ( - )  should be an unimodal distribution centered at zero, but p v ( - )  depends 
on the grey-levels of dynamic pixels in the current image (e.g. vehicle could be both lighter 

l and darker than the background pixels, and shadows may or may not be present). 
.. 

We can also write down the joint density of R and X as 



0 Then the posterior probability of Xij = 1 is given by 

2 

2.1 The Background Transformation, 4(-) 

Functional Form of Various Components 

At present, our program alllows for two types of background transformations: 

(1) A monotonic increasing transformation. This transformation is defined by 

Where S(b) = (SI@), . . . , S,(b)) and SI,. . . , S, are the natural-spline base function (evaluated 
at b). Various special cases of this monotonic transformation, that have been used by us are 
give below: 

(i) If Q = 0, 8 = 0 and /I = 0, 4(-) is just the identity transformation, i.e, no transformation 
is used. 

(ii) If 8 = 0 and = 0, #(a) is just the one parameter transformation, with just a change in 
location. 

(iii) If 8 = 0 then 4(- )  is a two parameter, linear transformation with intercept a and slope 
eB . 

(iv) With the shift and a slope term and two knots in the natural splines, one has the five 
parameter transformation. 

(2) A natural-spline tmnsformetion. With S(B) as defined above, this transformation is simply 

4(B) = a + S(B)’O. (8) 
In this case, 4(B) does not have to  be monotone. 

Of course, one could investigate other suitable transformations, as well as quantize the trans- 
formed variables differently. 

2.2 

We have limited ourselves to two probability distributions at this point: 

The Background Difference Distribution, p ~ ( . )  

Student’s t-distribution. The difference R, given that Xjj = 1, is assumed to follow a stu- 
dent’s t distribution with median zero (location parameter), scale parameter CT and degrees 
of freedom df. Both Q and df need to be estimated. 

Gaussian (normal) distribution. The difference R, given that Xij  = 1, is assumed to follow 
a normal distribution with location zero and standard deviation 0, which is estimated from 
the data. 

Recall that the normal distribution is a limiting case of the t-distribution when df goes to 
infinity. In the image processing literature, the folklore is that the residuals R follow the Laplace 
distribution. We intend to examine this aspect in the future. 



2.3 

Since, one expects a large variety of images, we have limited to ourselves to maximum entropy 
distribution on a finite interval (the uniform distribution) and a non-parameteric density function 
to allow for a large number of shapes. 

The Vehicle/Background Differences Distribution, pv(-) 

(1) Uniform distribution. The difference xj - Bij, when Xij = 0, is just assumed to be uniform 

(2) Smooth density (nuturd-spline). The difference xj - Bij, when X;j = 0, is assumed to be 

I in the range [-255,2551. 

smooth and natural-spline function are used to capture the distribution. 

As before, S(R) = (&(R),  . . . , Sp(R)) is a set of base spline functions evaluated at R. Also, 
note that the distribution should be continuous, but is quantized on a discrete grid ((-255,- 
254, . . . ,255}), with R’ representing the nearest integer value of R. 

3 Estimation Procedure 

First, note that if the Xij’s (stationary or dynamic) were observables, one could estimate (PB, 4) 
a d  pv by the maximum likelihood method, i.e., 

PV = m g m a  log[pv(xj) - Wij)l  (12) 

(13) 

PV (ij):x,3 =o 

= w g m a C ( 1 -  xij)log[Pv(Kj - 4(~ i j ) ) ] .  
pv i j  - 

However, the Xij’s are not observables, and we are basically interested in finding their posterior 
distribution. Therefore, instead of ’ ing the log likelihood, we e the expected log 
likelihood, with respect to  the missing data ( X i j ) .  Thus we are using the E M  algorithm to estimate 
the unknown parameters of these densities, in an iterative manner. 

2 

The iterative estimation procedure is as follows: 

(1) Initilize 4 = 4 ( O )  (e.g. 4(’)(B) = a + B - just a shift in the identify transformation). Let 
Riy’ = yij - 4(O)(Bij) and initihe p~ = p(B0) and p v  = pv (0) . 



(2) Compute the posterior probability distribution of Xij 

(4) Updatepv. Let 

(5 )  Repeat steps (2) to (4) to get p g ' ,  4(k) andpv ( k )  for k = 2,3, .  ... untilp(k)(Xijl&j)'s converge 
according to the foiiowing criteria. 

(6) The convergence of the posterior probabilities pi:) = P ( ~ ) ( X ; ~  = llfij), is judged by the s u m  
of Kullbaick-Liebler distance between pi:-') and pi j  ' k )  over all the pixels, i.e., 

Once the value of d(k - 1, I C )  falls below a certain threshold value, we stop and accept the $) 
as the converged posterior probabililities. 



4 S+Code 

t 

I 

In this section, we first list the generic Splus functions for various components of the pixel classi- 
fication procedure, which can be called from within S+ session. The we list the S+ code for the 
implementation of this procedure on the test and scanned images, as described in Section 3.2. Fi- 
nally, we also list S+ code for generic image processing, including plotting of images, edge detection, 
and other filters. 

4.1 The S+ Motion Detection Code 
#####w##t+######t#####a#ut 

# 
W GJ: 19-AF'R-98 (25-June-98) 
# 
# S+ Codes for Variuos Components of Pixel Classification Procedure 
# 
# 
~ ~ t # ~ # t ~ ~ t # ~ # ~ # t ~ ~ ~ # $ ~ ~ t # #  

M FIRST, FOR THE BACKGROUND TRANSFORMATION t+t# 

# all background transformation are evaluated on the grid 0,1, ..., 255. 
# The natural-spline transformation -- not monotonic increasing. 
# is of the form: f(x) = a + ns(x,knots) -- if 2 param. then nso is linear 
get .back.ns. trans .base .mat <- function(back,n=6,knots=N~.pixels=O :255) < 

tt to get the ns() base-matrix (X matrix) 
# back: the backg. pixel value 
# n: the number of parameters in the transformation 
if (n=i) 
# only intercept 
matrix(l.nro~lengh(pixels),ncol=l) 

# intercept and slope 
cbind(rep(l.lengh(pixels)).pixels) 

#! intercept and ns-term 
if (is.null(hots)) 

cbind(rep(l,length(pixels)) ,115 (pixels ,knots=knots, intercept=F)) 

else if(n==2) 

else I 

knots <- quantila(back,(l:(n-2))/n) 

1 

init.back.ns.trans <- fuuction(res.base.mat) 
# initial estimate of the background trans. parameters. 
c(maan(res.trim=0.5),rep(0.ncol(base.mat)-l)) 

get.back.ns.trans <- function(param.base.mat) I 
# param: the parameters in the n-s transformation (beta) 
# base-mat: the natural-spline matrix (511 rows) 
pred <- as.vector(base.mat %*% param) + 0:255 
pred[pred<Ol <- 0 
pred Cpred>255] <- 255 
pred 

1 

t## A monotonic. increasing, transformation. 

tt transform background -- monotonic increasing transformation: 
get.back.mono.trans <- function(param,base.mat=NULL) 
# param: the parameters in the transformation (beta) 
# base.mat: the natural-spline (ns) matrix with 511 rows. 



pred <- svitch(as.character(length(param)), 
#lD = param[ll + 0:255, 
'2' = paramci] + exp(paraml21)*(0:255). 
paramC11 + exp(paramC21) * 
as .vector(cumsum(exp(base .mat. X * X  param[-c(l.2)] )) -1) 
) 

pred[pred<O] <- 0 
predCpred>255] <- 255 
names(pred1 <- 0:255 
ttround(pred) 
pred t not round things 

> 
U get the natural-spline matrix 
get.back.mono.traus.base.mat <- function(back.n=2,pixels=0:255,hots=MnL) { 
if(n>=4) { t have at least on h o t  in the n s 0  function 
if (is .null (hots 1 

ns(pixels,knots=knots,intercept=F) 
1 else { 
NmL 

1 

knots <- quantile(back,(l:(n-3))/(n-3+1)) 

1 

# initial estimate of the background trans. parameters. 
init .back.mono.trans <- function(res,n=2) 
c(mean(res, trim*. 5) ,rep(O,n-l)) 

tt plot the background transformation 
plot .back. trans <- f unctioncback . trans, img .back, back. probs , thresh=O -5) 1 
# back.trans: the value of the backg. transf. at 0.1, .... 255 
plot<c(0,255) .c(O,255) .typ="n" ,xlab="Background image (pixel value)". 

ind <- back.probs>thresh 
points(back[ind] ,imgCind] .pch="." .cex=par()$cex*1.5,~01=2) 
points(back[! ind] , imp[!  indl ,pch=l , ~0113, cex=par() $cex*O. 8 )  
abline(aZ0 .b=l) 
lines(0:255.back.trans.lud=3.col=l,lty=3) 
fit <- smooth.spline(back,img,w=back.probs,df=lO) 
lines(f it ,lwd=4, co1=3 .lty=2) 
key(x=-30,p310.transparent=T. 

lines=list (lty=c(3.2), lvd=c(3.3), col=c(3,2)), 
text=list (c ("Transf . " , "5-s ( d f = l O )  "1) 
1 

key(~256/2.g-~10,transparent=TT. 
points=list (pch=c (16.1) , cex=parO$cex*c(O. 6 .O -81, col=c(2.3) 1, 
textslist ( c  (paste ("P(backg . ) > " ,thresh, sep=" "1, 

) 

ylab="leu image (pixel value)") 

paste("P(backg.) <= ".thresh,sep=""))) 

t#tt FOR DENSITIES #8# 

tt get the marginal density of the residuals: 
get.marg.dens <- function(veights.res.ind,un.res=(-255):255) 

# res.ind: points to un.res -- discreate residuals are un.res[res.indl 
n <- length(un.res) 
marg-dens <- tapply(c(veights.rep(O.n)),c(res.ind.l:n).sum) 
names(marg.dens) <- un.18~ 
narg .dens 

1 



# the background difference density -- t-density: 
get.back.t.dens <- function(param,res) { 

1 
dt (res/exp(param[13 .df =exp(paramC2] ) )/exp(param[il) 

O t  compute initial estimate for the backgr. difference density 
W based on residuals only vhen using t-density: 
init. back. t .dens <- funct ion(res .df=5 .red=O .05) C 

SO initial estimates for the t-distribution: 
tmp <- abs(res) 
res <- resctmp <= quantile(tmp.1-red)] 
c(log(sqrt(var(res)/(df/(df-2)))), 
log(df)) 

1 

# the background difference normal density -- don't need this 
get.back.norm.dens <- function(param,res) 
dnordres .O.param) 

tt compute the vehicle density for -255...., 255 
get .veh.dens <- function(param,base .mat .un.res=(-255) :255) C 

tt using natural-spline to construct density: 
tt param: beta in X*beta 
tt base.mat: the natural b-spline matrix, X 
probs <- as .vector(exp(base .matX*Xparam)) 
names(probs) <- un.res 
probs/sum(probs) 

1 

get.veh.dens.base.mat.and.tot.probs <- function(res.ind.back.probs. 
q.probs=(l:S)/b. 
un.res=(-255):255) { 

# returns the ns base matrix, the tot. veh. probs for each pixel value. 
# q.probs (quantiles) are used to find the knots to use in ns0 

if(!missing(res.ind) && !missing(back.probs)) 

else 

cum.tot.veh.probs <- cumsum(tot.veh.probs/sum(tot.veh.probs)) 
# find one quantile: 
one.quantile <- function(pr0b.x) 

all.quant <- sapply(q.probs,one.quautile.x=cum.tot.veh.probs) 
# then. get the base matrix: 
#base.mat <- bs((-2SS) :255.Imots=all.quant .int=F) [.-length(q.probs)-3] 
base.mat <- ns(an.res,knots=all.qaant,int=F) 

tot.veh.probs <- get.marg.dens(1-back.probs,res.ind) 

-r tot .veh. probs <- get .marg .dens (rep( 1. lengthcun . res) ) ,1 :length(=. res) 

rev(as.numeric(names(x)) [x<=prob]) C13 
1 

.c return(base.mat=base.mat,tot.veh.probs=tot.veh.probs) 
1 

H plot back. and veh. dens: 
plot.back.dens <- function(res,back.probs.back.dens) .( 

O t  back.dens: the density evaluated at (-255):255 

use.breaks <- seq(-255.5.255.5,by=7) 
res.breaks <- cut(res,breaks=use.breaks) 
bg.hist <- tapply(back.probs,res.breaks,sum) 
bg.hist[is.na(bg.hist)l <- 0 
bg.hist <- bg.hist/(7+sum(bg.hist)) 
pix <- (-255):255 
plot(c(-255,255),c(O,max(back.dens,bg.hist)).type="n". 

panel .histogram(use .breaks, c(NA ,bg .hist) ,border=-1) 
lines(pix,back.dens.lvd=3,~01=3) 

xlab"Pixe1 difference (New - Backg. 1'' ylab"Density"1 



3 

plot. veh.dens <- f unct ion(res, back. probs , veh. dens) < 
#t veh.dens: the veh./backg. diff. density evaluated at (-255):255 

use.breaks <- seq(-255.5,255.5,by=7) 
res.bre&s <- cut(res,breaks=use.breaks) 
veh.hist <- tapply(1-back.probs.res.breaks,sum) 
veh.hist[is.na(veh.hist)l <- 0 
veh.hist <- veh.hist/(7*sum(veh.hist)) 
pix C- (-255):255 
plot (4-255.255) .c(O.max(veh.dens ,veh.hist) 1, type=%", 

xlab="Pixel difference (Nev - Backg.)", yfab="Density") 
panel.histogram(use.breaks,c(NA,oeh.hist),borde~-l) 
lines(pix.veh.dens,lvd=3,col=3) 

8: estimate both the background difference denstiy and transformation 
## vhen using the t-density and monotonic backg. transformation: 
est.back.t.dens.and.mono.trans <- 
function(img,back.back.probs.param.start, 

back.trans.base.mat1 < 
# the negative log-likelihood: 
opt.func <- function(param) C 
trans .bg <- get .back.mono .trans (param[-c (I ,2)] .base .mat=back.trans .base .mat) 
- sum( back.probs * log(get.back.t.dens(param=param[1:2], 

res-img - trans.bgback.indl))) 
3 

# optimize -- minimize the negative log-likelihood: 
assign("img" .img.vhere=O. immediatemf) 
assign("back",back,vhera=O. immediate=T) 
assign("back.probs",back.probs,vhere=O,immediate=T) 
assign("back. trans .base .mat", back. trans. base .mat, vhere=O, immediate=?) 
assign("back. ind",back+l .vhere=O,immediate=T) 
fit <- nlminb(start=param.start, objective=opt.fuac, 

remove( c( "kg", "back" . "back.probs" , "back. trans .base .mat") ,vhere=O) 
remove("back. ind",where=O) 

control=nlminb.control(eval.max=400,iter.m~~200)) 

return(f it) 
> 

# estimate both the background difference denstiy and transformation 
# vhen using the normal density and monotonic backg. transformation: 
est.back.norm.dens.and.mono.trans <- 
fanction(img.back,back.probs.param.start. 

back. trans .base .mat) < 
t# opt. function: minimizing sum of squares (prop. to neg-loglikelihood) 

trans .bg <- get .back.mono, trans (param.base .mat=back. trans. base .mat) 
sum( back.probs (img-trans.bgback.indl)'2) 

opt.func <- function(param) < 

1 

## optimize -- minimize the negative log-likelihood: 
assign("img", img,vhere=O. immediate=T) 
assign("back" ,back,vhere=O, immediate=T) 
assign("back.probs",back.probs,vhere=O,immediate=T) 
assign("back.trans.base.mat".back.trans.base.mat,vhere=O,inrmediate=T) 
assign("back.ind",back+l,vhere=O,immediate=T) 
fit <- nlminb(start=param.start, objective=opt.func. 



I*.- 

- - - -. _ _  



m.EH.t.and.mono <- 
function(img,back.back.prior.probs=NULL,traffic.dens=O.OS, 

back.dens . control=list (param=NULL,df=S, trim=O.S), 
back.trans.control=list(param=NULL.nr.trans.param=S, 

veh.dens.control=list(probs=c(O.OS,O.2,0.4,0.6.0.9.0.95~). 
max. iter-20. ask. iter=F, conv. crit=l/lO. 
update.veh.dens=T 

knots=NuLL), 

) . (  
tt img: the image (the pixels in the image) 
tt back: the current estimate of the background pixels 
#8 back.prior.probs: the prior prob for pixel being a background pixel. 
t 8  traffic.dens: a prior estimate of traffic density (used if 
# back.prior.probs is NULL). 

# The other parameters are input parameters to other functions -- see use 

back.ind <- back+l 
res <- img - back 
n <- 1engthcre.s) 

tt first, initial estimate of transformation: 
cat("Getting initial estimate of backg. transf. . . .\n") 
back.trans.base.mat <- get.back.mono.trans.base.mat(back=back, 

t index for the background. color 0 is index 1 
8 current difference (residuals) 

n=back.trans .control$nr .trans .param. 
kuots=back.trans. controlSknots) 

if (is.null(back. trans.control$param)) 

else 

back.trans <- get.back.mono.trans(back.trans.param,back.trans.base.mat) 

back.trans.param <- init.back.mono.trans(res.n=back.trans.control$nr.trans.param) 

back.trans.param <- back.trans.control$param 

88 new residuals 
res <- img - back.transkck.indl 
# initial baekg. difference density -- if param. missing 
cat("Getting initial estimate of backg. diff. density . . .\n") 
if (is. null (back. dens. controlSparam) ) 
back.dens.param <- init.back.t.dens(res,df=back.dens.control$df. 

red=traffic.dens) 
else 

back.dens <- get.back.t.dens(back.dens.param,res) 

tt initial veh./backg. diff. density: 
cat("Getting initial estimate of veh./backg. diff. density . . .b") 
88 it is just uniform 
veh. stuff <- get .veh.dens .base .mat. and. tot .probs(q.probs=veh.dens . controlSprobs1 
veh.dens .param <- rep(O.ncol(veh. stuff $base .mat)) 
un . veh.dens <- get. veh .dens (veh. dens. param.veh . stuff $base .mat) 
res. ind <- round(res)+256 
veh.dens <- uu.veh.densCres.M 

back.dens.param <- back.dens.control$param 

# initial estimate of back.probs -- if missing 
cat("Getting initial posterior estimates of backg. prob's . . .b") 
if(is.null(back.prior.probs)) 

back.probs <- update.back.probs(back.prior.probs. 
back.prior.probs <- 1-traffic-dens 

back.deus=back.dens, 
veh.dens=veh.dens) 

cat(" Have ".round(sum(back.probs)/n*100.4), 
"% are backg. pixels.\n",sep="") 

tt start EM 
iter <- T 
nr.iter <- 1 
cat("Starting the EM . . .\n") 
vhile(iter) .( 



cat('' Iteration".nr.iter.":\nii) 

88 estimate backg. diff. density and backg. transf.: 
cat(" Estimating new backg. transf. and density ... \n") 
back.trans.and.dens.fit <- 

est.back.t.dens.and.mono.trans(img,back.back.probs. 
param.start=c(back.dens.param. 
back.trans.param), 

back.trans.base.mat= 
back. trans. base .mat) 

back. trans .param <- back. trans. and .dens. f it$paramc-c (1,211 
cat ('I 

back.dens . param <- back. trans. and .dens. f it$paamCc(1,2)3 
cat ('I Backg. diff. density param. are". 

back.trans <- get.back.mono.trans(back.trans.param. 

res <- img - back.transback.ina 

Backg. transf. param. are", 
round(back.trans .param.4), "\n") 

round(exp(back.dens .param) .4) ."\on) 

back.trans.base.mat) 
8 new residuals 

88 estimate veh./backg. dens. diff.: 
if (update.veh.dens) i 

cat(" 
res.ind <- round(res) + 256 
veh.stuff <- get.veh.dens.base.mat.and.tot.probs(res.ind,back.probs, 

veh.dens.fit <- est.veh.dens(veh.stnff$tot.veh.probs,veh.dens.param. 

veh.dens.param <- veh.dens.fit$param 
un.veh.dens <- get.veh.dens(veh.dens.param, veh.stuff$base.mat) 
veh.dens <- un.veh.densCres.ind1 

Estimating the veh/backg. density . . .\n") 
t gay-value of -255 has index 1 

veh.dens.control$probs) 

veh.stuff$base.mat) 

1 

U Update back.probs: 
cat(" Update the backg. probabilities . . .\n") 
new.back.probs <- update.back.probs(back.prior.probs,back.dens,veh.dans) 
cat ('I Have " ,round(sum(new. back.probs) /n*100,4) , 

" X  are backg. pixels. \n" , sep="") 

88 compute iteration criteria: 
back.probs.diff <- sum(log(new.back.probs/back.probs)*neu.back.probs.na.~=T)+ 

cat( 
back.probs <- new.back.probs 

sum(log((l-new.back.probs)/(l-back.probs))*(l-new.back.probs),na.rm=T) 
"The convergence criteria is",back.probs.diff ,%'" 

if (ask. iter) i 
ask <- T 
while(ask) c 
answer <- menu(c("To do another iteration."."To stop at this point"), 

if (ansver==l I I answers2) 

else 

titls="Shall we continue?") 

ask <- F 

cat("Se1ect 1 or 2 ... \n") 
1 
if (answer=2) 
iter <- F 

else i 
if(m.iter >= -.iter I I  back.probs.diff <= conv.crit) 
iter <- F 

nr.ites <- nr.iter + 1 

return(back.probs=back.probs. 
back.dens.param=back.dens.param. 
back.trans.param=back.trans.param. 
back.trans.base.mat=back.trans.base.mat. 



veh.dens.param=veh.dens.param, 
veh.dens.base.mat=veh.stuff$base.mat) 

# 
# 
# 
# 
# 
# 

# 

Estimate everything: transformation, densities and weights 
using the M algorithm. 
?his is for the case when: 

(1) The backg. diff. density is a normal density 
(2) The backg. transformation is monotonic increasing 
(3) The veh./backg. diff. density can either by estimated or unif. 

