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Executive Summary

Satellite imagery could conceivably be added to data traditionally collected in traffic
momtonng programs to allow wide spatial coverage unobtainable from ground-based
sensors in a safe, off-the-road environment. Prev10usly, we estimated that 1-m resolution
panchromatic imagery should allow accurate vehicle counts and rough vehicle
classifications, while large vehicles might be accurately detected with only 4-m
resolution. At least three private groups are planning to market such high-resolution
satellite data in the near future, but several issues must be addressed before these data
could be used to complement traffic monitoring programs This report addresses the
following issues:

o demonstrating that vehicles can be identified and classified accurately from
satellite imagery; :

e developing efficient image processing methods; and

° deterrmmng methods to integrate the i imagery wnh ground-based data and
assessmg the value of this i mtegratlon

- Previously, we designed a process to compare image data with data obtained from
ground-based sensors to investigate the accuracy in identifying and classifying vehicles
from imagery. We also tested the process using aerial photographs to simulate satellite
imagery. In our new work, we replicate these field tests and develop software that
automates many of the analytical components involved with these tests. The software
could eventually be used in tests conducted with real satellite data. The empirical results
of our new field tests show that our approach and software work well. However, we
notice discrepancies between image- and ground-based data that lead us to propose that
there are inevitable differences between image- and ground-based data sets that cannot be
attributed to misidentification of vehicles in the images. Therefore, data collected from
ground-based sensors should not be considered as absolute ground truth against which
image-based data should be evaluated. Further work is warranted to reduce the magnitude
of these inevitable differences and to determine how to work with such differences when
determining the accuracy of vehicle identification and classification from image-based
data. Additional consideration should also be given to operational differences in the tests
we have conducted using simulated satellite imagery (scanned aerial photographs) and
the ultimate tests of interest - those using real satellite data. For example, consideration
should be given to anticipated data formats and the ease with which highway segments of
interest can be identified and delimited in the images.

Based on our experience with simulated high-resolution imagery, we are optimistic that
an individual could visually detect and develop vehicle classifications from 1-m satellite
imagery. However, to be useful in practice, automated image processing must be used to
perform the detection and classification. We had previously developed rules that could be
coupled with thresholding methods to count and classify vehicles using panchromatic
imagery. This approach worked well under conditions where vehicle shadows were

v




pronounced, but it did not perform well under different lighting conditions. We are now
developing a more robust methodology that first identifies dynamic (moving) pixels by
subtracting an image of a highway segment under current conditions from a steady-state
background image intended to represent the same segment with no vehicles present. The -
effects of different lighting conditions in the current and background images are reduced
by first transforming grey tones of one of the images. We develop an iterative, maximum
likelihood-based procedure that requires an a prior estimate of the probability that a
random pixel in the current image is dynamic. Tests on images generated from computer
simulations and on images obtained from scanned aerial photographs show the promise

~ of this approach and its robustness to the prior probability estimates required. Future
work is needed to refine the image processing components we have been developing, to
test them further, and to incorporate them with vehicle classification modules that would
operate on the set of dynamic pixels identified.

The limited temporal coverage that would be possible from a sensor carried on a satellite
in a nongeostationary orbit has led us to focus on using satellite imagery to improve
estimates of Average Annual Daily Traffic (AADT) on highway segments and Vehicle
Miles Traveled (VMT) over the network of these segments. We develop methods to
simulate the improvements in AADT and VMT estimates produced by combining data
obtained on time scales consistent with satellite orbits with data collected on the ground.
* Numerical results indicate the potential of satellite-based data to complement ground-
based data and markedly reduce the errors in AADT or VMT estimation and the
personnel required to obtain sufficient ground data to produce a given level of accuracy.
These encouraging results were obtained when using methods similar to those
‘traditionally employed in practice. We improve estimates further by developing a method
designed to take advantage of the assumed data models. However, we expected to see
greater improvements when using this method. We, therefore, feel that this method can
be refined and that other methods can be developed to exploit the different spatial-
temporal natures of the satellite- and ground-based data.