VERY slow function: 

mu. M .norm. and .mono <- 
fanction(img.back.back.prior.probs=~,traffic.dens=0.05. 

back.dens.control=list(param=NULL). 
back.trans.control=list(pa.ram=NULL.nr.trans.param=5. 

veh.dens.control=list(probs=c~O.O5,0.2,0.4,0.6.0.9,0.95~~. 
max.iterx20, ask.iter=F, conv.crit=l/lOO. 
update.veh.dens=T 

bnots=NuLL), 

) C  
# imp: the image (the pixels in the image) 
# back: the current estimate of the background pixels 
# back.probs: the prior prob for pixel being a background pixel. 
#$ traffic.dens: a prior estimate of traffic density (prop. of pixels 
#S belonging to vehicles in the new image. 

# The other parameters are input parameters to other functions -- see use 

back.ind <- back+l 
res <- img - back 
n <- length(res) 

# first, initial estimate of transformation: 
cat ("Getting initial estimate of backg. transf . . . .\n") 
back.trans.base.mat <- get.back.mono.trans.base.mat(back=back, 

t index for the background, color 0 is index 1 
$ current difference (residuals) 

n=back.trans.control$nr.trans.param. 
knots=back. trans. control$knots) 

if (is .null(back.trans .controlSparam)) 

else 

back.trans <- get.back.mono.trans(back.trans.param.back.trans.base.mat) 

# new residuals 
res <- img - back.transtback.ind1 
m! initial backg. diff density (the SD in the normal) 
cat("Getting initial estimate of the SD in the backg. diff. density ... \n") 
tmp <- abs(res) 
tmp <- resctmp <= quantile(tmp,l-traffic.dens)l 
back-dens .param <- sqrt(sum(tmp^2)/length(tmp)) 
back.dens <- dnorm(res.0,back.dens.param) 

# initial veh./backg. diff. density: 
cat("Getting initial estimate of veh./backg. diff. density (unif .) ... \ne') 
t# it is just uniform 
veh.stuff <- get .veh.dens.base.mat .and.tot .probs(q.probs=veh.dens .control$probs) 
veh. dens .param <- rep(0 ,ncol(veh. stuff $base .mat)) 
un.veh.dens <- get.veh.dens(veh.dens.param,veh.stuffSbase.mat) 
res. ind <- round(res)+256 
veh . dens <- un . veh .dens [res. ind] 

back.trans.param <- init .back.mono.trans(res .n=back.trans.control$nr.trans .param) 

back. trans. param <- back. trans. control$paranL 

. I  



' 

# initial estimate of back.probs -- if missing 
cat("Getting initial estimates of backg. prob's . . .\xi") 
if(is.null(back.probs)) 

back.probs <- update.back.probs(back.prior.probs. 
back.prior.probs <- 1-traffic.dens 

back.dens=back.dens, 
veh.dens=veh.dens) 

cat ('I Have " .round(sum(back.probs) /n*100.4), 
I ' ' X  are backg. pixels .\n",sep="") 

tt Start En 
iter <- T 
=.iter <- 1 
cat("Starting the EH . . .\n") 
vhile(iter1 C 

k 

cat(" Iteration",nr.iter.":\n") 

# estimate backg. diff. density and backg. transf.: 
cat(" Estimating new backg. transf. and density . . .\n") 
back.trans.and.dens.fit <- 
est.back.norm.dens.and.mono.trans(img,back,back.probs. 

param. start=back. trans .param. 

I 

I 

back.trans.base.mat=back.trans.base.mat) 
back.trans.param <- back.trans.and.dens.fit$param 
cat ('I Backg. transf. param. are" ,  

round(back.trans .param.4) ,"\n") 
back.trans <- get.back.mono.trans(back.trans.param, 

res <- img - back.transback.ind1 
back.dens.param <- sqrt(sum(back.probs*res^2)/sum(back.probs)) 
cat ('I 
back-dens <- dnorm(res,O.back.dens.param) 

#S estimate veh./backg. dens. diff.: 
if (update.veh.dens) < 

back.trans.base.mat) 
t nev residuals 

Backg. diff. density SD is".round(back.dens.param,2) ,"\n'') 

cat(" 
res.ind <- round(res) + 256 
veh.stuff <- get.veh.dens.base.mat.and.tot.probs(ras.ind,back.probs. 

veh.dens.fit <- est.veh.dens(veh.stuff$tot.veh.probs,veh.dens.param. 

veh.dens.param <- veh.dens.fitSparam 
un.veh.dens <- get.veh.dens(veh.dens.param. veh.stuff$base.mat) 
veh . dens <- un .veh . dens [res. ind] 

Estimating the veh/backg. density . . .\n") 
1 gray-value of -255 has index 1 

veh-dens . controlSprobs) 
veh.stuff$base.mat) 

3 

# Update back.probs: 
cat(" 
new.back.probs <- u~ate.back.probs(back.prior.probs,back.dens,veh.dens) 
cat (" Have ",round(som(nev.back.probs)in*100.4). 

Update the backg. 'probabilities . . .\n") 

"1 are backg . pixels. \n" , sept"") 
tt compute iteration criteria: 
back.probs.diff <- 
sum(log(new.back.probs/back.probs)*neu.back.probs.na.rm=l)+ 

cat ( 
back.probs <- new.back.probs 

if(ask.iter) C 

vhile(ask) I 

sum(log((l-new.back.probs)/(l-back.probs))*(l-new.back.probs~,na.nn=T) 
"The convergence criteria is" .back.probs .diff ."\n") 

ask <- T 

answer <- menu(c("To do another iteration.","To stop at this point"), 

if (answer=l I I answer==2) 

else 

title="Shall we continue?") 

ask <- F 

cat("Se1ect 1 or 2 ... \nn) 
3 



if (ansve-2) 
iter <- F 

3 else I 
if(nr.iter >= -.iter 1 1  back.probs.diff 
iter <- F 

3 

nr.iter <- nr.iter + 1 

3 

return(back.probs=back.probs. 
back.dens.param=back.dens.param. 
back.trans.param=back.trans.param, 
back.trans.base.mat=back.trans.base.mat. 
veh.dens.param=veh.dens.param. 
veh.dens.base.mat=veh.stuff$base.mat) 

<= conv . crit ) 

3 

## t ~ t + W ~ # t # W ~ # t # # # t t t ~ # #  ### 

### USING N O W  BACKG. DENSITY AND N-S WSFORHATION 

# Estimate everything: transformation. densities and ueights 
ot using the M algorithm. 
ot This is for the case when: 
W 
# 
W 

W This is the fastest function: 

(1) The backg. diff. density is a normal density 
(2) The backg. transformation is natural-spline 
(3) The veh./backg. diff. density can either by estimated or unif. 

run.M.norm.and.ns <- 
function(imgrback,back.prior.probs=~.traffic.dens=0.05. 

back.dens .control=list(param=NUU), 
back.trans.control=list(param=NULL,nr.trans.param=5, 

veh.dens . control=list (probs=c(O. 05.0.2 ,O .4.0.6.0.8.0.95)), 
max.ite~20. ask.iter=F. conv.crit=l/lO. 
update.veh.dens=T 

knots=NUU), 

) I  
t# imp: the image (the pixels in the image) 
## back: the current estimate of the background pixels 
# back.prior.probs: the prior prob for pixel being a background pixel. 
# traffic.dens: a prior estimate of traffic density (used if 
## back.prior.probs is MIU -- missing). 
# The other parameters a r e  input parameters to other functions -- see use 
back.ind <- as.vector(back+l) tindex for the background, color 0 is index 1 
res.null <- as.vector(img - back) 
n <- length(res.nul1) 

# first. initial estimate of transformation: 
cat("Getting initial estimate of backg. transf. . . .\n") 
back.trans.base.mat <- 

t the raw difference. 

get.back.ns.trans.base.mat(back=back. 
n=back.trans.control$nr.trans.param, 
knotsnback. trans. controltlcnots) 

if(is.null(back.trans.control$param)) 
back.trans.param <- init .back.ns.trans(res .null,back.trans.base.mat) 

else 
back.trans.param <- back.trans.control$param 

back.trans <- get .back.ns.trans(back.trans.param.back.trans.base.mat) 
tt create the X matrix for the Isfit0 function 
back. trans .f it .mat <- back. trans .base .mat [back. ind.1 

## new residuals 



res <- img - back.trans[back.ind] 
tt initial backg. diff density (the SD in the normal) 
cat("Getting initial estimate of the SD in the 
backg. diff. density ... \n" ) 
tmp <- abs(res) 
tmp <- resCtmp <= quantile(tmp.1-traffic.dens)l 
back. dens .param <- s q r t  (sum(tmp'2)/length(tmpmp)) 
back.dens <- dnonn(res .O,back.dens .param) 

4 

e initial veh./backg. diff. density: 
cat("Getting initial estimate of veh./backg. diff. density (unif .) . . .\n") 
# it is just uniform 
veh.stuff <- . .  

get .veh. dens .base .mat. and. tot. probs (q.probs=veh. dens. controltprobs) 
veh.dens.param <- rep(O.ncol(veh.stuff$base.mat)) 
un .veh, dens <- get .veh. dens (veh. dens .param,veh. stuff $base .mat) 
res-ind <- round(res)+256 
veh . dens <- un . veh. dens [res. indl 

tt initial estimate of posterior back.probs: 
cat("Getting initial estimates of backg. prob's . . .\n") 
8# get the backg. density for residuals: 
if(is.null(back.prior.probs)) 
back.prior.probs <- I-traffic.dens # can be 1 number 

back.probs <- update.back.probs(back.prior.probs, 
back.dens=back.dens. 
veh . dens=veh .dens ) 

cat (" Have " ,round(sum(back.probs)/n*100.4), 
" X  are  backg. pixels.\n",sep="") 

t P  start EM 
iter <- T 
nr.iter <- 1 
cat("Starting the EM . . .\nu') 
vhile(iter1 { 

cat(" Iteration" .nr. iter," :\n") 

!, 

# estimate backg. diff. density and backg. transf.: 
cat(" Estimating new backg. transf. and density ... \n") 
back.trans.and.dens.fit <- 
lsf it (xrback. trans .f it .mat ,y=res .null, int=F ,*=back .probs) [c( "coef 'I, "res")~ 
back.trans.param <- back.trans.aud.dens.fit$coef 
res <- back.trans.and.dens.fit$res 
cat(" Backg. transf. param. are'. 

roundhck . trans . param.?), "\n") 
back.dens .param <- sqrt(sum(back.probs*res'2)/sum(back.probs)) 
cat (I' 
back-dens <- &orm(res,O.ba~.dens.param) 

Backg. diff. density SD is".round(ba~.den~.param,2) ,%I") 

# estimate veh./backg. dens. diff.: 
if (update.veh.dens) 

cat(" 
res.ind <- round(res) + 256 
veh.stuff <- get.veh.dens.base.m..and.tot.probs(res.ind.back.probs, 

veh.dens.fit <- est.veh.dens(veh.stuff$tot.veh.probs.veh.dens.param. 

veh.dens.param <- veh.dens.fitSparam 
un.veh.dens <- get.veh.dens(veh.dens.param. veh.stuffSbase.mat) 
veh.dens <- un.veh.dens[res.ind] 

Estimating the veh/backg. density ... b") 
t gray-value of -255 has index 1 

veh.dens .control$probs) 

veh.stuffSbase.mat) 

1 

tt Update back.probs: 
cat(" Update the backg. probabilities . . .\n") 
new.back.probs <- update.back.probs(back.prior.probs.back.dens,veh.dens) 
cat ('I Have " ,round(sum(neu. back.probs)/n*l00.4), 

" X  a r e  backg. pixels.\n",sep="") 

z ; 



# compute iteration criteria: 
back.probs .diff <- 
sum(log(new.back.probs/back.probs)*new.back.probs,na.rm=T)+ 

cat( 
back.probs <- new.back.probs 

if (ask.iter) < 
ask <- T 
while(ask) < 

sum(log((l-neu.back.probs)/(l-back.probs))*<l-new.back.probs),na.rm=T) 
"The convergence criteria is*',back.probs .diff ,"\n") 

answer <- menu(c("T0 do another iteration."."To stop at this point"), 

if(answer==l I1 ansver==2) 

else 

title="Shall we continue?") 
. .  

ask <- F 

cat("Se1ect 1 or 2 ... \n") 
1 
if(answe~2) 
iter <- F 

1 else I 
if(nr.iter >= max.iter I1 back.probs.diff <= conv.crit) 
iter <- F 

1 

nr.iter <- nr.iter + 1 

1 

return(back.probs=back.probs. 
back.dens .param=back.dens .param. 
back.trans.param=back.trans.param, 
back.trans.base.mat=back.trans.base.mat. 
veh.dens.param=veh.dens.param. 
veh.dens.base.mat=veh.stuff$base.mat) 

1 

4.2 The S+ Code for Implementation on Test and Scanned Images 
:#####4###tt#i+-##-#s#####-~#t 

# 
# Gardar Johannesson: 23-June-98 
# file: detectingnotion-comands .s 
# 
# S comands using the functions' in the file detecting_motion.s 
# and plotting figures for the file detecting-kuotion.tex 
# 

# Revised June 1999- By Parag Coel 
# attaching sample images to use: 
attach ( /home/pxg/SATEIJ.ITE/ Image-analy s is/Sample- image s/ . Data") 
# attaching functions to plot images: 
attach ( "/home/pxg/SA~LITE/Image-analy s is/. Data") 

# 

#tu+ FIRST, PLOT THE SAMF'LE IMAGES #+m 

, . . P. . 

I . . .  

.- 

# plot I70b photo nr. 56 
tup <- i70b.56 
tmp ! i70b. 56. cut. indl <- NA 
image. device("postscript" ,f ile="detecting-motion-img-56 .PSI', 

height=8,data.dim=dim(tmp)) 
plot. image(tmp) 
dev.off () 
tt plot only vehicles: 



tmp [ ! i70b. 56 .veh . indl <- NA 
image. device ("postscript " , f ile="detecting-motion-img-56-veh .PSI',  

plot. image(tmp) 
dev.off 0 
# plot the background -- estimated 
tmp <- i70b.56.bg 
tmp[!i70b.56.cut.ind] <- NA 
image .device("postscript" .f ile="detecting-motion-img-56-bg .PSI', 

plot. image (tmp) 
dev.off 0 

# plot I70b photo nr. 57 -- which vas resampled'urt nr.56 
tmp <- i70b.57.bi 
tmpc ! i70b S6. cut. indl <- HA 
image. device ("post script", f ile="detect ing-mot ion-img-57. ps" , 

height=8.data.dim=di(tmp)) 

height=8 ,data.dim=dim(tmp)) 

height=8.data.dim=dim(tmp)) 
plot. image(tmp1 
dev. of f 0 
# plot only vehicles: 
tmp[!i70b.57.veh.indl <- NA 
image. device ("post script" , f ile="det ect ing-mot ion-img-57 -veh. ps " , 

plot. image(tmp) 
dev.off 0 
# plot the background -- estimated 
tmp <- i70b.57.bg.bi 
tmp C ! i70b. 56. cut. indl <- IA 
image.device("postscript'~.f ile="detecting_motion,img~57~bg.ps", 

plot. image(tmp) 
dev.off 0 

height=8 .data. dim=dim(tmp)) 

height=E.data.dim=dim(tmp)) 

# plot histogram of pixelvalues in sample images: 
# for Image A: 
tmp <- i70b. 56 Ci70b. 56. cut. ind] 
trellis.device(postscript.file~"detecting~motion,hist~A.ps". 

vidth=8 ,height=5 .horizontal=F) 
histogram(-tmp.breaks=seq(-0.5,255.5,byr2), 

xlab="Pixel reflective value". 
ylab="Dens it y " ) 

dev.off 0 
# for Image E: 
tmp <- i70b.57.biCi70b.56.cut.indl 
trellis.device(postscript,file="detecting-motion,hist-B.ps". 

vidth=8, height=S .horizontal=F) 
histogam(-tmp,breaks=seq(-O.5,~55.5,by=2), 

xlab="Pixel reflective value", 
y1abr"Density") 

dev.off () 
# for Image A, vehicles only: 
tmp <- i70b.56~i7Ob.56.cut.ind t i70b.56.veh.indl 
trellis.device(postscript.file="detecting~otionbist_b_veh.ps@'. 

histogram(-tmp.breaks=seq(-O .5,255.5,by=2), 
width=8,height=5,horizontal=F) 

xlab="Pixel ref lective value", 
ylab="Dens it y" ) 

dev. of f (1 
S8 for Image E. vehicles only: 
tmp <- i70b.57.biCi70b.56.cut.ind & i70b.57.veh.indl 
trellis.device(postscript,file="detecting~otionpist_B_veh.ps", 

histogram(-tmp,breaks=seq(-O.5,255.5,by=2). 
width=8 .height=5, horizontal=F) 

xlab="Pirel reflective value" , 
ylab="Density") 

dev. of f () 

-# ESTIMATING THE BACKGROM) DIFFERENCE DISTRIBUTION 



### AND THE TRANSFORMATION 

### First, shov the difference in the images as 'images' 
tmp <- i70b.56 
tmpC! i70b. 56. cut. indl <- NA 
tmp <- abs(tmp - i70b.57.bg.bi) 
image. device ("postscript" ,f ile="detect ing-motion-img-56m57 .ps" , 

plot. image(255-tmp) 
dev.off (1 
tmp <- i70b.57.bi 
tmp[!i70b.56.cut.ind] <- I A  
tmp <- abs(tmp - i70b.56.bg) 
image. device (((post script", f ile="detect ing-mot ion-img-57m56. pa", 

plot. image (255-tmp) 
dev. of f (1 

height=8.data.dim=dim(trnp)) 

height=8 .data.dim=dim(tmp)) 

tt Using image A as nev image and B as background: 
tmp.ind <- i70b.56.cut.ind 
tmp . img <- i70b. 56 [tmp . indl 
tmp . bg <- i70b. 57. bg . bi [tmp. indl 
tmp.back.probs <- rep(l.length(tmp.img)) 
tmp.back.probs[i70b.56.veh.ind[tmp.ind]] <- 0 t 0 weights to vehicle 
tmp.res <- tmp.img - tmp.bg 

t S  Use the t-distribution and monotonic transformation: 
# only using intercept in the transfoxmation: 
tmp.base.mat <- NULL 
tmp.start <- c(init.back.t.dans(tmp.res).init.back.mono.trans(tmp.res,n=l)) 
fit. t .mono. int <- est .back. t .dens. and.mono. transctmp. img. tmp. bg. tmp.back.probs, tmp. start .tmp. base .mat) 
# and plot: 
# (1) the histogram: 
tmp <- tmp. img - get .back.mono .trans(f it .t .mono. int$param[-c(i.2)], 

tmp <- tmp[tmp.back.probs==l] 
trellis.device(postscript.file="detecting_motion_hist,t_mono_l.ps". 

vidth=8 ,height=5,horizontal=F) 
histogram('tmp .breaks=seq(-255 -5,255.5 ,by=7), 

tmp.base.mat) [tmp.bg+ll 
# vhere ve have background 

xlab="Pixel ref lective value", 
ylab="Density (XI",  
panel=function(x,y,. ..) C 
panel.histogram(x,y.border=l, ...I 
pix <- (-255):255 
param <- fit.t.mono.int$param 
tmp <- dt(pix/exp(param[l]) .exp(pa~am[2] ))/exp(param[ll) 
lines(pix.7*100*tmp,,lvd=3, col-3) 

1 
1 

dev. of f () 
I# (2) the transformation: 
tmp <- get .back .mono. trans (f it. t .mono. inttparaml-c (1.2) 1 .tmp . base .mat) 
trellis.device(postscript.file="detecting_motion-trans-t-mono-l.ps", 

plot.back.trans(tmp,tmp.img,tmp.bg,tmp.back.probs) 
dev.off0 

vidth=8,height=8,horizontal=F) 

t O  using 5 parameters in the transformation: 
tmp .base .mat <- get .back .mono. trans .base .mat (tmp. bg.n=5) 
tmp.start <- c(init.back.t.dens(tmp.res),init.back.mono.trans(tmp.res,n=5)) 
fit. t .mono .ns <- est. back. t .dens. and .mono. trans (tmp . img , tmp .bg , tmp .back.probs , tmp. start .tmP .base .mat) 
tt and plot: 
tt (1) the histogram: 
tmp <- tmp.img - get.back.mono.trans(fit.t.mono.ns$param[-c(l.2)1, 

tmp <- tmp[tmp.back.probs=l] 
trellis.device(postscript.file="detecting~motion~hist~t~mono~2.ps", 

vidth=8,height=5 ,horizontal=F) 
histogram('tmp .breaks=seq(-255.5,255.5,by=7), 

tmp.base.mat) Ct:tmp.bg+lI 
# vhere ve have background 

I' 



xlab="Pixel reflective value". 
ylab="Density (%)'I,  

panel=function(x.y, ...I I 
panel.histogram(x,y,border=l, ... ) 
pix <- (-255):255 
param <- fit.t.mono.ns$param 
tmp <- dt (pix/exp(paramCl]) .exp(paramCZl ))/exp(p=amCll) 
lines(pix,7*100*tmp,lvd=3,col=3) 

1 
) 

dev. of f 0 
# (2) the transformation: 
tmp <- get .back.mono .trans(f it .t .mono .ns$paramC-c(1,2)1 .tmp.base .mat) 
trellis.device(postscript,file="detecting_motion~trans~t~on0~2.ps", 

plot. back. trans (tmp, tmp. img ,tmp .bg .tmp .back.probs) 
dev. off 0 

oidth=8, he ight=8, hor izontal=F) 

# Use the normal distribution and n s 0  transformation 
# only using intercept in the transformation: 
tmp.base .mat <- get .back.ns .trans .base .mat (tmp .bg,n=l) 
fit .t .mono. int <- est .back. t .dens .aud.mono. trans (tmp. img, tmp.bg. tmp.back.probs, tmp. start .tmp.base .mat) 
# and plot: 
# (1) the histogram: 
tmp <- tmp.img - get .back.mono.trans(fit.t.rnono.int$paramC-c(l.2)1, 
tmp <- tmp[tmp.back.probs=l] 
trellis.device(postscript.file="detect~_motion~hist~t~mono~l.ps". 

vidth=8, height-5 ,horizontal=F) 
histogram('tmp,breaks=seq(-255.5,255.5.by=7), 

tmp .base .mat) Ctmp. be11 
t vhere ve have background 

xlab="Pixel ref lective value", 
ylab="Density ( X ) " .  
panel=function(x,y,. . .) < 
panel.histogam(x,y,bordeTl, . . . I  
pix <- (-255):255 
param <- fit.t.mono.int$param 
tmp <- dt(pix/exp(paramClI) .exp(param[2] ))/exp(paramCi]) 
lines(pix.7*100*tmp,lvd=3,col=3) 

1 
1 

dev.off() 
# (2) the transformation: 
tmp <- get.back.mono.trans(fit.t.mono.int$param[-c(l.2)1,tmp.base.mat) 
trellis .device(postscript ,f ile="detecting-motion-trans-t-mono-l .ps", 

plot.back.trans(tmp.tmp.hg,tmp.bg,tmp.back.probs) 
dav.off (1 

vidth=8,height=8 .horizontal=F) 

#8 
# create table for the s i p  and df of background distribution: 
tmp. tab <- data. frame( a Scale '=exp(c(f it. t .mono. int$paramcl] ,\\ 

fit.t.mono.ns$param[l])),'Df'=exp~c(fit.t.~no.int$param~l~.\\ 
fit.t.mono.nsSparamC11))) 

param[-c(l.2)] , tmp .base .mat), get .back.mono. trans(\\ 
fit. t .mono .ns$param[-c(l.2)3 .tmp .base .mat) Ctmp.bg+l .I 

tmp <- tmp.img - cbind(get.back.mono.trans(fit .t.mono.int$\\ 

tmp. tab$ 'SD' <- sqrt (apply (tmp [tmp. back.probs=l .I ,2 .var)) 
tmp. tab$ '25% quantile ' <- apply(tmpCtmp .back.probs==l .I .2,quantile .probs=0.25) 
tmp. tab$'75% quantile' <- apply (tmpctmp .back.probs==l .I ,2,quantile ,probs=O .75) 
tmp.tab$'IQR' <- tmp.tab$'75% quantile' - tmp.tab8'25X quantile' 
dimnames(tmp.tab)CClIl <- c('l param.'.'5 param.') 
round(tmp .tab, 3) 

### 
tt create table of log-likelihoods and test for better transformation: 
tmp.tab <- cbind('nr. of param.'=c(l,5), 

tmp.tab <- as.data.frame(tmp.tab1 
dhames(tmp.tab) [[ill <- c('l param. .'5 param.') 