Section 1. Introduction

This report documents our continued research into the feasibility of using data obtained
from satellite images to improve estimates of interest in traffic monitoring programs.
Using satellite imagery is attractive for traffic monitoring programs, since imagery would
allow wide spatial coverage unobtainable from ground-based sensors. In addition, sensors
onboard satellites are off-the-road, and, therefore, there is no disruption to traffic flow or
increased hazard to personnel during installation and repair. Moreover, high-resolution
satellite imagery will soon be available for the first time in the non-military world.

Previously, we estimated that approximately 1-m resolution panchromatic imagery
should allow accurate vehicle counts and rough vehicle classifications, while large
vehicles might be accurately detected with only 4-m resolution (McCord ez al. 1995a,
1995b). At least three private groups are planning to market high-resolution satellite data
in the near future (American Society of Photogrammetry and Remote Sensing, 1996).
EarthWatch, Inc. lost the EarlyBird satellite (3-m panchromatic data) shortly after launch
in December 1997. However, the company is focused on the QuickBird-1 Satellite with a
1-m panchromatic (0.45-0.9 um) sensor and a 4-m multispectral (MS) sensor onboard.
Orbital Sciences Corporation is presently developing OrbView-3, which will have 1-m
panchromatic and 4-m MS sensors. In April 1999, Space Imaging EOSAT lost the
Tkonos-1 satellite that was to carry 1-m panchromatic and 4-m MS sensors. Ikonos-2, an
identical twin to Ikonos-1, was launched on 24 September, 1999. After an initial four- -
month calibration period, Ikonos images are now available for purchase by the public.

Several issues would need to be addressed befofe such high-resolution satellite imagery
could operationally be used to complement traffic monitoring programs. This report
addresses the following issues:

e To gain acceptance, it wohld Be necessary fo demonstrate that vehicles can indeed be
identified and classified accurately from real satellite imagery.

e Tobeused ~operationaﬂy, it would be necessary o develop methods that efficiently
process image data into data that can be used to improve traffic parameter estimation.

e To stimulate investment in.implementation, it would be necessary o assess the value.
that the processed imagery data would.add to traditional traffic parameter estimation
and to develop methods for integrating the data with ground-based data to increase
the value of the combined data. .

Showing that the numbers of classified vehicles observed in satellite images match those
obtained from ground truth data would demonstrate that vehicles could be counted and
classified from satellite imagery. However, determining ground truth data comparable to -
the type of data observed in a satellite image would not be straightforward. To obtain the
1-m ground resolution we are seeking to detect vehicles, the sensor would need to orbit at
altitudes much less than those permitting geostationary orbits, orbits where the satellite



can continually image a fixed location on the earth (McCord ef al. 1995a). The
nongeostationary orbits imply that the image-based data would consist of snapshots of
different vehicles over wide spatial areas taken at instants in time (Merry ef al. 1996,
McCord et al. 1995a). On the other hand, data obtained from ground sensors would
consist of vehiclés passing a point in space over an interval of time. Previously, we
‘designed and field tested a process to compare the image data with data obtained from
ground sensors (Merry et al. 1996). We used aerial photographs to simulate the satellite
1magery because of the unavallablhty of hxgh-resolutlon satelllte 1magery

In Secnon 2, we report on new field tests, where we again used aerial photographs to
simulate satellite imagery. In our new work, we also developed software to automate
many of the calculations involved. The empirical results show that our approach and
software work well. However, we still notice differences between vehicle classifications
obtained from the image- and ground-based data. We propose that some differences are
unavoidable because of the different nature of the data sets: Therefore, when conducting
tests with real satellite data in the future, data obtained from ground-based sensors should
not be considered as absolute ground truth. Further work seems warranted to reduce the
size of the differences that can occur and to obtain a feel for the maximum difference that
could be tolerated before the equivalence of the number of vehlcles in the image- and
ground-based data would be rejected with conﬁdence

Based on our experience w1th aenal photographs scanned to simulate 1-m imagery, we -
are optimistic about the ability to detect and classify vehicles from-high-resolution
satellite imagery. Specifically, we have always been able to visually detect in the 1-m
1mages vehicles that appeared in the original aerial photographs. However, if such
imagery is to be useful in practice, the detection.and classification would need to be
performed automatically. ’ :

In Section 3, we report on our progress in developing operational image processing
methods for vehicle classification. The task is different from the presently popular one of
detecting vehicle presence in video images of a fixed location. In video imaging, an
extremely fine-resolution background of the location can be built up from thousands of
frames under almost constant lighting conditions. Satellite-based images, on the other
hand, will only yield pairs of overlapping images of a location, with each image in the
pair taken several seconds apart, and different pairs of images taken days apart. We had
_previously developed classification rules that-we coupled with thresholding methods to
count and assign vehicles into two classes using panchromatic imagery. The method
worked well under conditions where vehicle shadows were pronounced (McCord ef al.
1995a, 199b). However, the method did not perform as well under different lighting
conditions (Merry et al. 1996). We, therefore, have been developing and testing a more
robust methodology. We describe this methodology in Section 3.1 and report the
encouraging test results in Section 3.2. We propose further work to continue developing
the components of this methodology, integrating these components into an operational
program, and testing the program with simulated and real satellite data.




o

Although a sensor carried on a satellite in a nongeostationary orbit could image the same
area on different orbits, the repeat period would be on the order of days (McCord et al.,
1995a). We propose that such data would be most useful for complementing traffic
monitoring programs that collect and estimate state- or region-wide network traffic
statistics over relatively long time periods. Compared to traditional ground-based
methods, satellite imagery would detect concurrent traffic conditions on an increased
number of highway segments. It could also more directly determine changes in
conditions along a segment of highway. Figure 1.1 shows velocities along approximately
10 km of I-70 in Central Ohio estimated from overlapping aerial photography that we
have been using to simulate satellite data.

In our work reported in Section 4, we have been concentrating on the ability of satellite-
based data to improve estimates of Average Annual Daily Traffic (AADT) on highway
segments and Vehicle Miles Traveled (VMT) over the network of these segments. In
Section 4.1 we describe the methods we developed and coded to simulate traffic patterns
and true AADT and VMT statistics and estimate these measures from observations
assumed to be obtained from samples of the traffic patterns. The estimation component
can use either a traditional-based method (what has traditionally been used to estimate
these measures from ground-based sensors) or a model-based method that uses
observations more efficiently when the data can be assumed to be compatible with a
specified underlying stochastic process. In Section 4.2, we report the results of numerical
studies we conducted using our software. These results indicate the potential of satellite-
based data to complement ground-based data and markedly reduce the errors in AADT or
VMT estimation or the personnel required to maintain an accuracy level when estimating
these parameters. »

In Section 5 we summarize the report and expand upon future work we feel is warranted
in several areas.



Speed (km/h)

00 100 110 120

80

ATR Car o—»—9 Truck  &--+-4

0 2000 4000 6000 8000 10000
Distance along 170 E {m)

Figure 1.1. Velocity profile along I-70 E in Central Ohio, estimated
from overlapping aerial photographs.

76

70

65

60

55

50

Speed (miles/h)



38

Section 2. Air-Ground Coordinated Field Tests

Our previous work (McCord et al. 1995a, 1995b, Merry et al. 1996) indicates that 1-m
resolution would be sufficient to identify vehicles and distinguish between large and small
vehicles in digital images scanned from panchromatic aerial photographs. It would be
necessary to demonstrate that vehicles could be identified in panchromatic imagery
obtained from a satellite platform to convince potential users that satellite imagery can, in
reality, be used to count and classify vehicles on highway segments. ‘

- Inour previous work, we compared vehicles identified in digital images scanned from

aerial photographs to vehicles identified in the photographs. That is, the photographs
served as the ground truth. When conducting tests with satellite imagery, it would be
difficult to simultaneously image the dynamic highway segments with photographs and
satellite imagery. Therefore, vehicle data detected from ground-based sensors would need
to serve as ground truth. However, vehicle data obtained from ground-based sensors
consist of vehicles passing a fixed location through time (i.e., of temporal flow data ata -
point), whereas that collected by imagery consists of vehicles imaged at an instant across

_an area (i.e., of spatial density data at one time). We have been developing a means to

compare the ground data to that collected from the satellite. We conducted a field test
similar to that previously described (Merry e? al., 1996) to test and refine our approach.
We also wrote software that automates many of the calculations required and tested this
program on the data collected. As in the previous study where we conducted the analysis
manually, we scanned aerial photographs to simulate the satellite imagery.