'log-likelihood'=-c(fit.t.mono.intSobj.fit.t.mono.ns$obj)) 



tmp. tab$ 'log-lik. diff ' <- c(NA. tmp. tabC2, 'log-likelihood'l- 

tmp. tab$ 'p-value' <- round(c(NA. 1-pchisq(tmp. tab$ 'log-lik. diff ' cZl.4) 1) 
tmp.tab 

tmp.tabC1. alog-likelihood']) 

# Use the normal distribution and n s 0  transformation 
# only using intercept in the transformation: 
tmp.base.mat <- get.back.ns.trans.base.mat(tmp.bg.ns1) 
tmp.fit.mat <- tmp.base.matCtmp.bg+l.l 
fit.norm.ns.1~ <- lsfit(x=tmp.fit.mat,y=tmp.res,int=F, 

ut=tmp . back. probs) Cc ("coef " , "res")] 
# and plot: 
# (1) the histogram: 
tmp <- tmp.img - get.back.ns.trans(fit.norm.ns.lp$coef, 
tmp <- tmpCtmp.back.probs=l] 
trellis. device (postscript ,f ila="detecting_motion-hist-no~-ns-l. ps" , 

width=8,height=5.horizontal=F) 
histogram('tmp,breaks=seq(-255.5,255.5.by=7). 

tmp.base.mat) Ctmp.bg+l] 
t where we have background 

xlab="Pixel reflective value", 
ylab=-"Density ( X )  ", 
panel=function(x.y. ... ) .C 
panel.histogram(x,y.border-1, ... ) 
pix <- (-255):255 
param <- sqrt(sum(tmp.back.probs*fit.norm.ns.lp$res^2) / 

tmp <- dnorm(pix,O,param) 
lines(pi~.7*100*tmp,lwd=3 ,col=3) 

sum(tmp.back. probs) ) 

3 
1 

dev. off () 
tt (2) the transformation: 
tmp <- get .back.=. transcf it .norm.ns. lplcoef , tmp .base .mat) 
trellis .device (postscript ,f ile="detecting-motion-tr~s-norm_ns-l .ps" , 

plot. back. trans(tmp,tmp. img,tmp.bg.tmp.back.probs) 
dev.off0 

width=8,height=8, horizontal=F) 

tt use 5 parameters in the ns transformation: 
tmp.base.mat <- get .back.ns.trans .base .mat (tmp.bg.n=5) 
tmp.fit.mat <- tmp.base.mat[tmp.bg+l.] 
fit .norm.ns .5p <- lsf it (x=tmp. f it .mat, y=tmp . res, int-F , 

wt=tmp. back.probs) Cc("coef" ."res")] . 
# and plot: 
tt (1) the histogram: 
tmp <- tmp.img - get.back.ns.trans(fit.nom.ns.5p$coef. 
tmp <- .3mpCtmp.back.probs==ll 
trellis. device (post script, f ile="detecting_mot ion-histnorm-ns-2. ps" , 

width=8,height=5,horizontal=F) 
histogram('tmp,breaks=seq(-256 .S,255.5 .by=7) , 

tap. base .mat) Ctmp. bel] 
t where ue have background 

xlab="Pixel reflective value". 
ylab="Density ( X ) " ,  
panel=function(x.y,. . .) < 
panel.histogram(x,y.border=l. ... ) 
pix <- (-255):255 
param <- sqrt(sm(tmp.back.probs*fit.norm.ns.5p$res-2) / 

tmp <- dnorm(pix.O,param) 
lines(pix,7*10O*tmp .lvd=3. col=3) 

sum(tmp .back.probs) ) 

> 
1 

dev. off () 
tt (2) the transformation: 
tmp <- get.back.ns.trans(fit.norm.ns.5pScoef,tmp.base.mat) 
trellis.device(postscript,file="detecting_motion_trans_norm_ns-Z.ps", 

plot. back. trans (tmp, tmp. img, tmp .bg, tmp. back. probs) 
dev .off C) 

vidth=8,height=8,horizontal=F) 



ttt ESTIMATING THE VEHICLE MINUS BACKGROUND DISTRIBUTION 

tt Using image A as nev image and B as background: 
tmp.ind <- i70b.56.cut.ind 
tmp . img <- i70b. 56 [tmp . ind] 
tmp.bg <- i70b.57.bg.bi[tmp.ind] 
tmp .back .probs <- rep( l,length(tmp. img) 1 

# use the ns transformation with 5 parameters 
I tmp.back.probs[i70b.56.veh.ind[tmp.indl] <- 0 t '0 weights to vehicles 

# # P t  TESTING ITERATIVE EM PROCEDURE t##t 

# 
# Use a test images: 
tmp.true.bg <- matrix(150+20*rnorm(30*20),30.20) 
tmp.true.bg[,4:7] <- tmp.true.bg[,4:7] - 40 
tmp.t1~~.bgC.12:161 <- tmp.true.bgC.12:161 - 30 
tmp.true.bg[,19:20] <- tmp.true.bgC.l9:201 - 70 
tmp. true .bg[tmp . true .bg<Ol <- 0 
tmp.true.bg[tmp.true.bg>2551 <- 255 
# the brighness change: 
tmp . f it <- smooth. spline(rc(O,50,100 150,200.255) , 

tmp. trans <- predict (tmp .f it ,x=O :255) 
# the new image: 
tmp. img <- matrix.(approx(tmp. trans$x, tmp. trans$y ,xont=tmp. true .bg)$y + 

tmp.img[6:12.4:8] <- 5*rnorm(7*5) #moving object nr. I (shadow) 

1! the true background 

y=c(0,40.85,120,155,180) ,df'=5) 

7*rnorm(30*20). 30.20) 

1 tmp.img[6:11,4:7] <- 40+5*rnorm(6*4) # the object nr.1 
Y tmp.img[18:25.12:17] <- 5*rnorm(8*6) 8 moving object nr. 2 (shadow) 

tmp.img[18:24,12:16] <- 170+5*rnorm(7*5) t the object xu 2 

tmp.imgCtmp.img>2551 <- 255 
# number of vehicle pixels 
(7*5+8*6)/(30*20) 
# the observed background 
tmp.bg <- tmp.trne.bg + 7*rnorm(30*20) 

tmp.imgctmp.imgc01 <- 0 

t approx 14% or 83 pixels 

I +lot test images 
image. device ("postscript", f ile="detect ingaot ion-test -img. ps" , 

plot .i.mage(tmp.img) 

image. device ("postscript", f ile="detecting-motion-test-bg .ps", 

plot.image(tmp.bg) 
dev.off 0 

height4 ,data. dh=dh(tmp) ) 

* dev . off 0 

height=6.data.dimtdi(tmp)) 

ttttt 
# use unif. veh. dens. with the same prior (traffic.dens). but different 
# transformation 
U Use 1 param: 
tmp.fit.1 <- w.EU.nonn.and.ns(tmp.img.tmp.bg,update.veh.dens=F. 

traffic.dens=O.14, 
back.trans.control=list(nr.trans.param=l)) 



011 plot weights: 

tttmpO <- round(255*tmp.fit .l$back.probs) 
tmp0 <- if else(tmp .f it. l$back.probs>=O. 5,255.0) 
image.device('postscript',file="detecting_motion-test_pp_l.ps", 

data. dim=dim(tmp), heightr.6) 
plot. image(tmp) 
dev.off (1 
tt plot background transformation 
tmp.back.trans <- get.back.ns.trans(tmp.fit.1Sback.trans.param. 

tmp.fit.l$back.trans.base.mat) 
trellis.device(postscript.file="detecting_motion-test_bt_i.ps", 

plot.back.tra2ls(tmp.back.traas,tmp.img,tmp.bg,tmp~.fit.l$back.probs) 
dev. of f 0 

tmp <- tmp.img 

width=6,height~.horizontal=F) 

# Use 5 param: 
tmp.f it. 2 <- run .EM .norm. and.ns(tmp. img. tmp. bg,update .veh.dens=F'. 

traffic.densr0.14, 
back. trans. control=list (nr . trans .parm=5)) 

# plot weights: 

#tmpO <-.round(25S*tmp.fit.2$back.probs) 
tmpo <- ifelse(tmp.fit.2$back.probs>=0.5.255.0) 
image.device('postscript',file="detecting~motion~test~pp,2.ps". 

plot. image(tmp) 
dev. of f () 
# plot background transformation 
tmp.back.trans <- get.back.ns.trans(tmp.fit.2Sback.trans.param. 

tmp.fit.2Sback.trans.base.mat) 
trellis. device (postscript ,f ile="detectinggpot ion-test-bt-2 .PSI', 

plot. back .trans (tmp. back .trans, tmp . img.tmp .bg .tmp. i it. 2Sback .probs) 
dev.off 0 

tmp <- tmp.img 

data. dim=dim(tmp) ,height=6) 

width=6,height=6,horizontal=F) 

t##$ 
tt plot histogram of new image: 
trellis.device(postscript.file="detecting-motion_test_hist.ps". 

histograd'tmp. img. breaks=saq(-0.5, 255 -5 .by=7), 
width18 ,height=5 .horizontal=F) 

xlab="Pixel reflective value", 
ylab="Density") 

dev.off 0 

# veh. only: 
tmp.veh.ind <- matrix(F.30.20) 
tmp.veh.ind[6:12,4:81 <- T 
tmp.veh. ipd[18:25.12: 171 <- T 
trellis.device(postscript,file="detectinggpotion~test_hist_veh.ps", 

widthre ,height=5 .horizontal=F) 
histogam('tmp. img[tmp.veh. ind] ,breaks=seq(-O.5,255 .S .by=7), 

rlab="Pixel reflective value", 
y1abt"Density") 

dev.off () 

t## 
tt create classification table for three methods: 

# thresholding (use SX vehicles, 70% in lower tail) 
tmp <- order(tmp.img) 
n <- length(tmp. img) 
n.veh <- m0.05 
thresh. ind <- c(tmp [l :round(n.veh*O .7)] , tmp[round(n-n.veh*O .3) :nl) 
tmp <- table(tmp.veh.ind[thresh.indl) 
tmp 
c('total'=sum(tmp), ~correcr'=tmp['~~'l/sum~tmp~*100. 
'vrong'=tmp [ 'FALSE' I /sum(tmp) *loo) 



# thresholding (use 15X vehicles, 70% in lover tail) 
tmp <- order(tmp. img) 
n <- length(tmp.img) 
n.veh <- n*0.15 
thresh. ind <- c(tmpc1 :round(n.veh*0.7)], tmp[round(n-n.veh*0.3) :nJ) 
tmp <- table(tmp.veh.indCthresh.ind1) 
tmP 
c (’total ’=sum(tmp) , ’ correcr ’ 3 m p  [ ’ TRUE’] /sum(tmp) *loo, 

’wrongJ=tmpC’FALSE’l/sum(tmp)*lOO) 

## thresholding (use 25% vehicles, 70% in lover tail) 
tmp <- order(tmp.img) 
n <- length(tmp.img) 
n.veh <- n*0.25 . .  

thresh. ind <- c(tmpC1 :round(n.veh*O .7)1, tmp Croundb-n.veh*O .3) :nl) 
tmp <- table (tmp.veh. indcthresh. indl ) 
tmP 
c ( ’total’=sum(tmp) , ’correcr’=tmp [ ’TRUE’] /sum(tmp) *loo, 

’wrong’ =tmpC ’FALSE’] /sum(tmp)*100) 

## 
# 1 parameter transformation: 
Ut 5% traffic density at prior: 
tmp.f it <- run.EM.norm.and.ns(tmp. img.tmp.bg.update .veh.dens=F, 

traffic.dens=0.05, 
back.trans.control=list(nr.trans.param=l)) 

tmp <- tmp.veh.ind[tmp.fit$back.probs<0.5] 
tmp <- table(tmp1 
tmP 
c(’total’=sum(tmp), ’correcr ’=tmpC’TRUE’] /sum(tmp)*lOO. 

’wrong~3mp[~FALSE’l/sum(tmp~*lOO~ 

# 15% traffic density at prior: 
tmp.fit <- run.EH.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F. 

traffic.dens=0.15. 
back.trans.control=list(nr.trans.parZVJFl)) 

tmp <- tmp .veh. indctmp .f it$back.probs<O .53 
tmp <- table(tmp1 
cat (“15% at prior\n”) 
tmp 
c( ’total’=sum(tmp), ’ correcr’rtmpC’TR~’l/sum~tmp~*100, 

’wrong’ =tmp C ’ FALSE ’ I /sum(tmp) *loo) 

# 25% traffic density at prior: 
‘ tmp.fit <- run.M.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F, 

traffic.dens=O.25. 
back.trans.control=list(nr.trans.paraFl)) 

tmp <- tmp.veh.ind[tmp.fit$back.probs<O.51 
tmp <- table(tmp1 
cat(”25X at priorb”) 

c( ’totdL’=sum(tmp), ’correcr ’=tmp[’TRUE’] /sum(tmp)*lOO. 
I t m p  

’wrong J..tmp[’FALSE’l/sum(tmp)*lOO) 

## 
# 5 parameter transformation: 
# 5% traffic density at prior: 
tmp.fit <- run.M.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=FF. 

traffic.dens=0.05, 
back.trans.control=list(nr.trans.param=5)) 

tmp <- tmp.veh.ind[tmp.fit$back.probs<O.5] 
tmp <- table(tmp) 
cat(“5 param. and 5% at prior\n“) 
tmP 
c( ’total’=sum(tmp), ’correcr’=tmpt’~UE’I /sum(tmp)*100. 

’wrong a =tmp [’FALSE’] /sum(tmp) *loo) 

t 8  15X traffic density at prior: 

I 



tmp.fit <- run.EM.nonn.and.ns(tmp.img,tmp.bg.update.veh.dens=F, 
traffic.dens=O.l5. 
back. trans. control=list (nr . trans .param=5) 

tmp <- tmp-veh. indCtmp.f itSback.probs<0.51 
tmp <- tabla(tmp1 
cat("5 param. and 15% at prior\n") 
tmP 
c(*totdl '=sum(tmp), 'correcr'=tmpC'~UE'1/sum~tmp)*100, 
'urong'~~['FALsE'l//sum(tmp)*lOO) 

# 25X traffic density at prior: 
tmp .fit <- run.M .norm. and .ns(tmp . img ,tmp .bg .update .veh . dens=F, 

traffic.denss0.25, 
back. trans. control=list (nr. trans .param=5)) 

tmp <- tmp . veh. indttrnp .f it$back .probs<O .51 
tmp <- table(tmp1 
cat("5 param. and 25% at prior\n") 
tmP 
c( 'totdl '=sum(tmp). 'conecr J=tmpCJTRUE'l/sum(tmp)*lOO, 

'wrong '=imp ['FALSE'] /sum(tmp)*lOO) 

w#yt 

# use images A and B:(B image and A background) 
# use 3% traffic density as prior 
tmp.ind <- i70b.56.cut.ind 
tmp. img <- i70b. 57.bi [tmp. indl 
tmp.bg <- i7Ob.56.bgCtmp.indl 

# use 1 parameter model 
-.fit <- run.EH.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F, 

traffic.dens=O.03, 
back.trans.control=list(nr.trans .para~~l)) 

tt plot weights: 
tmp <- i70b.57.bi 
tmpC!tmp.W <- HA 

tmp 
tmpl [tmp.W <- round(255*tmp.fitSback.probs) 
image.device(Jpostscript',file="detecting~otion~~~3pc,cc_i_2.ps". 

plot. image(tmp1) 
dev.off (1 
tmp[tmp.ind] <- ifelse(tmp.fitSback.probs>=O.5.'255,0) 
image .device( 'postscript ' ,f ile="detecting-motion-img-3pc-pp-l-2 .ps", 

data.dim=dim(tmp) ,height=6) 
plot .image(tmp) 
dev.off (1 

data.dim=dim(tmpl) .height4 

tmp <- (i70b. 57 .veh. indctmp. indl) [tmp .f it$back.probs<O -51 
tmp <- table(tmp) 
cat("1 param. and 3% at prior\n") 
tmp 
c('total'=sum(tmp), ' conecrJ~mpCJ~~Jl/sum(tmp)llOO. 

'vr~ng'~tmp[~FALSE']/sum(tmp)*lOO. 
' omission '=<sum(i7Ob .57 .veh. ipdctmp .indl )-tmp[ JTRUED] )/sm(i70b. 57 .veh . indttmp. ind3 )*IC@) 

tt use 2 parameter model - shift 0 slope 
tmp.f it <- run. EM. norm. and.ns(tmp. img .tmp .bg .update .veh .dens=F , 

traffic.dens=0.03. 
back.traus.control=list(nr.trans .param=l)) 

tt plot weights: 
tmp <- i70b.57.bi 
tmpC!tmp.indl <- NA 
tmpl <- tmp 
tmpl Ctmp. indl <- round(255*tmp.f it$back.probs) 
image .device( 'postscript ' ,f ile="detecting~motion~img~3pc~cc~2~2 .ps", 

plot. image(tmp1) 
dev . off (1 
tmp Ctmp. indl <- if else(tmp. f itSback.probs>~O. 5,255.0) 

data .dim=dim(tmpl) .height=6) 

! 



image. device ( 'postscript ' ,f ile="detecting-motion-img-3pc-pp-2-2. ps" , 

plot. image(tmp1 
dev. off 0 

data. dim=dim(tmp) ,height=B) 

tmp <- (i70b.57 .veh. indctmp. ind] ) [tmp .f it$back.probs<O. 51 
tmp <- table(tmp) 
cat("2 param, and 3% at prior\n") 
tmP 
~~'total'=sum~tmp),~correcr'~tmp[~~~~l/sum~tmp~*lOO, 
'vrong'=tmp[ 'FALSE'] /sum(tmp) *loo, 
'omission'=(sum(i70b.57.veh. indctmp. ind] )-tmpCDIRUED] )/sum(i70b.57.veh. indCtmp. indl )*loo) 

&' 

I 

tl! use 5 parameter model 
tmp.fit <- run.M.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F. 

traffic.densxO.03. 
back.trans.control=list(nr.trans.param=5)) 

tt plot veights: 
tmp <- i70b.57.bi 
tmpC!tmp.indl <- NA 

tmpl [tmp.indl <- round(255*tmp.f it$back.probs) 
image .device( 'postscript a ,f ile="detecting~motion~img~3pc~cc~5~2.ps", 

plot. image(tmp1) 
dev.off 0 

tmpCtmp.ind1 <- ifelse(tmp.fit$back.probs>=O.5.255.0) 
image.device('postscripta.file="detecting~motion~img~~pc~pp~5~2.ps", 

data. dim=dim(tmp) , height=6) 
plot. image(tmp1 
dev.off 0 

tmpl <- tmp 

data. dim=dim(tmpl) ,height*) 

tmp <- (i70b.67.veh. indctmp. indl) Ctmp.fitOback.probs<O.5] 
tmp <- table(tmp) 
cat("5 param, and 3% at prior\n") 
tmp 
~~'totitl'=~um(tmp~.'correcr'~tmpt'TR~'3/s~~tmp~*~~~, 
'vrong'=tmp[ aFALSE~l/sum(tmp)*lOO, 
'omission '=(sum(i7Ob. 57 .veh. ind [tmp . ind] ) -tmp ['TRUE '3 /sum(i7Ob. 57.. veh. indCtmp. indl *loo) 

tt thresholding: 
tmp <- order(tmp.img) 
n <- length(tmp.img) 
n.veh <- ~40.03 
thresh. ind <- c(tmpC1 :round(n.veh*O .7)1, tmpEround(n-n.veh*0.3) :n] ) 
tmp <- table ( (i70b. 57 .veh. indctmp. ind] ) [thresh. indl ) 
tmP 
~~'tot~~=sum(tmp~.'correcr'=tmpC'~UE~3/sum(tmp~*i00. 
%rong'=tmp['FALSE'] /sum(tmp)*lOO, 
' omission'=(sum(i70b. 57 .veh. indctmp. indl 3-tmp ['TRtE'] )/sum(i'lOb -57. veh. h d c t m p .  ind )*loo) 

tmp <- i70b.57.bi 
tmp0 <- 255 
tmpctmp . indl [thresh. indl <- 0 
~e.device(Jpostscript'.file="detecting~otion~~~3pc~t~es~l~2.ps"~ 

data. dim=dim(tmp) , height=6) 
plot. image(tmp1 
dev.off (1 

Ottt: 
tt use images A and B:(B image and A background) 
tt use 1% traffic density as prior 
tmp.ind <- i70b.56.cut.ind 
tmp.img <- i70b.57.biCtmp.indI 
tmp . bg <- i70b. 56. bg Ctmp . ind] 

Ot use 1 parameter model 



tmp.fit <- run.M.norm.and.ns(~p.img.tmp.bg.update.veh.dens=F, 
traffic.dens=0.01, 
back.trans.control=list(nr.trans.param=l)) 

# plot veights: 
tmp <- i70b.57.bi 
tmp[!tmp.ind] <- NA 
tmpl <- tmp 
tmpl[tmp.indl <- round(255*tmp.fitSback.probs) 
image.device('postscriptJ.file="detecting_motion_img_lpc-cc_1_2.ps". 

plot. image(tmp1) 
dev.off 0 
tmp[tmp.indI <- ifelse(tmp.fitSback.probs>=0.5.255.0) 
image. device ( 'postscript ' ,f ile="detecting-motion~img,lpc-pp-l-2 .PSI', 

data. dim=dim( tmp) , height=6) 
plot. image(tmp) 
dev.off 0 

data.dim=dim(tmpl),height=6) 

tmp <- (i70b.57.veh.ind[tmp.ind'J)[tmp.fit~back.probs<0.5~ 
tmp <- table(tmp) 
cat("1 param, and 1% at prior\n") 
tmp 
c0totalD=sum(tmp), JcorrecrJ=tmp[~~~J3/sum(tmp)*100. 
'wrong '=tmp [ 'FALSE'] /sum(tmp) *loo, 
'omission '=(sum(i7Ob. 57. veh. ind [tmp . indl )-trap C ' TRUE'] ) /sum(i7Ob. 57. veh. ind [tmp. indl 1 *loo) 

tt use 2 parameter model - shift L slope 
tmp.fit <- run.EM.norm.and.ns(tmp.img.tmp.bg.update.veh.dens=F, 

traffic.dens=O.Ol. 
back.trans.control=list(nr.tran~.param=2)) 

tt plot veights: 
tmp <- i70b.57.bi 
tmp[!tmp.indJ <- NA 
tmpl c- tmp 
tmpl[tmp.indl <- round(255*tmp.fitSback.probs) 
image.device('postscript'.fi1e="detect~_motion~~g~1pc~cc~2~2.ps". 

plot. image(tmp1) 
dev. of f 0 
tmp [tmp. ind <- if else (tmp. f itSback.probs>=O .5.255.0) 
image.device('postscriptD,fi1e="detecting~motion~~g~1pc~pp~2~2.ps". 

data. dim=dim(tmp) .height41 
plot. image(tmp) 
dev. of f 0 

data. dim=dim(tmpl) , height=6) 

tmp <- (i70b .57 .veh. indctmp. indl ) [tmp .f itsback .probs<O. 53 
tmp <- table(-) 
cat("2 param. and 1% at prior\n") 
tmp 
c( total '=sum(tmp) , ' correcr '=tmp C 'Trim 'I /sum(tmp)*iOO, 
'vrong'=tmpC'F~E']/sum(tmp)*lOO. 
'omission'=~sum~i70b.57.~eh.ind[tmp.indl~-tmp~~~~'I~/sam~i70b.57.veh.ind~tmp.indJ~*100~ 

t# use 5 parameter model 
tmp.fit <- run.En.nonn.and.ns(tmp.img.tmp.bg,npdate.veh.dens=F, 

traffic.dens=O.Ol. 
back.trans.control=list(nr.trans.param=5)) 

tt plot weights: 
tmp <- i70b.57.bi 
tmp[! tmp. ind] <- NA 

tmpl [tmp. indl <- round(255*tmp.f it$back.probs) 
image. device ( 'postscript ' , f ile="de tec t ing-mot ion-img-lpc-cc-5-2. ps ' I ,  

plot. image(tmp1) 
dev.off (1 

tmp[tmp. indl <- if else(tmp. f it$back.probs>=O .5,255,0) 
image .device( 'postscript ' .f ile="detecting-motion-img-lpc-pp-5-2 .ps", 

data. dim=dim(tmp) , height=6) 

tmpl <- tmp 

data.dim=dim(tmpl) ,height=6) 



plot. image(tmp) 
dev.off (1 

tmp <- (i70b.57.veh.indCtmp.ind])[tmp.fit$back.probs<0.51 
tmp <- table(tmp) 
cat("5 param. and 1% at prior\n") 
tmP 
c('total'=sum(tmp), 'correcr'=tmp[ 'mUE']/sum(tmp)*iOO, 

'wrong'=tmp[ 'FALSE'] /sum(tmp)*100, 
'omission'=~sum~i70b.57.veh.ind[tmp.indl)-tmp~'~UEil~/sum(i70b.57.veh.ind~tmp.~~~*100~ 

#8 thresholding: 
tmp <- order(tmp.img) 
n <- length(tmp.img) 
n.veh <- neO.01 
thresh. ind <- c(tmp[l :round(n.veh*O.7)] .tmp[round(n-n.veh*O. 3) :d) 
tmp <- table((i70b.57.veh. indctmp. ind]) [thresh. indl) 
tmp 
c~'tot~'=sum(tmp~.'conecr'=tmpC'~~~l/s~~tmp~*iOO. 

'wrong '=tmp [ 'FALSE'I /sum(tmp)*100, 
'omissionJ=(sum~i70b.57.veh.ind[tmp.ind])-tmp['TRUE']~/sum(i70b.57.veh.ind~t~.ind~~*lOO~ 

t tmp <- i70b.57.bi 
tmpo <- 255 
tmp [tmp . ind] [thresh. ind] <- 0 
image. device ( 'postscript ' , f ile="detecting-mot ion-img-lpc-thres-1-2. ps" , 

plot .image(tmp) 
dev. off (1 

data. dim=dim( tmp) , height=6) 

St#* 
*O use images A and B: (B image and A background) 
#S use 7% traffic density as prior 
tmp.ind <- i70b.56.cut.ind 
tmp . img <- i70b. 57. bi Ctmp . indl 
tmp . bg <- i70b. 56 .bg Ctmp . indl 
W use 1 parameter model 
tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F, 

traffic.dens=O.07. 
back.traus.control=list (nr-trans .param=l)) 

W plot weights: 
tmp <- i70b.57.bi 
tmp[!tmp.indl <- NA 
tmpl <- tmp 
tmplctmp. ind] <- round(255*tmp.f it$back.probs) 
image.device(BpostscriptD.file=ndetecting~motion~~~7pc~cc~l~2.psn. 

data.diwdim(tmp1) ,height=6) 3 

plot .image(tmpl) 
dev. off 0 
tmp[tmp.indl <- ifelse(tmp.fit$back.probs>=0.5,255.0) 
image .device ( 'postscript ' .f ile="detectingaotion-img_7pc-pp-l-2 .ps". 

data.dh=dim(tmp) .height=6) 
plot. image(tmp) 
dev. off (1 

tmp <- (i70b.57.veh.ind[tmp.indl~[tmp.fit$back.probs<0.5] 
tmp <- table(tmp1 
cat("1 param, and 7% at prior\n") 
tmP 
~~'tota~'=sum(tmp),~correcr'=tmpC'~~'l/sum~tmp~*lOO, 

'wrong'=tmp ['FALSE ']/sum(tmp) *loo, 
'omission'=(sum~i70b.57.veh.ind~tmp.indl)-tmp~'TRUE'l~/sum~i70b.57.veh.ind~tmp.ind]~*100) 

OP use 2 parameter model - shift & slope 
tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F. 

traffic.dens=0.07. 
back.trans.control=list(nr.trans.param=2)) 

P t  plot weights: 



tmp <- i70b.57.bi 
tmpC!tmp.indl <- NA 
tmpl <- tmp 
tmplCtmp.ind1 <- round(255*tmp.fit$back.probs) 
image.device('postscript',file="detecting~motion~img~7pc~cc~2~2.ps", 

plot. image(tmp1) 
dev. of f () 
tmp[tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0) 
image .device( 'postscript ' .f ile="detecting-motion-img-7pc-pp-2-2 .ps", 

data. d%-dim(tmp) .height=6) 

data. dim=dim(tmpl) , height=6) 

plot. image (tmp) 
dev.off 0 

. .  

. .  

tmp <- (i70b.57.veh.ind[tmp.indl)Ctmp.fit$back.probs<0.5] 
tmp <- tablectmp) 
cat("2 param. and 7% at prior\n") 
tmp 
c( total'=sum(tmp), ' correcr 'amp C ' TRUE 'I /sum(tmp) *loo, 
'vrong'3mpCJFALSE'l/sum~tmp~*l0O, 
'omission'=(sum(i70b.57.veh~ind[tmp.ind])-tmp['TRUE'])/sum(i70b.57.veh.ind~tmp.in~)*100) 

tt use 5 parameter model 
tmp . f it <- run. EM .norm. and .ns (trnp. img , tmp. bg .update. veh . dens=F. 

traffic .dens=O .07, 
back.trans .control=list (nr.traus .param=5)) 

tt plot weights: 
tmp <- i70b.57.bi 
tmpC!tmp.indl <- NA 
tmpl <- tmp 
tmpl [trnp. ind] <- round(255*tmp.f it$back.probs) 
image. device ( 'postscript ' .f ile="detecting_mot ion-img-7pc-cc-5-2. ps" , 

plot. image(tmp1) 
dev.off (1 

data. d M i m  (tmpi ,he ight=6) 

tmp[tmp.ind] <- ifelse(tmp.fit$back.probs>=O.5.255,0) 
image. device ( 'postscript ' .f ile="detecting-motion-img-7pc-pp-5-2 .ps", 

data. dim=dim(tmp) , heightz6) 
plot. image (tmp) 
dev .off (1 

tmp <- (i70b.57.veh.indCtmp.ind])[tmp.fit$back.probs<0.51 
tmp <- tablectmp) 
cat("5 para, and 7% at prior\n") 
tmP 
c( 'tota'=sum(tmp), ' correcr '=tmp['TRuE'] /sum(tmp)*100, 

'wrongJ=tmpC 'FALSE'] /sum(tmp)*lOO. 
'omission'=( sum( i70b. 57 .veh . indctmp. indl )-tmp[ 'TRUE'] )/sum(i7Ob. 57. veh . ind [tmp. indl )*loo) 

88 thresholding: 

n <- length(tmp.img) 
n.veh <- m0.07 
thresh. ind <- c(tmp[l:roud(n.veh*O-7)] , tmp[round(n-n.veh*0.3) :d 
tmp <- table((i70b.57.veh.indCtmp. ind]) [thresh. i d )  
tmp 
~~'tot~'=sum~tmp),'correcr'=tmpC'~UE'l/sum~tmp~*100, 

tmp <- order(tmp.img) I .  . 

'vrongJEtmpCDFBLSE'l/sum(tmp)*lOO. 
'omissionD=~sum(i70b.57.veh.ind[tmp.indl)-tmp['TRUE'])/sum(i70b.57.veh.ind~tmp.ind~~*100~ 

tmp <- i70b.57.bi 
tmpn <- 255 
trap Ctmp. ind] [thresh. indl <- 0 
image. device( 'postscript ' ,f ile="detecting~motion~img~7pc~thres~l~2 .PSI', 

data. dim=dim(tmp), height=6) 
plot. image (tmp) 
dev. off (1 

i 

I 



4.3 The S+ Image Processing Code 

#tt####t tt##ttt############t############## 
t CJ: 5-NOV-97 
t 
8 Collection of functions to deal with gray-scale images. 
It 
t 
### # 

t function to read in Images in ASCII format. 
t Returns a matrix 

imagine.2.s <- function(file,compresed=T) C 
if (compresed) { 
tmp.file <- tempfile0 
unix(paste(”uncompress -c “,file.” > ” .tmp.f ile, sep=””) 1 
on.exit(unix(paste(”rm -f”.tmp.file))) 
file <- tmp-file 

3 
data <- matrix(scan(file,skip=4),byrov=T,ncol=3) t (x.y.z) data 
tn <- sort(unique(data[,ll)) 
uy <- sort(unique(dataC.21)) 
data <- matrix(datac.31 ,byrov=T,nrov=length(uy) ,ncol=length(tn), 

attr(data,”header”) <- scan(f ile .n=3,what=””) C31 
returncdata) 

dimnames=list(uy.ux)) 

3 

t edge detection -- gradiant method on 3x3 mask 

detect .edge <- function(data) C 

Y 

dd <- dim(data) 
n.na <- 0 
search.na <- T 
vhile(search.na) C 

search.na <- all(is.na(dataC.n.na+ll)) 
n.na <- n.na + search-na 

3 
print (n.na) 
x.r <- (n.na+2):(ddC2l-n.na-l) 
y.r <- (n.na+l) :(ddCll-n.na-l) 
t in the x-direction: 
data.x <- 2*data[y.r.] + data[y.r-1.3 + dataCy.r+l.l 

data-y <- 2*dataC.x.r] + dataC,x.r-11 + dataC.x.r+l] 
y.grad <- data.y[y.r-1.1 - data.yCy.r+l.l 

r x.grad <- data.x[,x.r+l] - data.xC.x.r-11 

1 size <- angle <- matrix(NA.nro~dd[l] .ncol=ddC2]) 
angle Cy .r ,x .rl <- atau(y .grad/x. grad) 
size[y.r.x.rl <- sqrt(y.gradm2+x.grad-2) 

return(size=size , angle=angle) 
3 

apply. f ilter <- f unctioncdata .weights=rbind(c (1.2.1) , c (2.4.2) , c (1 ,Z ,I) ) , 
n.na=O) c 

t the veights are given-row by row. 
t by default it is a ’binomial’ mask. 

weights <- weights/sum(weights) 
n <- length(weights) 
dd <- dimcdata) 



dv <- dim(veights) 
n0.na.s <- !is.na(data) 
data[!no.na.s] <- 0 

x.r <- l:(dd[2]-2*(n.na+l)) 
y.r <- l:(dd[11-2*(n.na+l)) 
result <- total .veights <- matrix(O,nrou=dd[l] .ncol=dd[2]) 
for(i in l:nrov(veights)) 
for(j in l:ncol(veights)) i 
result[y.r+n.na+l,x.r+n.na+l] <- result[y.r+n.na+l.x.r+n.na+l] + 
veight s [i jl *data Cy. r- l+i , x. r-l+ j I 

totdl.weights [y .r+n.na+l ,x .r+n.na+ll <- 

3 
total.veightsCy.r+n.na+l,x.r+n.na+ll + n0.na.sCy.r-l+i.x.r-l+jl 

result <- result*(length(veights)/total.veights) 
return(resu1t) 

> 

image. device <- function(device=c("motif " , "postscript ") , f ile="image. ps" , 
height=10.5,vidth=8,dpi,n.co1ors=256,data.d~~, 
horizontal=F, . . .) i 

device <- match.arg(device) 
assign("gey1evels .256colors" .seq(O,l.le=n.colors) .where=O) 
ps.options(colors=greylevels.256colors.background=-l) 

if (device=="motif") i 
add.to.sgraphrc <- "-nm 'sgrapWotif .colorSchemes: name: \"256 
greylevels\ "; background: vhite; lines: black h5 white; text: 
black h5 vhite; polygons: black h2S4 white; images: black h254 
vhite 'I' 
motif(options=add.to.sgraphrc, ... ) 
# a postscript file is created just to suround the image. 
Sfigure out the size of the postscript file: 
if ( ! is .null(data.dim)) { 

3 else < 

d . rat io <- data. dimCll /data. did21 
p.ratio <- height/vidth 
if (d.ratio>=p .ratio) 

else 
vidth <- height*(l/d.ratio) 

height <- vidth*d.ratio 
1 
postscript(filerfile,vidth~idth,height=height,horizontdl=horizont~, 

onefile=F,print.it=F, 
colors=geylevels .256colors, image. colors=greylevels .256colors) 

1 

par (xaxs="i", yaxs="i") 
Par (mar=c (0.0.0.0) 1 

$ # # # # r t t t + t # # # # # $ # ~ # # # ~ # # # ~ ~ # # ~ ~ # # $ # #  

scale .image <- function(data,n. colors=256,reverse=F) C 

ind <- is .na(data) #background 
d.r <- range(data[!ind]) 
data <- round( (data-d.r [l] )/(d.r [2] -d.r Cl] ) * (n. colors-1) ) 
if (reverse) 

datacind] <- NA 
returncdata) 

data <- (n.colors-1)-data 

> 



.i, 

plot.image <- function(data,add=F,n.colors=256,add.grid=F,add.frame=T. 
method=c("image", "polygon")) < 

t data is a matrix with gray-scale values. 

dd <- diddata) 
n.row <- ddC11; n.col <- ddC21 
d.ratio <- n.row/n.col 

if (!add) 
par(pin=p=O $din) 

p.par <- pd)Spin 
p. ratio <- p .par C2l /p .par Cil 
if (d-ratio >= p.ratio) { 

3 
if(d.ratio < p.ratio) 

par(pin=c(p.parC2l/d .ratio.p.par[2] 1) 

par(pin=c (p .par [I] ,p .par C13 *d. ratio) 1 
3 

if ( !add) 
plot (c(0.n. col)+O .5. c(O.n.row)+O. 5. type="p", 

xlab"" ,ylab="" .axes=F,xIafs="i" ,yaxs="i", col=O) 

par(err-1) 

ux <- seq(O.5 ,n. col+O. 5,by=1) 
uy <- seq(n.rou+0.5.0.5.by=-i) 
method <- match.arg(method) 
if (method=="polygon") { 
data[is.na(data)l <- -1 t the background 
. C("polygon_matrix", 

as.single(ux). 
as. integer(length(ux)), 
as.single(uy). 
as. integer(length(uy)), 
as.single(c(0,i:n.colors)Cdata+23) 
1 

3 else < 
3 

image(x~,y=uy,~(&ta)+l,add=add) 

return(invisible0) 
3 



Appendix C. Log-Normal and Poisson Traffic Count Data Simulation Programs 

Documentation for Traffic Count Simulation-Log-Normal ERO~S: v2.0A 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
This program simulates a network of road links that are sampled by satellite photos and ATRs. 
The data are generated according to a log-linear model with normal errors. The segment lengths 
must be supplied in the file length. Expansion factors are now read from the file 'expfact0r.W 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V LES 

MAXLINK = maximum number of links possible 
idum = random number seed used by ranlo and gasdeV0 ***Using the same idum gives the same output*** 
nlink = actual number of links used 
nsat = number of sats 
natr = number of perm ATR 
nportatr = number of moveable ATR 
li&mean(i) = AADT of link i 
lid-length(i) = length of link i 
mini = minimum AADT e.g. 10,000 
maxi = maximum AADT eg 90,OOO 
hef(24) = hourly expansion factor. Not currently used. 
def(7) = day of week expansion factor 
mef( 12) = monthly expansion factor 
dt = #days from one satellite overpass to another 
coverage = proportion of links seen by satellite for one overpass ***e.g., coverage = 0.01 = 1% of links seen*** 
timeint = effective length of time (in hours) of traffic "seen" by satellite. ***e.g., timeint = 0.0167 => satellite 

will count a minutes worth of traffic. Not currently used.*** 
sigma = variability of counts. *** e.g., sigma = 0.10 => 10% variability in recorded count*** 

**+There are two sigmas used: sigmasat, sigmaground*** 

*** It's the dimension of linkMean()*** 

LIST OF MODULES IN PROGRAM. 

P Read expansion factors from file 'expfactorin' */ 

P Read random seed from file 'idum.in' */ 

P Read input file and write to some parameter files */ 

P Get and prepare link lengths, write to file */ 

P Generate EF and write to files */ 

P Generate link parameters and write to files */ 

P Generate satellite data and write to files */ 

P Generate cts ATRs. The links are 0, ..., om-1, so the link lengths for 
the cts ATRs are always the same. Write data to a file. */ 

! 