2.1 Acquisition of Data

We conducted a new field test on 29 October 1996. The Ohio Department of
Transportation’s (ODOT) Bureau of Aerial Engineering obtained aerial photography of

_the same three highway sites in Central Ohio that were used in a test we conducted in a

previous project (Merry et al., 1996) — 1-270 in Franklin County on the west side of
Columbus, I-70 in Madison County just west of Columbus, and I-71 in Pickaway

County just southwest of Columbus (see Figure 2.1). Photographs were obtained ata
scale of 1 in. = 400 fi with the highway centerlines located approximately in the center of
the photos. The recorded weather indicated high overcast clouds, scattered at 1800 m
(6000 ft).

While the aerial photographs were being taken, ODOT’s Bureau of Technical Services
was collecting vehicle data passing traffic sensors embedded in the highway. For each
direction of the I-70 and I-71 facilities, volume-by-length sensors were used to collect 1-
minute volumes by two length classes — under 20 ft (6.1 m) and 20 ft (6.1 m) and over.
For each direction of the I-270 facility, weigh-in-motion sensors were used to record
FHWA vehicle class and the time to the nearest second that the vehicle passed the sensor.
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Flgure 2.1. Site location map showing the 1-270, 1-70 and 1-71 field sites
used in the 1996 field test.




To provide additional control, we videotaped traffic in all but the I-71 southbound
directions during the data collection period. The videotape had time stamps to the minute.

We obtained the aerial photographs and ground sensor data in the same formats as those
described in Merry et al. (1996).

2.2 Analysns of Data

Our analysis is s1m11ar to what we developed and documented in Meny et al. (1996). The
process compares the number of vehicles in a class passing a ground traffic sensor during
a specified time interval to a projection of the number in that class that would pass the
location of the sensor during the same time interval. The projections are based on vehicle
locations and speeds obtained in the imagery. As such, the comparisons will be influenced
not only by how well vehicles can be identified in the images, but also by how well the
times that the identified vehicles will arrive at the sensor location, which we denote X***,
can be predicted.

We cohsidered two vehicle classes, small and large, which we call cars and trucks, for.

~ simplicity. We based the classes on size, since it is a parameter that could conceivably be |

distinguished in images. In the volume-by-length sensor data, we classed vehicles less than
20 ft (6.1 m) long as cars and vehicles 20 ft (6.1 m) or longer as trucks. In the weigh-in-
motion data, we considered vehicles in FHWA classes 1, 2, 3, and 5 to be in our car
category and vehicles in the other classes to be in our truck category. The-sensor data is
provided by lane, but we aggregated across lanes to obtain classified counts during a time
interval by direction (see Merry ef al., 1996). In this way, the numbers of cars and trucks
passing the sensor during a specified time interval were readily available from the data
recorded by the ground sensor. The time intervals are those recorded by the ground
sensor.

We visually classified vehicles in the aerial photographs as cars or trucks based on size.
We also visually identified identical vehicles in different photographs and assigned each
vehicle a 2-part identifier, where the first part indicated its class (C or 7, for car or truck)
and the second part (an integer number) allowed it to be identified as.the same vehicle in-
different images: a vehicle with the same identifier in different photographs was believed
to be the same vehicle. : x

The photographs were scanned and saved as digital 8-bit image files. The x,y locations of
the vehicles were digitized from these image files. The times that the vehicles were imaged
and vehicle identifiers were manuaily added to the file. Highway edgelines were also
digitized from these image files. The images were placed in a common X,y coordinate
system. This consisted of registering the images by identifying points that were common
to pairs of images. The digitized locations of vehicles at specified times, the two-part
identifiers of these vehicles, the digital locations from the reference edgeline of the



highway, and the locations of the ground sensor and upstream and downstream ramps
serve as input to the software. This software estimates the time that each vehicle passes
the ground sensor location X*** and totals the number of vehicles by class passing X"
during a specified time interval. The software code is described fully in Appendix A. We
explain the concepts used here and note that comparisons with the manual calculations
conducted as described in Merry ef al. (1996) show that our software works very well.