P generate short term ATRs and write data to a file */ 



SUBRO USED: 

P readseed: return the random seed from file idurn-in. The random seed is a 
negative integer. */ 

P read-= read the seasonal adjustment factors */ 

P read-input: read fde 'input' for parameters */ 
P Read number of links, nlink */ 
P Read UB andLB on link AADT */ 

/* Read cts ATRparametas */ 
P Enter portable ATR parameters */ 

> 2 
P Read Sat parameters */ 

P get-lengths: read and prepare the link lengths as follows: 
Lengths are read from file lengthin 
The first natr are always assigned to the PATR, so that the PATR 
always have the same link lengths. 
Finally the remaining nlink - natr lengths are assigned randomly 
to the links w/o PATR, so the MATR are assigned to random links. 
Lengths are written to 1ength.out */ 
P Read the lengths from 'lengthin'*/ 
P Scramble the last nlink - natr links */ 
P Write the results to file */ 

P gen-EFO generate expansion factors and write to file 'truth.out'. */ 

P gt%l-linkJar 
VMT. Write above to files. */ 

: Genera& li- linklength, total traffic, AADT, 

P Generate true mean of daily traftic count for each link */ 
/* Write out total volume of traffk for the year to 'truth.out'. */ 
/* Write link-mean (AADT of links) to files 'truth.out' and 'aadt.out' */ 
/* Compute VMT and write to file 'vmt.out' */ 

P gen-sat: write simulated sat counts to file 'sate-out' and write sampling 
design to file 'design.out*. Write link and number of times each link 
is sampled by sat to file 'satsamp.out' */ 
P' Initialize satsamp *I 
P Sample from sat */ 

Q 

i 

P gea-Am generate ATR counts *I 

P ranl: generate a realization of a uniform(O.1) rv */ 
L 

P gasdev: return a realization of a std normal rv */ 

P get-sample: put sample of size n into fmt n slots of linkID 0 to n-1. 
These links are sampled by the sat on a given pass, or used by the MATR. 
The fmt excl links are excluded. %cl= npatr for MATR, or 0 for sat */ 



PROGRAM: 

#include <StdiO.b 
#include <stdlib.b 
#include cmathb 
#include <float& 
#include climitsB> 
#include ctime.h> 

#define MAXLINK 5000 P Maximum number of links allowed *I 

P' Function prototypes. *I 

int mdseed(v0id); 
void read-EF(doub1e hef[], double defll, double mefll); 
void get-lengths(doub1e link-lengthn, int nlink, int natr, int d i n k ,  

double ranl(int *idum); 
double gasdev(int *idurn); 
void gen-FiFO(double hefl], double defl], double mefl]); 
void gen-linkpramems(double link-man, double link-length[], 

int maxlink, int nlink, double mini, double maxi, 
int *idum); 

void gen-sat(doub1e linkmean[], int maxlink, int nlink, double dt, 

int *idum); 

double defl], double mefl], double coverage, double sigma, 
int *idurn); 

void ga-ATR(double link_mean[], int W i n k ,  int nlink, int link, 
int yeardayl, int yearday2, double hem, double defll, 
double mefl], double sigmaground, int *idum); 

void read-input(int *dink, int *usat, double *dt, double *coverage, 
double Weint, double *sigmasat, int *natr, 
double *sigmaground, int *npomtr, double *mini, 
double *maxi); 

void get-sample(int linkID[], int n, int maxlink, int dink, int *idum, 
int excl); 

void convertDayNumbex(doub1e time, double *hh, int *dd, int *mm, 
int *weekday); 

double =(double a, double b); 
double min(doub1e a. double b); 

............................................................................. 

main0 
{ 
P Declare variables: *I 

int i, idum, natr, link, yeardayl, yearday2, length, start., nportatr, 

double link-meanFLAXLIM(], l i n k - l e n g t h ~ I N K ] ;  
double dt, coverage, timeint, sigmasat, sigmaground, mini, maxi; 
double hefl241, deq71, mefll21; 

nlink, nsat = 0. excl; 

I 

! 



P Read expansion factors from file 'expfactorin' *I 

=d-EF@ef, def, mef); 

P Read random seed from file 'idumh' *I 
idum = readseedo; 

P Read input file and write to some parameter files *I 
md-input(&nlink, &usat, &it, &coverage, &beint,  &sigmasat, &natr, 

&sigmaground, &nportatr, &mini, &maxi); 

P Get and prepm link lengths, write to file *I 
get_lengths(link-lengtb, nlink, natr, MAxLIM(, &dum); 

P Generate EF and write to files *I 
genJFO(hef, def, mef); 

P Generate link parameters and write to files *I 
gen-link_paramems(link-mean, linklength, MAXLINK, nlink, maxi, mini, 

&idurn); 

P Genexate satellite data and write to files +I 
for (i = 1; i c= nsat; i*) { 
gen-sat(linkmean, MAXLINK, dink, dt, def, mef, coverage, sigmasat, 

&idurn); 
1 

P Generate cts ATRs. The links are 0, ..., natr-1, so the link lengths for 

yeardayl = 1; 
yearday2 = 365; 

the cts ATRs are always the same. *I 

for (i = 0; i < n ~ ,  i++) ( 
link = i; 
gen-ATROink-mean. MAXLINK, nlink, link, yeardayl, yearday2, hef, def, mef, 

sigmaground, &idurn); 
1 

P genaate short term ATRs *I 
for (i = natr; i c natr + n p o m ,  i+) ( 
length = 2; /* Number of days of observations at any MATR link *I 
start = floor( ranl(&idum) * (365-length+l) ) + 1; 
gen-ATR(lixkmean, MAXLINK, nlink, i, start, start+length-1, hef, def, 

1 
mef, sigmaground, &idurn); 

retmo; 
} P End of main *I 

I* Function definitions: *I 



P readseed: return the random seed from file idurnin. The random seed is a 

int readseed(v0id) 
negative integer. *I 

{ 
int c = 0; 
FILE *idump; 
idump = fopen("idum.in", "r"); 
fscanf(idump, "%d, &c); 
fcl&idump); 
if (!(c < 0)) 

return c; 
1 

printf("headSeed: mor, random seed must be a negative integer.b"); 

P read-= read the seasonal adjustment factors *I 
void read-EF(doub1e heft], double defl]. double meft]) 
{ 
int i; 

FILE *mp; 

EFp = fopen("expfactor.in", "r"); 

for (i = 0; i <7; i++) 

for (i = 0; i < 12; i++) 
fscanf(EFp, "%E", &defli]); 

f=W, "%lf", Btmef[il); 

fclOse(EFp); 

P &-input: read file 'input' for paramem */ 
void read-input(int *nlink. int *nsat, double *dt, double *coverage, 

double *timeint, double *sigmasat, int *natr, 
double *sigmaground, int *nportatr, double *mini, 

double *maxi) 
( 

mtrp = fopen("matr.out", "w"); 

truthp = fopen~truth.out", "w"); 
p a w  = fopen("patr.out". "w"); 



parametersp = fopem("parameters.out", "w"); 

P Read number of links, nlink *I 
*nlink = 0; 
do ( 
I* printf("Enter number of links for this run.W); *I 
scanf("%d", nlink); 

) while (*nlink < 1); 
fprintf(mthp, "\nThere are %d links for this run.b", *dink); 
fprintf(parametersp, "There are %d linksbb", *nlink); 

P Read UB and LB on link AADT *I 
*mini = 0; 
do ( 
P printf("1nput lower bound for link AADT (min 1.0): b"); *I 
scanf("%lf', mini); 

) while (*mini < 1); 

*maxi = *mini; 
do ( 
P printf("1nput upper bound for link AADT: b"); *I 
scanf("%lf', maxi); 

) while (*maxi <= *mini); 

fprintf(mthp, "Lower bound of AADT = 96f. Upper bound = %h", *mini,*maxi); 
fprintf(parametersp, "Bounds are from %f to %flu", *mini. *maxi); 

P read sat data *I 

do ( 
P printf("Enter number of satellites: b"); */ 
scanf("W", nsat); 

) while (*mat < 0); 
*mat = ( *mat > *nlink) ? *nlink : *mat; P Truncate nsat at nlink *I 
fprintf(parametersp, "There are %d satellites.b", *mat); 

do ( 
P printf("Input time between sat passes, in days.\n"); *I 
scanf("%lf", dt); 

) while (*dt c .Ol); 
fprintf(parametersp, "Time between sat passes = %f days.b", *dt); 

do ( 
P printf("Input fraction of links seen by satellite.\n"); *I 
scanf("%lf', coverage); 

) while (*coverage e 0 I I  *coverage > 1); 
fprintf(parametersp, "Coverage = 8 f  percent.b", *coverage * 100); 

P printf("1nput fraction of hour equivalent the sat sees.\n"); 



printf("Be sure to make the value between -001 and 24.0b"); *I 
scanf("%lf", timeint); 
fprintf(parametersp, "Equivalent time = %f.b", *timint); 

/*printf("Input s > 0, where the error has exp( Normal[O, S U I  ) distb"); 

*sigmasat = -1; 
do t 
scanf("%lf", sigmasat); 

) while (*sigmasat < 0); 
fprintf(parametenp, "Sigmasat = %f.\n", *sigmasat); 

printf("and s < 1 say. s is sigma-sat.b"); */ 

/* Enter cts ATR parameters */ 

I* printf("Enter number of continuous ATRs, not greater than #links.b");*/ 
scanfr%d, natr); 
fprintf(parametersp, "There are 46d continuous ATR links.\n", *natr); 
fprintf(patrp, "%5db", %a@); 

for (i = 0; i < *natr; ii+) 
fprintf(paap, "%8db", i+l); 

/* printf("Enter nonnegative sigma value for ground c0unts.b"); */ 
scanf("%W, sigmaground); 

fprintf(parametersp, "sigmaground = %M, *sigmaground); 

P Enter poxtable ATR parameters *I 

scanf("%d, nportatr); 
@rintf(parametersp, "There are %d portable ATRs used.W, *nportatr); 
$rintf(mafrp, " %db", *nportatr); 

for (i = *natr; i < *natr + *nportaR i++) 
fprintf(matrp, "%5db", i+l); 

P get-lengths: read and prepare the link lengths as follows: 
Lengths are read from file 1ength.in 
The first natr are always assigned to the PATR, so that the PATR 
always have the same link lengths. 
Finally the remaining nlink - nau lengths are assigned randomly 



to the links w/o PATR, so the MATR are assigned to random links. 
Lengths are written to lenghout *I 

void get-lengths(doub1e link-length[], int dink, int natr, int d i n k ,  
int *idurn) 

int i; 
int l i n k l D m I N K ] ;  
double garb-dbl-1; 

FILE *length-inp; 
FILE *lengthp; 

length-inp = fopen("length.in", "r"); 
lengthp = fopen("length.out", "w"); 

if (length-inp = NULL) 
printf( "read-lengths: file lengthin not found); 

P Read the lengths from 'length.in'*/ 
for (i = 0; i < dink, i t e )  
fscanf(length-inp, "%lf", &link-length[i]); 

/* Scramble the last nlink - natr links */ 

get-sample(linkID, nlink - natr, MAxLIM(, nlink, idum, natr); 

for (i = 0; i < nlink, it+) 
garb-dbl[i] = link-length[i]; 

for (i = narr; i < dink, ii-t) 
link-lengthIil= garb-dbl[ linkll)[il I; 

/* Write the results to fiie */ 
for (i = 0; i < nlink, i++) 
fprintf(lengthp, "%5d %7.4f\n", i+l, link-length[il); 

fclose(lengtb-inp); 
fclose(1engthp); 

P g e n - m .  generate expansion factors and write to file 'txuthmt'. *I 
void gen_EFO(double heal, double deal, double mefn) 
( 
int i; 
double sum = 0.0; 



truthp = fopen("mth.out", "a"); 

for (i = 0; i <= 22; ii-t) 
sum += 1 .O / hef[i]; 

hefl231 = 1.0 I(24.0 - sum); 

sum = 0.0; 
for (i = 0; i e= 5; ii-t) 

sum += 1 .O / defli]; 
defl61 = 1 .O / (7.0 - sum); 

sum = 0.0; 
f o r ( i = Q i e =  lO;ii+) 

sum += 1 .O / mefli]; 
meflll] = 1.0 / (12.0 - sum); 

. .  

fprintf(truthp, "Hourly expansion factorsW); 
for (i = 0; i e 24; i++) 

fprintf(tmthp, "From 96d to 9bd, EF. = %flu", i, i+l, hai l ) ;  

fprintf(truthp, "\nWeekday expansion factorsW); 
for (i = 0; i e 7; i++) 
fprintf(tmthp, "From 96d to %d, EF. = %W, i, i+l. defli]); 

fprintf(truthp, "Wonthly expansion factorsh"); 
for(i=Qie12;i++) 

fprintf(truthp. "From 96d to %d, E.F. = %flu", i, i+l, mefli]); 

fclose(truthp); 

1 
return; 

P gen-link-paramaers: Generate linkMan, linklength, total traffic, AADT, 
VMT. Write above to files. */ 
void gen-linkqarameters(doub1e link-mean [I, double link-length[l, 

int maxlink, int nlink, double mini, double maxi, 
int *idurn) 

{ 
double sum = 0, adjust, proposed, meau-length, &length, minJength, temp? 
timeint; 

int i, count; 

FlLE *truthp; 
FILE *aadtp; 
FILE *vmm 

truthp = fopen("trurh.out", "a"); 
aadtp = fopen("aadt.out", "w"); 
vmtp = fopen("vmt.out", I'w"); 



P Generate true mean of daily traffic count for each link, then adjust to 

sum = 0.0; 
for (i = 0; i < nlink; i t t )  { 

ensure that the total traffic is (min+max)n.O */ 

temp = ranl(idum); 
link-mean[i] = temp * (maxi - mini) + mini; 
sum += link-mean[i]; 

1 

adjust = (float)sum I dink - (mini + maxi) / 2.0; 
for (i =O; i <dink; ii-t) 
link~neau[i] -= adjust; . .  

P' Write out total volume of traffic for the year to 'auth.out'. */ 
sum = 0.0; 
for (i = 0; i < dink; ii-t) 

sum +E link-mean[i]; 
fprintf(truthp, "Total volume of traffic for year, all links = %.of\n\n", 

365*sum); 

/* Write link-mean (AADT of links) to files 'truth.out' and 'aadt.out' */ 
sum = 0.0; 
for (i = 0; i < dink; i t t )  ( 

sum += link-mean[i]; 
fprintf(tmthp, "Link %d has true AADT = 9612.4W. i+l , link_mean[il); 
fprintf(aadtp, "%12.4f WW, linkmean[i], i+l); 

1 
fprintf(truthp, "Mverage AADT o w  all 96d links = %12.4fb", dink, 

sum/( nliik)) ; 

P Compute VMT and write to file 'vmt.out' */ 
sum = 0; 
for (i = 0; i < nlink; i t t )  

fprintf(vmtp, " %.Of.", sum); 
sum +E link-mean[i] * linklength[i]; 

I* gen-sat: write simulated sat counts to file 'sate.out' and write sampling 
design to file 'desigaout'. Write link and number of times each link 
is sampled by sat to file 'sat-samp.out' */ 

void gen-sat(doub1e linkmean[], int maxlink, int nlink, double dt, 
double deal, double mef[]. double coverage, double sigma, 
int *idum) 

{ 
int n, i, mm, dd, count, weekday, excl; 



_---- 

I 

int linkTDPAAXLINK1, satsamp-I; 
double time, AADT, rcount, hh; 

FILE *parametersp; 
FILE *satep; 
F a E  *designp; 
FILE *satsampp; 

parametersp = fopen("parameters.out", ."a"); 
satep = fopen("sate.out", rw"); 
designp = fopen("design%it", "w"): 
satsampp = fopen("sat~samp.out", "w"); 

n = ceil(cov.erage * nlink); /* Number of links sampled. */ 

fprintf(parametersp, "Numbex of links seen by sat is %db", n); 

P Initialize satsamp */ 
for (i = 0; i < nlink; i++) 

satsamp[il = 0; 

P Sample from sat */ 

time =ranl(idum) * dt + 1; 
excl = 0; 
while (time < 366) ( 
get-sample(linkJD, n, MAXLINK, nlink, idum, excl); 
for(i=O;i<n;i++) ( 
AADT = link-mean[ linkID[i] 1; 
convertDayNumber(time, &hh, Btdd. &mm, &weekday); 
if (bh >= -1 && hh <= 25) ( /* daytime: always for now */ 

rcount = AADT /(def[weekday-11 * meqmm-11); 
rcount = rcount * exp( gasdev(idum) * sigma ); 
rcount = rcount / exp( sigma * sigma / 2 ); P bias correction */ 
count = floor(rcount); 
fprintf(satep, "965d %1Od 83d 83d %2dW, linkIDb]+l, count, mm, dd, 

fprintf(designp, "961Od 9658 82d %3db", count, linklD[i]+l, 
weekday); 

weekday, mm); 

for (i = 0; i < nlink; i++) 
fprintf(satsampp, "CRbd CRbdb", i+l, satsamp[il); 

I 

fclose(designp); 
fclose(parametersp); 



fclose(satep); 
fclose(satsampp); 

return; 
1 

I* gen-ATR: generate ATR counts *I 
void gen-ATR(doub1e link-meau[], int maxlink, int nlink, int link, 

int yeardayl. int yearday2, double heft], double deft], 
double meft], double sigmaground, int *idum) 

{ 
int dd, mm, weekday, i, count, isum = 0; 
double AADT, rcount, suml, sumt, adjust, hh; 
double temp[365]; 

FILE *Pam; 
FILE *matrp; 
FILE *designp; 

matrp = fopen("matr.out", "a"); 
designp = fopen("design.out", "a"); 
patrp = fopen("patr.out", "a"); 

I* Sample from ATRs *I 

if (yeardayl != 1 II yearday2 != 365) ( I* movable atr */ 
for (i = yeardayl; i <= yearday2; i++) ( 
AADT = linkmean[link]; 
convertDayNumber((double)i, &hh, &dd, &mm, &weekday); 
rcount = AADT/ (deftweekday-11 * meftmm-11); 

mount = rcount / eq(  sigmaground * sigmaground / 2 ); 
count = floor(rc0unt); 
isum = isum + count; 
fprintf(designp. "%lOd %5d %2d %3db". count, link+l, weekday, mm); 
fprintf(matrp, "%5d 961Od %3d %3d %2db", link+l, count, mm, dd, 

I rcount = rcount * e q (  gasdev(idum) * sigmaground ); 

weekday); 
I 

] else ( I* permanent atr */ 
suml=0; 
sumt = 0; 
for ( i = yeardayl; i <= yearday2; i*) { 

AADT = link-m[link]; 
suml += AADR 
convertDayNumber((doub1e)i. &hh, &dd, Bimm, &weekday); 
rcount =AADT/ (deftweekday-l] * meftmm-11); 
rcount = rcount * exp( gasdev(idum) * sigmaground ); 
rcount = rcount I exp( sigmaground * sigmaground I 2 ); 
tempti-11 = floor(rcount); 
sumt += temp[i-1 I; 

I 



adjust = (sum1 - sumt) / (yearday2 - yeardayl + 1); 
sumt = 0; 
for ( i = yeardayl; i G yearday2; i+t) { 

temp[i-11 += adjust; 
sumt += temp[i-11; 
count = floor(temp[i-11); 
isum += count; 
convea%DayNumber((double)i, &hh, a d ,  &mm, &weekday); 
fprintf(pahp, “%5d %1Od %3d %’a %2dW, link+l, count, mm, dd, 

fprintf(designp, ”%1Od %5d 526 %3d\n”, count, link+& weekday, mm); 
weekday); 

1 
1 

P ranl: generate a realization of a uniform(0,l) rv */ 
double ranl(int *idum) 
( 
int ia=16807, im=2147483647, iq427773, ir=2836, ntab=32, ndiv, j, k; 
double r 1, am, eps, mmx; 
P next two should be static or something */ 
static int iy ; 
static int iv[32]; P dim is NTAB */ 
P statics are initialized to zero */ 

am = 1 / (doub1e)im; 
ndiv = 1 + (im - 1) / (doub1e)ntab; 

rnmx=l-eps; 
eps =. 12; 

if (*idum<=O I1 iy=O) ( 
*idum = (int)max((double)(-(*idurn)), 1.0); 
for (j = ntab+8; j >= 1; j-) { 
k = *idum / (doub1e)iq; 
*idurn = ia * (*idum - kqq) - ir*k; 
if (*idum < 0) 

if (i e ntab) 
*idurn += im; 

ivo] = *idurn; 
1 
iy = iv[ 11; 

1 

k = *idum / (doubleliq; 
*idum = ia * (*idurn - k*iq) - k*k; 
if (*idum < 0) 



*idurn += im; 
j = l + i y / n d i y  
iy = ivo]; 
ivb] = *idurn; 

r l  = min(am*iy, mmx); 
return rl; 

P gasdev: return a realization of a std normal rv */ 
double gasdev(int *idum) 
( 
static int iset; 
double fac, rsq, vl  , v2. gdev; 
static double gset; 

if(iset=O) { 
one: 
v l  = 2 * ranl(idum) - 1; 
v2 = 2 * ranl(idum) - 1; 
rsq = vl*vl + v2*v2; 
if(rsq= 1 IIrsq=O) 
goto one; 

fac = sqrt(-2 * log(rsq)/rsq); 

gdev = v2 * fac; 

1 
else ( 

gdev = g* 
iset = 0; 

I 

gset = v l  * fac; 

iset = 1; 

return gdev; 
I 

/* get-sample: put sample of size n into fmt n slots of linkID 0 to n-1. 
These links are sampled by the sat on a given pass, or used by the MATR. 
The first excl links are excluded. Excl = npatr for MATR, or 0 for sat */ 

void get-sample(int linklD[], int n, int naaxlink, hit nlink, int *idum, 
int excl) 

( 
int i, k, num, temp; 
double rtemp; 

P Initialize link IDS *I 
for (i = 0; i < nlink; it+) 
linkID[i] = i; 

I 

for (i = excl; i < n+excl; i++)  ( 



rtemp = ranl(idum) * (nlink-i) + i; P a number in i to nlink */ 
n u n  = floor(rtemp); /* truncate so in i to nlink - 1 */ 

temp = linkID[num]; 
linkID[num] = linkID[i]; 
linkID[i] =temp; 

1 
return; 

I 
P convertDayNumbea: */ 
void convertDayNumber(doub1e time, double *hh, int *dd, int *mm, 

int *weekday) 
{ 
int yearday; 
double fraction; 

fraction = time - floor(time); 
yearday = floor(time - fraction); 
*weekday = yearday 96 7 + 1; 

*hh = floor((time - yearday)*%) + 1; 
if (yearday <= 31 && yearday >=1) ( 
*mm= 1; 
*dd = yearday; 

I 

if (yearday <= 59 && yearday >= 32) ( 
*mm=2; 
*dd = yearday - 31; 

1 
if (yearday <= 90 && yearday >= 60) 

*mLn=3; 
*dd = yearday - 59; 

1 

if (yearday <= 120 && yearday >= 91) ( 
*mm=4; 
*dd = yearday - 90, 

I 

if (yearday <= 151 && yearday r 121) ( 
*mm=5; 
*dd = yearday - 120; 

1 

if (yearday <= 18 1 && yearday >= 152) ( 
*mm=6; 
*dd = yearday - 151; 



if (yearday <= 2 12 && yearday >= 182) { 
*mm = 7; 
*dd = yearday - 181; 

) 

if (yearday <= 243 && yearday >= 213) { 
*mm = 8; 
*dd = yearday - 212; 

1 

if (yearday <= 273 && yearday >= 244) { 
*mm=9; 
*dd = yearday - 243; 

1 

if (yearday c= 304 && yearday >= 274) { 
*mm = 10; 
*dd = yearday - 273; ) 

if (yearday <= 334 && yearday >= 305) { 
*mm= 11; 
*dd = yearday - 304; } 

if (yearday <= 365 && yearday >= 335) { 
*mm = 12; 
*dd = yearday - 334; 

1 

return; 
1 

I* max *I 
double max(doub1e a, double b) 
{ 
double temp; 

temp= (a>b)?a:b; 
return temp; 

1 

P min *I 
double min(doub1e a, double b) 
{ 
double temp; 

temp = ( a < b) ? a : b; 
rem temp; 

1 



B2: LISTING OF POISSON SIMULATION PROGRAM: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THIS PROGRAM IS WRITEN IN S-PLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
* 
function(seed 0bs.param.s) 
{ 

set.seed(seed) #DF and MF contain the appropriate daily and monthly 
# factors for each of the 365 days of the year 

DF <- WEF, 53)[ 1 :365] 
<- c(repW[11,31), rep(MEp[21, a), rep(MEF[31,31), rep(MEF[41, 

30). rep(MEF[SI, 311, rep(MEF[61,30), ~ep(MEF[71,31), rep(MEF[ 
81,311, redMEF[91,30), rep(MEF[101,31), rep(MEF[ll1,30), 
reP@5T121,31)) 

EF <- DF * MF #read link parameters from linkparams: 

nlink <- obsparamS[ 11 
alpha <- obs.params[2] 

#n. of links; alpha and beta for the gamma prior, 

beta <- 0b~.patams[3] 
nsat <- obs.params[4] 
repeatcycle c- obs.params[5] 

npatr <- obs.param~[7] 
SatCOVg <- 0b~.param~[6] 

nmatr <- obS.pam~[8] 
capacity <- 0b~.param~[9] 
nsatdays <- (365 %/% repeatcycle) * nsat 
nsatobsday <- satcovg * dink 
&YS <- ~eq(l.365) 
evendays <- seq(2,364,2) 
links <- seq(npatr + 1, nlink) 
monthofday <- c(rep(1, 311, ~ ( 2 , 2 8 1 ,  rep(3,31), rep(4,30), rep(5, 

31), rep(6,30), rep(7.31). rep@, 31). rep@, 30). rep(l0,31 
1, rep(ll,30), rep(l2,31)) 

dateofday e- c(l:31. 1:28, 1:31. 130, 1:31, 1 3 ,  1:31, 1:31, 1:30, 1: 
31,1:30, 1:31) #generate link means 

theta <- beta * rgamma(nlink, alpha) + loo00 

for(j in 1:npatr) ( 

Msc objects 

#generate PATR counts 
adjpatr <- WX(IUOW = 365 * ~ p a ~ r ,  U C O ~  = 5 )  

f@i in 1:365) ( 
adjpatr[i + (j - 1) * 365.11 <- j 
adjpatr[i + (j - 1) * 365,21<- rpois(n = 1, thetau]/ 

adjpatr[i + (j - 1) * 365,3] <- monthofday[i] 
adjpafr[i + (j - 1) * 365.41 <- dateofday[il 
adjpatr[i + (i - 1) * 365,5] <- i 96% 7 + 1 

Wril) 

I 
1 #choose links for moveables. 
mvblelinks e- (npatr + l):(npatr + nmatr) 
mvbledays <- sample(evendays, size = nmatr, replace = F) 
#generate MATR counts 

#choose days for moveables 



adjmatr <- matrix(nrow = 2 * nmatr, ncol = 5 )  
for(i in 1:nmatr) { 

adjmatr[2 * i - 1.21 <- rpois(n = 1, theta[mvblelinks[i]l/EF[ 

adjmatr[2 * i - 1.11 c- mvblelinks[i] 
adjmatr[2 * i - 1,31 c- monthofday[mvbledays[ill 
adjmatr[2 * i - 1,5] c- (mvbledays[i] 96% 7) + 1 
adjmatr[2 * i - 1,4] e- dateofday[mvbledays[ill 
adjmaM2 * i, 21 <- rpois(n = 1, theta[mvblelinks[i]]/EF[ 

adjmatr[2 * i, 11 <- mvblelinks[il 
adjmatr[2 * i, 31 <- monthofday[mvbledays[il+ 11 
a d j W 2  * i, 51 <- ((mvbledays[i] + 1) 46% 7 )  + 1 
adjmaer[2 * i, 41 <- dateofday[mvbledays[il + 11 

1 #choose days for sat. 
firstday <- sample(c( 1:7), size = 1) 
satdays <- seq(fmtday, by = repeatcycle %/% nsat, length = nsatdays) 
#for each sat obs in each day choose an hour and set of links 
sathours <- matrix(nrow = nsatobsday, ncol = nsatdays) 
satlinks <- matrix(nr0w = nsatobsday, ncol = nsatdays) 
fodj in 1:nsatdays) { 

mvbledays[il]) 

mvbledays[il + 11) 

sathours[, j] <- sample(c( 1:24), size = 1) 
for(i in 1:nsatobsday) ( 

1 
satlinks[i, j] <- sample(c( l:nlink), size = 1) 

1 #generate satobs. 
adjsat <- matrix(nrow = nsatdays * nsatobsday. ncol = 5)  
foru in 1:nsatdays) { 

for(i in 1:nsatobsday) ( 
linkvec <- rep(satlinks[i, j]. 2 * nmatr) 
dayvec <- rep(satdaysjj],2 * nmatr) 
if(all((dayvec != mvbledays) 1 (linkvec != mvblelinks)) 

adjsat[nsatobsday * (j - 1) + i, 21 <- min(288 * 
HEF[sathours[i, j]] * EF[satdaysljll* p i s (  
n = 1. theta[satlinks[i, jl1/(288 * HEF[ 
sathours[i, j]] * EF[satdays~ll)), capacity) 

adjsat[nsatobsday * (j - 1) + i. 11 <- satlinks[ 
i, jl 

adjsat[nsatobsday * (i - 1) + i, 31 <- 
monthofday [satdays till 

adjsat[nsatobsday * (i - 1) + i, 41 c- 
dateofclay[satdays[il] 

adjsat[nsatobsday * (j - 1) + i, 51 <- (satdays[ 
j] 96% 7) + 1 

1 
1 

1 #remove missing sat rows 
adjsat <- adjsat[adjsat[, 11 != "NA, I 
lengths <- scan("length.out") 
VMT.t <- sum(lengths[ 1:nlinkl * theta) 
#output data for traditional method 

#calc true VMT 



write.table(npatr, file = "patr.out", dimnames.write = F) 
write.table(as.vector(c(l:npatr)), file = "patr.out", dimnames.write = 

write.table(adjpatr, file = "patr.out", dimnames.write = F, sep = " ", 

write.table(nmatr, file = "matr.out", dimnames.write = F) 
write.table(as.vector(c((npatr + l):(nmatr + npatr))), fide = 

write.table(adjmatr,' file = "matr.out", dimnames.write = F, sep = " 'I, 

write.table(adjsat, file = "sate.out", dimnames.write = F, sep = " ") 
write.table(as.vector(theta), file = "aadt.out". dimnames.write = F) 
write.table(VMT.t, file = "vmLout", dimnames.write = F) 

F, append = T) 

append 5 T) 

"matr.out", dimnames.write = F, append = T) 

append = T) 

1 



Appendix D. Traditional Method AADT and VMT Estimation Code 

PProgram of VMT Estimations*/ 
I* Carolyn Kan 07R 1/98. */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I . I  . . . . . . . . . . . .  

#include Cstdi0.h 

#include <stdlib.b 
#include <stling.b 

#include <sy&ype!s.b 
#include <sys/stat.h 
#include 4cntI.b 

W i n e  January 1 
#define Febuary 2 
#define March 3 
#define April 4 
#define M a y  5 
#define June 6 
#define July 7 
#define August 8 
#define September 9 
#define October 10 
#define November 11 
#define December 12 

#define Monday 1 
#define Tuesday 2 
#define Wednesday 3 
#define Thursday 4 
#define Friday 5 
#define Saturday 6 
#define Sunday 7 

#defme no-link 100  
#define day-ofjear 365 
Mefinemax-rd 36500 
/* max-rd = no-link * day-of_year 
suppose it is not a leap year 
maximum records allowed */ 

Pfde pointer*/ 
FEE Vie-in; 
FEE *file-out; 
FILE *aadtp; 

Pfile names*/ 
char *outfilel; 
char *outfile2; 
char *outfile3; 
char *infidel; 
char *infde2; 



char *infile3; 
char *infild; 
char *infie% 

/*no of permenent & moving ATR and Satellite data generated */ 
int p-ATR; /*# of permanent Am*/ 
int m-AR, /*# of movable ATR*/ 
int sate; /*# of satellite images*/ 
int p-link[no-link]; Plist of link id for P Am*/ 
int m-link[no-link]; /*list of link id for m Am*/  
int satc-link[no-link]; /*list of link id for satellite image*/ 
int no-mATR-rd; P# of records for P ATRV . 

int no_pATR-r& /*# of records for m Am*/ 
int no-sate-ra /*# of records for satellite image*/ 

int Sate-not-Am, /*# of links without ground data only with satellite data*/ 
int sate,only[no-link]; /*list of link id without ground data only with 
satellite data*/ 

struct ATR-data 

int linkID; /*link identification */ 
float ADX 

{ 

/*ADT value for simulated ATR and satellite data */ 
int month; 
int day; 
int week; 
); rend of struct*/ 

struct sat-data 

int linklD; /*link identification */ 
float flow; 
/*ADT value for simulated ATR and satellite data */ 
int month; 
int day; 
int week; 
P float start-time; */ 
P float end-time; */ 
); rend  of struct*/ 

I 

struct ATR-data p-AD~max-rdl; 
struct ATR-data m-AD~max-rdl; 
struct satdata sat-vol[max-rd]; 

float Jan,sum[no-linkl; 
float Feb-sum[no-linkl; 
float Mar-sum[no-link]; 
float Apr-sum[no-linkl; 
float May-sum[no-link]; 
float Jun-sum[no-linkl; 
float Jul-sumIno-link]; 
float Augsum[no-linkl; 
float Sep-sum[no-link]; 
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I L. . 

float Oct-sum[no-link]; 
float Nov-sum[no-link]; 
float Dec-sum[no-link]; 

float Mon-sum[no-link]; 
float Tue-sum[no-link]; 
float Wed-sum[no-link]; 
float Thu-sum[ no-link] ; 
float Fri-sum[ no-link] ; 
float Sat-sum[no-link]; 
float Sun-sum[no-link]; 

float Jan-AADT[no-link]; 
float Feb-AADqno-link]; 
float Mx-AADT[ no-link] ; 
float Apr-AADT[no-link]; 
float May-AADT[no-link]; 
float Jun-AADT[no-link]; 
float Jul-AADT[no-link]; 
float AugAADT[no-link]; 
float Sep-AADT[ no-lin k] ; 
float Oct-AADT[ no-link] ; 
float Nov-AADVno-link]; 
float Dec-AADT[no-link]; 

float Mon-AADT[no-link]; 
float Tue-AADT[no-link]; 
float Wed-AADT[no_link]; 
float Tbu,AADT[no-link]; 
float Fri-AADT[no-link]; 
float Sat-AADVnoJink]; 
float Sun-AADT[no-link]; 

float yr-AADT[no-link]; 
P365-day avg AADT */ 
float wk-AADT[no-link]; 
/*week avg AADT *I 
float checking[no-link]; 

P declare the monthly and daily factors for each link */ 
float MEFJan[no-link]; 
float MEF_Feb[no-link]; 
float MEF-Mar[no-linkl; 
float MEF-Apr[no-link]; 
float MEF-May[no-link]; 
float MEFJun[no-link]; 
float MEF-Jul[no-link]; 
float MEF-Aug [no-link]; 
float hEF-Sep[no-link]; 
float MEF-OctI no-link] ; 
float MEF-Nov[no-link]; 
float MEF-Dec[no-link]; 

float DEI-Mon [no-link]; 
float DEF-Tue[ nolin k] ; 
float DEF-Wed[no-link]; 



float DEF-Thu[no-link]; 
float DEF-FriIno-link] ; 
float DEF-Sat[no-link]; 
float DEF-Sun[ no-lin k] ; 

P Wfactors for calculating harmonic mean of factors*/ 
float MI; float tm2; 
float un3; float tm4; 
float M5, float tm6; 
float tm? float tm8; 
float tm9; float tmlO; 
float unll; float tm12; 
float twl; float tw2; 
float tw3; float tw4; 
float tw5; float tw6; 
float tw7; 

/* declare the final averaged monthly and daily factors */ 
float MEFI; float MEF2, float MEF3; 
float MEF4; float MEF5; float ME%@ 
float MEF7; float MEF8; float MEF9; 
float MEFIO; float MEFl1; 
float MEF12; float DEFI; 
float D E l 2  float DEF3; 
float DEF4; float DEFS; 
float DEF6; float DEF7, 

float est_AADT[no_link][5];/*declare output array [link idlttrue 
AADTl[flag][est AADT Ground only][est AADT ground+satellitel*/ 
P Definitions of Flag */ 
P 0 - link without data */ 
/* 1 -- link with permanent ATR only *I 
/* 2 -- link with portable ATR only */ 
/* 3 -- link with satellite data only */ 
P 4 -- link with permanent ATR & Satellite */ 
P 5 -- link with portable ATR & Satellite * I  
P 6 -- link with permanent & portable ATR */ 
P 7 -- link with permanent, portable ATR & satellite */ 

float trueIno-link]; /*temp. storage for m e  AADT*/ 
float linkvmt[no-link][5]; Pdeclare array for link length [link 
id1 [lengthl[vmt-ground only][vmt-ground+sateUitel [true mI*/ 
double total-t-w P the true VMT */ 
double total-G-w, P estimated VMT - ground only */ 
double total-GS-vmt; P estimated VMT - ground + satellite */ 
double vmt-G-m; /* Absolute value of the % mor of estimated Vh4T -- 
ground only */ 
double vmt-GS-err; /* Absolute value of the % error of estimated VMT - 
ground + satellite */ 

int index; /* counter for number of records read in*/ 

x 

int count; 
int link-order; 
int p-rds; 
int m-rds; 



, 

..  

int s-rb, 
int alllink; 
int temp-count; P all are counters in "for" loop*/ 

int dl; 
int d2; 
int d3; 
int d4; /*temporal storage for struct */ 
float f l ;  
float n; 
float f3; /*temporal storage for struct*/ 

int 1-i& 
in t p-i& 
int m-id; P temp storage for link ID*/ 

int mm; 
int wk; 

float mon-factor, 
float week-factor; 
float est; 

/* estimate AADT for each data and save it into a array for further 
calculation.*/ 
float mATR-est[50000][2]; P array Pink ID][est. for mATR data] */ 
float sat-est~500001[2]; P array [link IDl[est. for sat. data] */ 
float av&~ADT[500001151; P [link ID][# of mATR est.][sum of est. for 
mATRl[# of sat est.][sum of est. for sat] */ 
float avg; float sat-avg; float mATR-avg; 

P Adding up the total monthly volumes and total daily volumes */ 
int no-Mon; 
int no-Tue; 
int no-Wa 
int no-lku; 
int no-Fri; 
int no-Sat; 
int no-Sun; 

int ground-also; /*flag for checking if satellite covers the ground data also*/ 
int dife P # of links without any data=# of links -#of P ATR - # of M 
ATR - # of satellite*/ 

Pstorage for averaging est. AADT for nodata link*/ 
float temp-total; 
float est-G-mean; P avg aadt for ground only *I 
float est-GS-mean; P avg aadt for ground + sat */ 
float est-G-em; 
float est-GS-err; 
float temp-G-err; 
float temp-GS-err. 

int low-G-aadt; 
int low-GS-aadt; 
int low-G-mt; 



int low-GS-vmt; /* all counter to count if estimation < true value */ 
void main() 

int fd; 
{ /*start of main*/ 

oufilel = "resukout"; 
outfiile2 = "adt-err.out"; 
outfiild = "vmt-err.out"; 
infilel = "patr.out"; 
infie2 = "matr.out"; 
infile3 = "sate.out"; 
infile4 = "1ength.out"; 
infile5 = "aadt.out"; 

aadtp = fopen("AADTest.out", "w"); 
file-out = fopen(outfile1, "w"); 
if (file-out = NULL) 

{ 
printf("Cannot open output file 96s b".outfilel); 
fprintf (stderr,"Cannot open output file 9bs W', outfilel); 
} /*open file for output*/ 

for ( l i n k - o d d ,  link-orderao-link; link-order++) 
{ 
est-AADT@ink-order][O]+, P linkTD*/ 
est-AADT(link-orderl[11=-1; Ptrue AADP/  
est-AADT@inkorder1[21+;/* flag*/ 
est-AADT@inlcorder][3]=-1$* estimations Ground only*/ 
est-AADT[linkorder][4]=-1;/* estimations ground + Satellite*/ 
} /*initialize the output array */ 

fd = open(infiiel,O-RDONLY); 
file-in = fdopen(fd, "r"); 
P read in simulated data for links with peamenent ATR */ 
if (fde-in = Nuu) 

{ 
printf("Cannot open pATR file %s \n",infilel); 
@rintf (stderr,"Cannot open pATR file %s W, infilel); 
) /*end if */ 
else 

{ 
index +, rindex of records*/ 
dl-M, 
f I=f2=f3=0.0, 
fscanf (file-in. "W, &p-ATR); h d  in number of w e n t  ATR */ 
printf("# of permenent ATR is %d b", p-ATR); 
/* fprintf(file-out, Y of pennenent ATR is %d b", p-ATR);*/ 
for ( count = 0, count < p-AlR count*) Pread in link IDS for p-ATR */ 

{ 
fscanf (file-in, "%db", &p-link[count]); 
P printf("1ink %dW, p-link[count]);*/ 
) /*end for */ 

while (1) 
I 
int eof = fscanf (file-in, "96d %f %d %d W ,  &dl,&fl,&d2,&d3,&l4); 



I 

1. 

J 

. ... 

2. 

if (eof = EOF) break, 
p-ADT[index].linkID = dl;  
p-ADT[index].ADT = f l ;  
p-ADT[index].month = d2; 
p-ADT[index].day = d3; 
p-ADT[index].week = d4; 
index=index+l ; 
} rend while */ 

fclose(fi1ejn); 
no-pATRA = index; 
1 P end else for reading p-ATR */ 

p n n d ( W  of P ATR records = %Ab”, no-pATR-d); 
Pfprintf(file,out, “Wt of P ATR records = 9bdW. uoqATR-rd); */ 

P Adding up the total monthly volumes and total daily volumes */ 
no-Mon = no-Tue = no-Wexi = no-Thu = no-Fri = no-Sat = no-Sun = 0; 

for ( p-rds=o; p-rdsaoqATR-r& p-rds+) 
{ 

Lid = p-ADnp-rds].linkID, 
mm = p-ADT[p-rds].rnonth; 
wk = p-ADT[p-rds].week; 

switch (mm) 

case January: 
Jan-sum[l-idl= Jan-sum@-idl+ p-ADQ-rdsl.ADR 
breag; 

case Febuary: 
Feb,sum[l-idl= Feb-sum[l-idl+ p-ADm-rdsI.ADT; 
break; 

caseMarch: 
Mar-sumEl-idl= Mar_sum[l-idI + p_ADT[p_rdsl.A~T 
break; 

case April: 
Apr-sumLidl= Apr-sum@-id] + p-ADT[p-rds].ADT; 
break; 

case May: 
May-sum[l-idl= May-sum@-idl+ p-ADT[p_rdsl.ADT; 
break; 

case June: 
Jun-sum@jdl= Jun-sum[l-idl+ p-AD~p-rds1.ADT 
break; 

case July: 
Jd~sumP~id ]  = Jul,sum[l-idl+ p-ADnp-rdsl.ADT 
break; 

case August: 
Augsum[l-idl= Aug_sum@-idl+ p-ADT[p-rdsl.ADT; 
break; 

Sep-sum[l-idl= Sep-sum[l-idl+ p-ADT[p-rdsl .ADT 
break; 

case October: 
Oct-sum[l-idl= Oct-sum@jdl+ p-ADT[p-rds].ADT; 
break; 

P printf(l1inkID. month, week = %d, %d, Wb”, 1-id, mm, wk); */ 

case September: 

case November: 
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Nov-sum[ljd] = Nov-sum[l-idl+ p-ADT[p-rds].ADT 
break, 

Dec_sum@-id] = Dec-sum[l-id] + p-ADT[p-rds].ADT 
break; 

printf("%d this is not a month?!\n", mm); 

caseDecember: 

default: 

) /*end of switch (mm) */ 
switch (wk) 

case Monday: 
( 

Mon-sum[l-id] = Mon-sumP-idl+ p-ADT[p-rdsl.ADT 
no-Mon = no-Mon + 1; 
break; 

case Tuesday 
Tue-sum[l-idl= Tue-sum@jdl+ p-ADT[p-rdsI.ADT 
no-Tue = no-Tue + 1; 
break; 

Wed-sum[l-idl= Wed-sum[l-idl+ p-ADT[p-rds].ADT 
no-wed = no-wed + 1; 
break, 

Thu-sum@-idl = Thu-sum[l-idl+ p-ADVp-rds1.ADT 
no-Thu = no-llu + 1; 
break, 

case Friday 
Fri_sum@-id] = Fri-sum[l-id] + p-ADT[p_rds].ADT 
no-Fri = no-Fri + 1; 
break; 

Sat-sum[l-idl = Sat-sum[ljdl+ p-ADVp-rdsI.ADT 
no-Sat = nodat  + 1; 
break; 

case Sunday 
Sun-sum[l-idl= Sun-sum[l-idl+ p-ADT[p-rdsI.ADT; 
no-Sun = no-Sun + 1; 
break; 

prind("%d this is not a day of the week?!\n",wk); 

case Wednesday: 

caseThursday 

case Saturdar 

default 

} /*end of switch (wk)*/ 
} /* end of for(p-rds)*/ 

P Calculation of expansion factors */ 
for Oink-ord-, liuk-order<P_ATR, link-order+t) 
( 
Lid = p-link@ink-order]; 
Jan-AADT@-id]= Jan-sum[l-id]B 1; 
Feb-AADT[l-id]= F&-sum[l_idy28; 
Mar_AADT[l-id]= Mar-sum[l-id]B 1; 
Apr-AADT@jd]= Apr-sum@jd]BO; 
May-AADT[ljd]= May_sum@-id]/3 1; 
Jun-AADT[l-id]= Jun-sum[l-idll30; 
Jul-AADT@jdl= Jul-sum[l-idlB 1; 
AugAADT@-id]= Aug_sum[l-id]B 1; 
Sep-AADT[l-idl= Sep_sum[l_id]/30; 

, -  



Oct-AADT[l-id]= Oct-sum[l-id]B 1; 
NovAAJIT@-id]= Nov-sum[l-id]L3Q 
Dec_AADTP-id]= Dec-sum[l-id]Bl; 

P putting the true AADT into the outputarray for permenent ATR *I 
est-AADT[link-orderl[O] = Lid; 
est-AADT[liuk-orderl[31= yr-AADT@-idl; 
est-AADTPink-orderl141= yr-A.ADT@-idI; 
est-AADT[link-ordezl[2]= 1; 

P printf("bFor P ATR link %f, the type is %f, the estimate is 
%fin, est-AADT[link-orderl[O], est-AADT€liuk-orderl[21, 
est-AADT(link-order][ 11); */ 

I* checking the calculation *I 
checking [l-id]= 

~ o n ~ s ~ [ ~ ~ i d ] + T u e ~ s u m [ l ~ i d ] + W e d _ s u m [ l ~ i d ] + ~ u ~ s u m @ ~ i d ] + F n ~ s u ~ l ~ i d l + S a t ~ s  
um[l-id]+Sun_sum[l-id])/365; 
if (yr-AADT[l-id] != checking[l-id]) 

{ 
fprintf(stderr,"t.he calclation might be wrong?!b "); 
printf("the calclation might be wrong?!b "); 

1 
Pend iPl 

Mon-AADT[l-id]= Mon-sum[l-id]/no-Mon; 
Tue-AADTLid]= Tue-sum@-id]/no-Tue; 
Wed-AADT[l-id]= Wed-sum[l-idI/no-Wa 
Thu-AADT[l-id]= Tnu-sum[l-idYno-l%u; 
Fri-AADT[l-id]= Fri-sum[l-id]/no-W, 
Sat-AADTP-id]= Sat-sumP-idJho-Sat; 
Sun_AAJX@jd]= Sun-sum[l-id]/no-Sun; 

t 

I 

I 

Dm-Mon [Lid] =wk-AADT[l-id]/Mon-AADT[l-id]; 
DEF-Tue[ljd] =wk-AADT[l-id ]/Tue-AADT[l-id]; 



DEF-Wed@-id] =wk_AADT[l-id]/[l-id]; 
DEF-l%u@-id] =wk-AADT@-id]/mu-~T[l-id]; 
DEF-.[l-id] =wk_AADT[l_id]lFri-~T[l-idl; 
DEF-Sat[l-id] -k-AADT[ l-id]/Sat-AADT[ Lid]; 
DEF-Sun[l-idl =wk-AADT[l-id]/Sun-AADT[l-idl; 
} /*end for (link-order) */ 

I* Avedaging the MEFs and DWs for this group of links */ 
P‘ TAKING ONIC MEAN */ 
MEFI=MEFz=~MEF4=MEF5=MEF6=MEF7=MEF&-MEF9=MEFl~MEFll=MEF12--0; 
DEFl= DEF2= DEM= DEF4= DEFS DEPk DEF7a. 

tml= tm2= tm3= tmk tm5= tm6= tm7= tms= tm9= lmlo= m11= tm12=0, 
twl= tw2- tw3= tw4= t w S  tw6= tw7=0; 

for (link-order &, link-ordezq-AlR link-order++) 
( 
l j d  = p-link[link-orderl; 
tml = tml+ (l/MEF_Jan[l_id]); 
rm2 = tm2+ (l/MEF_Feb[l_id]); 
tm3 = tm3+ (l/MEF_Mar[l-id]); 
tm4 = tm4+ (l/MEF-Apr@-id]); 
tm.5 = tm5+ (l/MEF_Mayll_id]); 
tm6 = tm6+ ( l/MEF_Jun@_id]); 
tm7 = tm7+ (lIMEFJul@jd]); 
tm8 = tm8+ (lIMEF-Aug[l_id]); 
tm9 = tm9+ (lME€-Sep[l-id]); 
tml0 = tmlOt (1IMEF_octP~idl); 
tml 1 = tml1+ (l/MEF_Nov@-id]); 
tm12 = tm12+ (llMEF-Dec@-id]); 

twl = twl+ (lIDEFJkfon@-id]); 
tdL = tw2+ (llDEF-Tue[l-id]); 
tw3 = tw3+ (lIDEF-Wed[ljd]); 
tw4 = tw4+ (lIDEP-’l%u[l-id]); 
tw5 = tw5+ (lIDEF-Fri[l_id]); 
tw6 = tw6+ (lIDEF-Sat@_id]); 
tw7 = tw7+ (lIDEF-Sun[l-id]); 

) I* end of for*/ 

, 

twl = twllp-ATR, 
tw2 = tw2/p-ATR, 



tw3 = tw3/p-Am 
tw4 = tw4/p-ATR, 
tw5 = twS/p-Am 
tw6 = tw6/p-A= 
tw7 = tw7/p-ATR, 

MEFl = l/tml; 
MEn = l/W; 
MEF3 = 1 m ;  
MEF4=lh* 
MEF5 = 1m; 
MEF6 = lh6 ;  
MEFI= l h R  
MEm = l h 8 ;  
MEF9 = l/tm9; 
MEFlO = l/tmlO; 
MEFll = l/tmll; 
MEFl2 = l/tm12; 

DEFl = l/twl; 
DEE! = l/tw2; 
DEF3 = l/tw3; 
DEF4 = l/tw4; 
DEFS = l/tw5; 
DEF6 = I  lltw6; 
DEF7 = l/tw7; 

-. 

/* MEFs and DEFs are ready! */ 
Pprintf("MEFl= %h", MEF1); 
printf("MEF2 = %h", MEn); 
printf("MEF3 = %h", MEM); 
printf("MEF4 = %h", MEF4); 
printf("MEF5 = %h", MEFS); 
printf("MEF6 = %h", MEp6); 
printf("MEF7 = %h", MEF7); 
printf("MEF8 = %h", MEF8); 
printf("MEF9 = %h", MEF9); 
printf("MEF10 = %h", MEFlO); 

printf("MEF12 = %h", MEF12); 
printf("DEiFl= %h", DEFl); 
printf("DEF2 = %h", DEF2); 
printf("DEF3 = %h", DEP3); 
printf("DEF4 = %h", DEF4); 
printf("DEF5 = %flu", DEF5); 
printf("DEF6 = %h", DEF6); 
printf("DEF7 = %h", DEF7);*/ 

printf("MEF11 = %fw, MEFll); 

Pfprintf(file-out, "MEFl = %h", MEFl); 
fprintf(file,out, "MEF2 = %W, MEF9); 
fprintf(file,out, 'MEF3 = %h", MEF3); 
fprintf(fi1e-out, "MEF4 = %f\n", MEF4); 
fprintf(file-out, "MEF5 = %h", MEF5); 
fprintf(file-out, "MEF6 = %W, MEF6); 
fprintf(fi1e-out, "MEF7 = %W, MEF7); 
fprintf(fiile-out, "MEF8 = %fW, MEFS); 

I .  

I 



fprintf(fiie-out, "MEF9 = %fW, -9); 
fprintf(fde-out, 'UEFIO = S b h " ,  MEFlO); 
fprintf(fi1e-out, "MEFI 1 = %h", MEFl1); 
fprintf(fde-out, 'mEF12 = %h", MEF12); 
fprintf(file-out,"DEFl = %fW, DEF1); 
fprintf(fde-out,"DEn = %h", DEF2); 
fprintf(fde-out,"DEl3 = %h". DEF3); 
fprintf(fde-out,"DEF4 = %W, DEF4); 
fprintf(fde-out,"DEF5 = %f\n", DEFS); 
fprintf(fide_out."DEF6 = %W, DEF6); 
fprintf(fde_out,"DEF7 = %h", DEF7);*/ 

fd = open(infie2,0,RDONLy); 
Pprintf("open 8 s  as fd %db",infde2, fd); *I 
ffie-in = fdopen(fd, "r"); 
P read in simulated data for links with portable ATR */ 
if (fde-in = NULL) 
{ 
prioff("Cannot open mATR fie %sW, infiie2); 
fprintf (stderr,"Cannot open mATR file %sW, infile2); 
} /*end if */ 
else 

{ 
index = 0; 
dl=d2=d3=d4=0, 
fl=f2-13=0.0; 
fscanf (file& "W", h A T R ) ;  /*read in number of portable A m * /  
printf("# of movable ATR is 9bd b", m-ATR); 
/* fprintf(fde-out, "# of movable ATR is %d h", m-Am);*/ 
for ( count = 0; count < m-AR, count*) /*read in link IDS for m-AlR*/ 
( 
fscanf (file-in, "%d, &m-link[count]); 

P printf("1ink %d W, m-link[count]); *I 
} Fend for *I 

while (I)  
( 
int eof = fscanf (file-in. "%d %f %d 9bd %d",&dl,&fl,&d2,8zd3,&d4); 
if (eaf = EOF) break; 
m-ADT(indexl.linkID = dl; 
m-AD~index].ADT= fl;  
~ADT[index]month = 0, 
m-ADTtindexl.day = d3; 
m-ADnindexl.week = d4; 
index=index+l ; 
} r end  while */ 

) P end else for reading m-ATR */ 
fclose(fileJn); 
no-mATR-rd = index; 
printf("# of mATR records = %d\n", no-mATR-rd); 
/*fprintf(file-out, "# of mATR records = %din", no-mATR-rd); */ 

I* save m-ATR flag into output array*/ 
for (count+ count < m-ATR, count++) 

I 



for Oink-orded, link-order < no-link; link-order ++) 
{ 
if (est-AADT[link-order][O] = m-link[count] ) 

{ 
est-AADT[link-order1[2]=6; 

/* printf("\nfor MATR link %f, it is also PATR. The type is %h", 
est-AADTD~nk-orderl[O], est-AADT[link-orderl[21); */ 

break; 
1 else if (est_AADT[link_order][0]=0) 

{ 
est-AADT[link-orderl[OI= mlink[count]; 
est-AADTPink-oder][2] = 2; 
break; 
) P end else if+/ 

) /*end link-ordefV 
* >  ) rend  count*/ 

P estimate the AADT for links with movable ATR */ 
for ( m - r M ,  m-rdsao-mATR-rd; m-rdst+) 

{ 
... 

Lid = m-ADT[m-rds].linklD, 
mm = m-ADT[m-rds].month; 
wk = m-ADT[m-rds].week; 

switch (mm) 
I* printfrlid = 9bd, month = %d, week = %dW.l-id,mm,wk); *I 

1 
case January: 

mon-factor = MEFl; 
break, 

case Febuary: 
mon-factor = MEF2; 
-9 

case March: 
mon-factor = MEM; 
break, 

case April: 
mon-factor = MEF4; 
-9 

CaseMay: 
mon-factor = MEF5; 
break, 

case June: 
monfactor = MEF6; 
br&; 

case July: 
mon-factor = MEF7; 
break; 

case August: 
mon-factor = MEF8; 
break; 

mon-factor = MEF9; 
break; 

case Octo& 
mon-factor = MEFIO; 
break, 

case Septemb 



case November: 
mon-factor = MEF11; 
break, 

mon-factor = MEF12; 
-, 

printf("%d this is not a month?!\n",mm); 

caseDecember: 

defaulc 

) /*end of switch (mm) */ 
switch (wk) 

case Monday: 
week-factor = DEFl; 
break; 

case Tuesday: 
week-factor = DEn; 
br&, 

week-factor = DEF3; 
break; 

week-factor = DEF+ 
br&, 

case %day: 
weekfactor = DEF5; 
br* 

case Saturday: 
week-factor = DEF6; 
b r e ,  

case Sunday: 
week-factor = D W ,  
br*, 

printf("%d this is not a day of the week?!\n", wk); 

( 

case Wednesday: . 

case Thursday: 

default: 

) /*end of switch (wk) */ 
P printf("mon-factor = S f ,  week-factor = %f, data = %flu", mon-factor, 

week-factor, m-AD'I'[m-rds].ADT); */ 
Ptemporal storage for eatimeated AADT for one daily data */ 

est = m-ADT[mj&].ADT * mon-factor * week-factoc 
mATR-est[m-rds][ll= est; 
mATR-est[m_rds][O] = Lid; 

P printf("for link %f, estimated aadt is %f\n",mATR-est[m-rds][O], 
mATR_est[rgrdsl[ll); */ 

) /* end of for(m-rds)*/ 

/* Calculate ground-only Average AADT for each link.*/ 
/*initialize the array of estimates*/ 
for (link-order=O; link-orde~an-ATR; link-order*) 

I 
avgADTPink-order][Ol= 0; /*link id */ 
avgADTPink-order] 1 I= 0; /*# of mATR estimates*/ 
avg_ADT[link-order][2]= 0; /*sum of mATR estimates*/ 
av&ADT[link-order][3]= 0; /*# of sat estimates*/ 
avgADT[link_order][4]= 0; /*sum of sat estimates*/ 

I 

I 



3 

P for movable ATR */ 
for (count =O; count e no-mATR-r& count ++) 

I 
for (linkorde&, link-order<m-ATR; link-order++) 

I 
if (m-linkPink-orderl= mATR-est[ coun t] [O]) 

I 
avgADT@ink-orderl[Oi = mATR-est[countl[Ol; Plink id*/ 
avg-ADTrlink-~~~erlIl I= avgADTPink-order][l ]+I; P# of estimates *I 
avg-ADTIlink-order1[21= avgADT[link-orderl[2] + 

) r e n d  iP/ 
mATR_estIcountl[l]; P sum of estimates */ 

) /*end for link-order */ 
I rend for count */ 

P testing 
for (link-ordee link-order<no-link, link-orderH) 

{ 
printf("\nlink ID = %f, # of est. = %f, sum of est. = %f', 

) end for*/ 
avg_ADT[link-order] [Ol,av~ADT~link~orderl~ 1 l,avgADT[link-orderl [21); 

P averaging ground-only estimates of AADT */ 
for (link-orda=O; link-ordercno-link; link-order++) 

I 
if (avgADT[link-order] [0]=0) 
{ 
break; 
) else 

( 
for (count = 0; count< no-link; count ++) 

{ 
mA'IR-avg = avg~T[link~o~erlf2l/avgADT[link_order [ 1 I; 
if (est~AADT[countl[Ol= avgJDT[link-order][Ol) P link 

{ 
est-AAD~countl[31 = mATR-avg; 
) Fend P/ 

ID match*/ 

) I* end for count*/ 
} P end else*/ 

) P a d  for link,order*/ 

P check if there are links without groundsnly data */ 
if (m-ATR + p-AlR no-link) 
{ 
printf("ALERT! SOMETHING IS WRONG! m-ATR + p-ATR no-fin&"); 
printfC'm-ATR = %d , p-ATR = %d W, m-ATR, p-ATR); 
fprintf(file-out, "ALERT! SOh4ETHING IS WRONG! m-ATR + p-ATR no-linkb"); 
fprintf(fie-out, "m-ATR = %d , p-ATR = %dh", m-ATR, p-ATR); 
) /* end if */ 
else if (m-ATR + p-ATR < no-link) 

{ 
diff = no-link - m-ATR - p-ATR; 
printf("There are 96d links without any ground data.b", diff); 



/* fprintf(fde-out, "There are %d links without any ground data.\n", 
diff);*/ 

} r end  else iP/ 

P Use ARlTHMETIC MEAN of estimated AADT as the estimations for the links 
without ground-only data */ 
temp-total =O; 
for (counts, count <no-link; count*) 

I 
if (est~AADTtcountl[O]!=0) 
{ 
temp-total = temp-total+ est-AAD~count][3]; 
) /* end P/ 

} /* end for*/ 
est-G-mean = temp-toW(no-link - diff); 

P Read in Length of the links*/ 
fd = open(infide4,O_RDoNLy); 
fde-in = fdopen(fd, "r"); 
if (file-in = NULL) 

I 
printf("Cannot open length file %s b",infile4); 
fprintf (stden,"Cannot open length file 96s W, infile4); 
} /*end if */ 
else 

{ 
index a, Pindex of records*/ 
f l=p-f3=0.0; 
for (count=O, count <no-link; count *) 

{ 
fscanf (file-in, "%f 9bW; &f 1, &a); 
link,vmt[count][O] = fl; P link Id*/ 
li~vmt[count][l] = f2, P link length*/ 
link,vmt[countl[2] = 0; /* initialize vmt ground only*/ 
link_vmt[count][3] = 0; /* initialize vmt ground + satellite*/ 
index=index+l ; 
) Fend for count*/ 

fclose(fi1ejn); 
1 P end else for reading length */ 

if (index != no-link) P checking if having exact # of length*/ 
{ 
printf("\n# of link length is not equal to # of links?!"); 
fprintf(fde-out,"b# of link length is not equal to # of links?!"); 
} /* end ir/ 

P Calculate ground-only VMT */ 

I 

for (count e, count ao-link; count ++) 
( 
for (link-order =O, link-ordex no-link; link-order*) 

if (link-vmt [count] IO] = est-AADTpink-order] [OJ) 
{ 



I 

{ 
link_vmt[countl[2] = link_vmt[countl[ll * est-AADT[link-order][3]; 
break; 
) P end P I  

)/* end for count*/ 
] /* end for linkorder*/ 

index =O, 
for (count =O, count <no-link; count ++) 
( 
if (at~AAD'Ilcount][2]=0) index = index+l; 
) /*end for count*/ 
P check if the # of links without ground-only data is correct*/ 
if (index != diff) 
( 
prhtf("bprob1em about ## of links without data?!"); 

fprintf(fde-out, "bproblem about # of links without data?!"); 
) else 

( 
for (count4 count ao-link, count ++) 
{ 
if (link-~mt[countl[2] 4) 

{ 
~ link_vmt[countJ[2] = link~vmt[count][l] * est-G-mean; I* use 

) I* end P I  
average est. AADT for links without data*/ 

)P end for count*/ 
) Pend else*/ 

B 
totaLG-vmt =O, 
for (count =O, count <no-link; count ++) 

I 
if (link_vmt[count][2]==0) 
( 
printf("We got problem for vmt array?!"); 
fprintf(fde-out, "We got problem for vmt array?!"); 
break. 
} else 

( 
total-G-vmt = totaLG-vmt + link-vmt[countJ[2]; 
} Fend else*/ 

. 

} P end for*/ 

printf(lnThe total ground-only VMT for 96d links in this class is %f,W, 
no-link, total-G-vmt); 
Pfprintf(frle-out, "96f " ,total-G-vmt); *I 

rC end printing ground-only VMT */ 

fd = open(infile3,O_RDoNLy); 
Pprintf("b open 96s as fd Wb", infile3, fd);*/ 
file-in = fdopen(fd,"r"); 
/* read in simulated data for links having satellite data */ 
if (fide-in = NULL) 

{ 



printf('7n Cannot open satellite file %s", infile3); 
fpTintf (stderr,"\n Cannot open satellite file %s", infile3); 
] /*end PI 
else 
{ 
index = 0; 
d l=d2=d3444=0, 
f 1=&f3=0.0; 
while (1) 
/* there is no input for number of satellite data and no link 

information */ 
I 
int eof = fscanf(fi1e-in, "%d %f %d %d %d",&dl,&fl,&d2,&d3,&d4); 
if ( eof = EOF) break; 
sat~vol[index].linkID = dl; 
sat_vol[index].flow = fl; Pthe input is 24-hr volume ftom Roger's 

sat-vol[index].month = d2; 
sat-vol[indexl.day = d3; 
sat-vol[index].week = d4; 
I* sat~vol[index].start~time = Q, *I 
P sat,vol[index].end-ti~m = f3; *I 
index=index+l; 
) rend  while*/ 

no-sate-rd = index; 
printf('ln# of sate records is %dW, no-sate&); 
Pfprintf(fie-out, "\n# of sate records is W, no-sate-rd);*/ 

program*/ 

] P end else for reading sate */ 

P search for the # of links and list of link id*/ 
for (link-order a, link-order ao-link; link-order++) 
{ 
sate-link[lin k-order]=O, 
} /*initialize the array*/ 

sate e, 

Psort the list of link ID*/ 
for (count+ count< no-sate-rd; count++) 
{ 
for (link-order =O, link-orderao-link; link- order^) 

I 
if (sat-vol[countl.linkID = sate-link@i&odx]) 
{ 
break; 
) else if (sate-link[link_orderl=O) 

{ 
sate-link[link-order]= sat-vol [count] AinklD, 
sate = sate +l; 
break; 
} I* end else PI 

) P end for link-order*/ 
} /* end for count*/ 

fclose( file-in); 



P print # of satellite and the list of link ID*/ 
printf("# of satellite = %dW, sate); 
Pfprintf(fiie-out, "# of satellite = %dW, sate);*/ 
Pfor (link-order=O, link-orderaate; link-order++) 

{ 
printf("the sate link is Wh", sate-1inHlink-order]); 
] end for print*/ 

P estimate the AADT for links with satellite data */ 
for ( s-r-, s-rds<no-sate-r& s_rds++) 
{ 
Lid = sat-vol[s-rds].liinkID; 
mm = sat-vol[s-rds].month; 
wk = sat,vol[s-rds].week; 
switch (mm) 

{ 
case January: 

mon-factor = -1; 
break, 

case Febuary: 
mon-factor = MEF2, 
b r e  

case March 
mon-factor = MEF3; 
break; 

CaseApril: 
mon-factor = -4; 
br&, 

case May: 
mon-factor = MEFS; 
break; 

case June: 
mon-factor = MEFe 
break; 

case July: 
mon-factor = MEF7; 
break; 

case August: 
mon-factor = MEF8; 
break; 

caseseptembea: 
mon-factor = MEF9, 
break; 

case October: 
mon-factor = MEF10; 
break; 

mon-factor = MEFl1; 
break, 

mon-factor = MEF12; 
break. 

printf("%d this is not a month?!b",mm); 

, 

case November 

case December: 

default: 

) /*end of switch (mm) */ 
switch (wk) 



I 
case Monday: 

weekfactor = DFFl; 
b r e ;  

case Tuesday: 
week-factor = DEF2; 
break: 

case Wednesday: 
week-factor = DEM; 
break; 

CaseThursday: 
weekfactor = DEEQ; 
break; 

caseFriday: 
week-factor = DEFS; 
break; 

case Saturday: 
week-factor = DE=, 
break; 

case Sunday: 
week-factor = DEF7; 
break; 

default: 
printf("%d this is not a day of LE week?!\n . wk); 

) /*end of switch (wk) */ 
P printf("mon-factor = %f, week-factor = %f, data = %flu", mon-factor, 

week-factor, sat,vol[s-rds]flow);*/ 
Ptemporal storage for eatimeated AADT for one daily data *I 

est = sat~vol[s_rdsl.flow * mon-factor * week-factor; 
sat-est[s-rdsl[ll =est; 
sat-est[s-rdsl[O] = l-i& 

P printf("\nFor link %f, estimated aadt is %fb",sat_est[s-rdsl[O], 
sat-est[s~dsl[ 1 I); */ 

} I* end of for(sjds)*/ 

P Calculate ground+satellite Average AADT for each link.*/ 
/* for Satellite */ 
P First to search for links with only satellite data*/ 
P' also save flags for links wl p-ATR and Satellite and for links w/ m-ATR 
and Sate*/ 
P' already KNOWN flag type 12, & 6 +/ 
for (count*, count < sate: count i+) 

( 
for (link-order =O, link-ordexao-link; link-orderi+) 

I 
if 

( ~ s ~ e ~ l i n k [ c o u n t l ~ t ~ A ~ T [ l i n k _ o r d e r l [ l [ 2 ] = 1 ) )  
I 
est,AADT[ link-order] [ 2w; 
break: 

] P end if the link is pATR */ 
if 

( ( s a t e ~ l i n k [ c o u n t ] ~ t ~ ~ T [ l i n k _ o r d e r l ] [ 2 3 = 2 ) )  

! 



est-AADT[link_orderl[2]=5; 
break; 
] P end if the link is mATEt */ 

if 

I 
est-AADT[link-order] [2]=7; 
break; 
) P end if the link is pATR + mATR */ 

((sate-link[coun t ] ~ t ~ A A D T [ l i n k ~ o ~ l [ O l ) & & ( ~ t ~ A ~ T ~ l i ~ ~ o r d ~ I ~ ~ l ~ ~ ~  

if ( ( s ~ e ~ l i n k [ c o u n t l ~ t ~ ~ ~ l i ~ o r ~ l [ O 1 ) & & (  
est,AAD~linkorder] [ 2]=3)) 

( 
break; 
] P end if the link is sate */ 

( 
est-AADT[link-orderl[O] = sate-link[countl; 
est-AADT[link-orderI[21= 3; 
break; 
) P end if the link is new */ 

if (est-AADTtlink-orderl [ O l d )  

) /* end for link-order*/ 
] P end for count*/ 

P add satellite estimates into averaging array for sate-only links and for 
links wlm ATR and Sate */ 
for (count *, count c no-sateA; count ++) 

- J 
- for (linkor-, linliordexno-link; linkorder++) 

if (av~ADT@ink~orderl[Ol== sat-est[countI[Ol) P link ID match*/ 
( 
avg_ADT[link-orde4[31= av~ADTPinLorderl[3]+1; P# of estimates */ 
av&ADTWnk-orderl[41= a v ~ A D ~ k ~ o r d e r l [ 4 1 +  

break; 
] else if (av&AD~liok-order][O]d ) 

( 
avg_ADT[link-orderI[31= av&ADT@ink-ordex][3]+1; P# of 

avg_ADTtlink-orderl[4] = avg_AD~link-orderIt41+ 

a v g ~ ~ l i n k - o d e r l [ O l =  satest[countl[Ol; I* link ID*/ 
break; 
] /*end else if*l 

] /*end for link-order */ 

sat,est[countl[l]; /* sum of estimates */ 

estimates */ 

sat-est[countl[l]; /* sum of estimates */ 

) /*end for count */ 

P testing 
for (link-order=O; link-orderao-link, link-order*) 

{ 
printf("\nlink ID = %f, # of est. = %f, sum of est. = %fW, 

] end for*/ 
a v ~ ~ ~ l i n k ~ o r d e r l [ O I , a v ~ ~ ~ l i n k ~ o r d e r l [ 3 l , a v g A D T [ l i ~ ~ o r d e r l [ 4 l ) ;  



/* averaging ground+satellite estimates of AADT */ 
for (link-ordd, link-orderaolink link-orderH) 

( 
if (av~ADT[link~orderl[Ol=O) 
1 
break, 
) else 

( 
for (count = 0; count< no-link, count ++) 

I 
sat-avg = avgADT[link~~rl[4I/avg_ADT[linkorderl[31; 
avg = ((avg_ADT[link_order1[21+ avg-ADTPiuk~ordal[41) 1 

if ((est,AADT[count][Ol = 

{ 

(avg-AD~ink_ordeal[l] + avgADTIlink_Orderl[31)); 

avgADT[link-order] [0])&8c(est-AAD~count][2] != l)&&(est-AADT[count] [ 21 !=4)) 
P link ID match and it is not pATR link*/ 

est-AAD~countl[4] = avg; 
) /*end P I  

) /* end for count*/ 
) P end else*/ 

) Pend for link-order*/ 

sate-not-ATR=Q 
for (count =O, count <no-link; count ++) 

{ 
if (~~t-AADT[count][2]=3) 
( 
sate-not-ATR = sate-not-ATR +l; 
} /* end ifV 

)P end for count*/ 

P check if there are links without data */ 
diff =O; Pinitialize+/ 

if (mATR + sate-not-ATR + p-ATR no-link) 

no-linlr\n"); 

1 
printf("ALERT! SO 

printf("m-Am = 46d. p-ATR = 9bd, sate-not-ATR = MW,  m-ATR, p-ATR, 

fprintf(file-out, "ALERT! SO 

fprintf(ffle-out, "m-ATR = %d , p-ATR = %d , Sate-uotATR = a", 
) r e n d i f * /  
else if (m-AlR + sate-not-ATR + p-ATR < no-link) 

G IS WRONG! m-ATR + p-ATR + sate-not-ATR < 

sate-not-ATR) ; 

sategotATR < no-linlr\n"); 

m A T R  p-ATR, sate-not-ATR); 

G Is WRONG! m-ATR + p-ATR + 

{ 
diff = no-link - m-ATR - p-ATR - sate-not-Am 
printf("There are %d links without any ground data or satellite 

data.b", diff); 

satellite data.W, diff);*/ 
) rend  else iP/ 

/* fprintf(file-out, "There are %d links without any ground data or 

I 

, 

I* Use ARITHMETIC MEAN of estimated AADT as the estimations for the links 



r i  

without ground+ sat data */ 
temp-total =O, 
for (count+, count ao-link; count++) 

( 
if (est-AADT[count][O] !a) 

I 
temp-total = temp-total+ est-AADT[count][4]; 
] /* end if*/ 

} /* end for*/ 
est-GS-mean = temp,total/(no-link - diff); 

P' Calculate ground+satellite VMT */ 
for (count =O, count <no-link count +e) 

{ 
for (link-order a, link-order< no-link link-order++) 
( 
if (link-vmt[countl[Ol= es-AADT@ink-orderl[Ol) 
( 
link-mt[countl [31= link-vmt[count] [ 1 1 * est-AADTllink-order] [4 I; 
break; 
] P end ifV 

]/* end for count*/ 
] /* end for link-order*/ 

index =O; 
for (count =O, count <no-link; count i+) 

I 
if (est-AADT[count][2]=0) index = index+l; 
} /*end for count*/ 

P' check if the # of links without data is correct*/ 
if (index != diff) 
( 
printf('lnprob1em about # of links without data?!"); 

fprintf(fi1e-out, "bproblem about # of links without data?!"); 
) else 

for (count*, count ao-link; count ++) 
I 
if (link-vmt[countl[3] 4) 

( 
linkvmt[countl[3]= linkvmt[countl[ll * est-GS-mem, P use 

) P e n d i r /  
average est. AADT for links without data*/ 

)P end for count*/ 
) r end  else*/ 

total-GS-vmt =O; 
for (count =O; count <no-link; count ++) 

I 
if (link-vmt[count][3 1 4 )  
( 
printf("We got problem for vmt array?!"); 
fprintf(fiie-out, "We got problem for vmt array?!"); 
break, 



) else 
{ 
total-GS-vmt = total-GS-vmt + link-vmt[count][3]; 
) /*end else*/ 

} P end for*/ 

/* print out the estimated AADT for the links with data */ 
-printf("b 0 -- link without datab"); 
printf("b 1 -- link with permanent ATR onlyb"); 
printf('ln 2 -- link with portable ATR onlyb"); 
printf('b 3 - link with satellite data onlw) ;  
printf("\n 4 - link with permanent ATR & SateKteh"); 
printf("\n 5 - link with portable ATR & Satelliteb"); 
prind("b 6 -- link with permanent & portable ATRW); 
printf("b 7 -- link with permanent, portable ATR & satelliteW); 

Pfprintf(file-out, "b 0 -- link without datab"); 
fprintf(file-out, "b 1 -- link with permanent ATR onlyW); 
fprintf(file-out, '%I 2 -- link with portable ATR onlyb"); 
fprintf(file-out, "\n 3 -- link with satellite data only\n"); 
fprintf(file-out, "b 4 -- link with permanent ATR & Satelliteb"); 
fprintf(fi1e-out, "b 5 -- link with portable ATR & SatelliteW); 
fptmtf(file-out, "\XI 6 -- link with permanent & portable ATRb"); 
fprintf(fiile-out, "b 7 -- link with permanent, portable ATR & 
satelliteb"); */ 

Pfor (link-ord-, linkorderao-link, link-order*) 
{ 
printf(Wm link %f, the type is %f, estimated AADT = %fin, 

fprintf(fi1e-out,"Wor link %f, the type is %f, estimated AADT = 
es-AADTIlink,orderl[Ol, est~AAD~nk~orderIlE21, e s t - A A D ~ ~ - ~ 1 ~ 4 1 ) ;  

%f\n",est-AADT[link-orderl[Ol ,es~AADTllink~orderI[21, 
est-AADT[link-order] 141); 
) end for */ 

printf('7nThe total ground+satellite VMT for %d links in this class is 
96f.b" , no-link, total-GS-at); 
I* */ 
P end of printing results*/ 

P testing */ 
for (count =O, count < no-link; count H) 
{ 
printf("\nFor link %f, the type is %f, the true AADT is %f. the G-AAJIT 

is %f, the GS-AADT is %f.b", 
est-AADT[count] [O],est~AADT[countl[2l,est~AADT[count][ l],est-AADT[count1[31, 
est-AADT[count ][4]); 

} I* end for count*/ 

/* Read True AADT for a l l  links */ 
fd = open(infile5,O-RDONLY); 
fie-in = fdopen(fd, "r"); 
if (file-in = Nuu) 

{ 



n 

printf("Cannot open length file %s b",infile4); 
fprintf (stdem."Cannot open length file %s b", infile4); 
] /*end if */ 
else 
( 
index =O, 
f l 9 . 0 ;  
for (count=l; count <=no-link; count cl-) 

I 
fscanf (file-in, "%f W, MI); 
true[count]=f 1; 
index=index+l ; 
} Pend for count*/ 

fclose(fi1e-in); 
} P end else for reading true AADT * I  

P check if # of true AADT = # of links*/ 
if (index != no-link) 

( 
printf("# oftrue AADT is not # of links!!!"); 

/* fprintf(file-out. "# of true AADT is not # of links!!!");*/ 
] /* end if */ 

P testing*/ 
printf("G-mean = %f, GS-mean = %f.W, est-G-mean, est-GS-mean); 
for (count =I; count <=no-link; count++) 
( 
printf("bTrue AADT =%f",true[count]); 
1 

P put true AADT into array est-AADT *I 
for (count =I; count <= no-link; count ++) 

I 
for (link-or- link-order < no-link; link-order ++) 
( 
if ((est-AADT[link-orderI[21=3) &&(est_AADT[link_orderl[0] = count)) 
( 
est-AADT[linkorderl[l] = true[count]; 
est-AAD~link-order1[31= est-G-mem; 
break; 
I 

if ((est-AADT[li~-o~l[Ol= count) && ( e s t ~ ~ n k ~ o ~ l k _ o r d e a 1 [ 2 1  

I 
est-AADnlink-orderI [ 11 = true[count]; 
break; 
I 

( 

!=O)&&(est-AADTDnk-orderl [2 ]!=3)) 

if ((est-AADT[link-orderI[21 =O) && (est_AADTPink_order][O]--~ount)) 

. .  

estAAD~link-orde][Ol= count; 
est-AADT[Unk-orderl[ 1 I = me[count]; 



est_AADT@1k-orderl[3] = est-G-mean; 
est-AADT[link-order][4] = est-GS-mean; 
break; 
1 

] /* end for link-order*/ 
} /* end for count */ 

P testing */ 
for (count e, count < no-link; count cc) 

{ 
printf('lnF0r link Sf, the type is %f, the true AADT is %f, the G-AADT 

is %f, the GS-AADT is %f.b", 
est~AADT[count][O].est~~T[countl[2]~est~AADT[countl[ 1 l,est-AADT[count][3], 
est-AADT[countl[4]); 

) /* end for count*/ 

P Calculate True VMT */ 
for (count 4; count <no-link; count ++) 

{ 
for (link-order =O, link-oder< no-link; link-order+t) 
{ 
if (link-mt[countl[Ol = est-AADT@ink-ordexl[Ol) 

I 
link-vmt [coun t1[4] = linkvmt[coun tl [ 1 I * es t-AADTPink-order] [ 11; 
break; 
} P end if*/ 

)/* end for count*/ 
} /* end for link-order*/ 

total-t-vmt a, 
for (count =O, count <no-link; count +t) 

{ 
total-t-vmt = total-t-vmt + link~vmt[countl[4]; 
] /* end for*/ 

fprintf(fie-out, "%f " , total-t-vmt); 
fprintf(fiie-out, "%f " ,total-G-vmt); 
fprintf(fde-out, "%fin", total-GS-vmt); 
fclose( file-ou t) ; 

P open for 96 m o r  of VMT file and calculate %or of W/ 
file-out = fopen(outfile3, "w"); 
if (fde-out = NULL) 

( 
printf("Cann0t open output Ne 96s \n",OUtfile3); 
fprintf (stdm,"Cannot open output file %s b", outfile3); 
] Popen output file for % error file*/ 



fprintf(fWout, "%f %h", vmt-G-err, vmt-GS-err); 

fclose(fi1e-out); 

- 
4 

/* open for % error of AADT file*/ 
fde-out = fopen(outfile2, "w"); 
if (file-out = NULL) 

( 
printf("Cannot open output file 8 s  \n",outfile2); 
fprintf (stdm,"Cannot open output file %s b", outfile2); 
) Popen output file for 8 error of AADT file*/ 

P Calculate the square percent Error of estimated AADT and print them into 
another fde*/ 
est-G-exr = 0.0; 
est-GS-err = 0.0; 
temp-G-em d.0; 
temp-GS-err =0.0; 
low-G-aadt = low-GS-aadt = 0; 
for (count =O, count < no-link; count ++) 

{ 
temp-G-err = (est~AAD~countl[3]est~AADT[coun tl [l l)/est-AADT[coun t] [ 11; 
if (te.mp-G-err < 0) 

I 
low-G-aadt = low-G-aadt +l; 
)P end if *I 

est-G-err = est-G-err + (temp-G-erP temp-G-err); 
temp-GS-err = (est-AADT[count] [4]estAADT[countl[ 1 ])/est-AADT[count] [ 1 I; 
if (temp-GS-err < 0) 

I 
low-GS-aadt = low-GS-aadt +l; 
)P end if */ 

est-GS-en = est-GS-m + (temp-GS-err*temp-GS-exr); 
) /* end for */ 

fprintf(fie-out, "%f %h", est-G-err, est-GS-exr); 

fclose(fi1e-out); 

printf("b 9bd out of 100 est. AADT(G) are lower than true AADT.", low-G-aadt); 
printf("b ?id out of 100 est. AADT(GS) are lower than true AADT.", 
low-GS-aadt); 
printf('7n %d out of 100 est. VMT(G) are lower than true VMT.", low-G-at); 
printf("\n 9bd out of 100 est. VMT(GS) are lower than true VMT.", low-GS-vmt); 

for (count = 0; count<no-link; count++) 
fprintf(aadtp. "%f %f %f %fin", est-AADT[count][O], 
est-AADT[countl[ 1 I, est-AADT[countI[3l1 est-AADT[count] [4 I); 

fclose(aadtp); 



) /*end of main*/ 

. .  

I 



Appendix E. Model-Based Estimation Code 

function(seed, param, reps) 
{ 
# 
# This function generates the model based AADT and Vh4T estimates for a fmed 
# set of input parameters. 
# 
# The output is me VMT, ground VMT estimate, ground & sat VMT estimate, 
# ground residual, and ground & sat residual. 
# 
# 'seed' must be a negative integer 
# 
# 'param' is the input parametas for run.traffic 
# 

2 

# The simulation is run 'reps' times (the seed is incremented each time). 
# 

AAJ3T.G <- numeric( 100) 
AADT-GS <- numeric( 100) 
var.G <- numeric( 100) 
var.GS <- numeric( 100) 
MGE <- numeric( 100) 
MGSE <- numeric( 100) 
nsatobs <- (param[ 11 * param[6] * 365)/param[5] 
print(nsatobs) 
vmt <- matrix(nrow = reps, ncol = 5) 
write.table@aram, file = "input", append = F) 
for(i in lxeps) { 

write(seed - j + 1, fie = "idum.in", append = F) 
unix("cat input I run.traffic") 
inputmat <- matrix(scan("design.out"), byrow = T, ncol = 4) 
lengths <- matrk(scan("length.out"), byrow = 2, ncol = 2)[, 21 
AADT.T <- ~an("aadt.out") 
nrow e- length(inputJMt[, 11) 
wts e- a~.vector(c@ep@mm[8]~-2, nsatobs), rep(param[101A-2, 

IogCounts <- log(input.mat[, 11) + 142 * wts) 
links.G <- unique(inpuLmat[(nsatobs + l):nrow, 21) 
links.GS <- unique(inputmat[, 21) 
dow.factor <- as.character(input.mat[, 31) 
month.factor <- as.character(input.matat[, 41) 
linkfactor <- as.characteafinput.mat[, 21) 
h.GS <- lm(1ogCounts - lintfactor + dow.factor + monthfactor, 

lm.G <- Im(1ogCounts - 1ink.factor + dow.factor + monthfactor. 

nrow - nsatobs))) 

weights = wts) 



subset = as.vector((nsatobs + 1):nrow)) 
c0ef.G <- dummy.coef(lm.G)$link.factor 
mean.G <- dummy.coef(lm.G)$(ntercept)" 
coef.GS <- dummy.cuef(lm.GS)$linkfactor 
mean .GS <- dummy.coef( Im.GS)$"( Intercept)" 
~~mmary.G <- s~mmary(lm.G) 
SUUUXMIY.GS <- ~~mmary(lm.GS) 
sigma.G <- summary.G$sigma 
sigma.GS <- summary.GS$sigma 
par.cov.G <- (sigma.W2) * (summary.G$cov.unded) 

for(k in l:max(links.G)) { 
P~~.cov.GS <- (SigmrtGSY) * (SUIIUIMIY.GS$COV.UI~SC~~~~) 

c.k <- as.matrix(c(1, rep(0. k - l), 1, rep(0. mol( 
p~c0v.G)  - k - 1))) 

var.G[k] <- cr~s~prod(c.k, PZ.COV.G %*% C.k) 
AADT.G[k] <- exp(mean.G + coef.G[as.character(k)] - 

var.G[kl/2) 
I 
for(k in (max(links.G) + 1): 100) { 

v~.G[k] <- PX.COV.G[ 1, 11 
AADT.G[k] C- e~p(rnean.G - ~ . G [ k ] / 2 )  

1 
for(k in 1inks.GS) { 

1 <- as.numeric(row .names( as.data.fiame(links.GS)) [ 

c.k <- as.malrix(c(1, rep(O.1- l), I, rep(0, mol( 

var.GS[k] <- crossprod(c.k, par.cov.GS %*% ck)  
AADT.GS[k] <- exp(mean.GS + coef.GS[as.charactex(k)] - 

links.GS = k]) 

P~~.COV.GS) - 1 - 1))) 

var.GS [k]/2) 
1 
links <- seq(1:lOO) 
links.no.GS <- links[ - links.GS] 
fm(k in linb.no.GS) ( 

var.GS[k] <- par.cov.GS[l, I] 
AADT.GSB] <- exp(mean.GS - var.GS[k]R) 

I 
VMT.T <- sum(1engths * AADT.T) 
VA4T.G <- sum(lengths * AADT-G) 
VMT.GS <- sum(1engths * AADT.GS) 
MGEUl<- sqrt(mean(((AADT.T - AADT.G)/AADT.T)Y)) 
MGSEU] <- sqrt(=(((AADT.T - AADT.GS)/AADT.T)"2)) 
vmt[i, 1 <- c(VMT.T, W . G ,  VMT.GS, MGEU], MGSEU]) 

1 
vmt #?his is the real one, next line is temporary 

# cbindWGE, MGSE) 
I 

: 



Appendix F. Scatterplots of the Traditional Estimation Method vs. the Model-Based 
Estimation Method (100 replications; M =  ....) 
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