To control for horizontal curvature of the highway, we use the digitized edgeline of the
highway as a linear reference. The program mathematically projects the digitized vehicle
locations to this digitized edgeline, providing linear distances from a reference-datum. A
vehicle that appears in more than one image is automatically identified by its two-part .
identifier. The linear distance traveled between subsequent imaging of the same vehicle is
calculated from the vehicle's locations along the edgeline. This distance is divided by the
times between the images to yield an estimate of the vehicle’s average velocity U” in the
time between images. The closest imaged location X” of the vehicle to the ground sensor,
the time the vehicle was imaged at this location, the estimated average velocity U*(X")
traveled in the time between this image and the next photograph, and the location of the
ground sensor X**™ are used to estimate the time the vehicle passes the ground sensor.

. Some vehicles may appear in only one image. These vehicles are assigned velocities equal
to the average velocity of the other vehicles in its class — i.e., a car is assigned a velocity

- equal to the average velocity of all the cars considered on the segment, and a truck is
assigned a velocity equal to the average velocity of all the trucks considered on the
segment. Once the time that each vehicle passes the ground sensor is estimated, it is .
straightforward to determine the number of vehicles that pass the sensor during any time
interval. Since the identifier indicates the vehicle class, the number of vehicles in each class-
in any time interval can be readily determined. In this case, the times would correspond to
the airplane clock, i.e., the clock that assigns times to thé photographs.

Although the process is conceptually straightforward, there are certain controls that must
be exerted. The ground sensor data are tagged to ground sensor clocks, while the image-
based estimates are tagged to the airplane clock. Discrepancies in these clocks can lead to
poor comparisons in a dynamic system such as this. We compensated for time -
discrepancies by adding or subtracting a constant time offset to.the clocks. The details are
presented in Merry ef al. (1996), but the basic approach is to use video data obtained at
the site to independently reference the video camera clock to the airplane clock and to the
ground sensor clock. An offset is found between the video camera and ground sensor
clock that maximizes a correlation measure between video-based estimates of classified
counts passing X*** during short intervals and ground sensor-based estimates of classified
counts passing X**** during intervals of possibly different durations over a relatively long
time period. (We maximized Pearson’s correlation factor, obtained video-based estimates
of vehicles passing X**" in 5-second intervals, used 1-min intervals for volume-by-length
sensors and 1-sec intervals for weigh-in-motion sensors, and compared the estimates over
12-minute periods.) An offset between the video and airplane clocks is found by




averaging differences between the video times and estimated photo times when
distinguishable vehicles pass X**™. The time offset between the photo and ground sensor
clocks is then determined by taking the differences of these photo-video and ground
sensor-video time offsets. We expect that we will be able to control for the effect of clock
differences more efficiently in tests with real satellite data by simply referencing the
ground sensor clocks to the UTC (universal time code) time used in the satellite clocks.

We also control for vehicles entering or exiting the highway. For example, if time intervals.
analyzed are too long, some vehicles could enter the highway-from ramps upstream of the
ground sensor after the highway was imaged and pass the ground sensor during the
analyzed interval. Similar problems could occur with upstream exit ramps and - -
downstream entrance and exit ramps. Therefore, we limit the time intervals to those such.
that only vehicles that are imaged downstream of ramps upstream of the ground sensor
and upstream of downstream ramps could pass the ground sensor during the time period
of analysis. Doing so shortens the lengths of the analyzed intervals from what could
otherwise be considered from the imagery, and in some cases we only analyze intervals of
less than a minute. ’ ' B T '

~ 2.3 Results

After compensating for the time discrepancies among the various clocks, we compared

volumes-by-class projected as passing the ground sensors from the images, counted from )

the video, and recorded directly by the ground sensors for estimated concurrent time
intervals. We considered the longest time intervals such that vehicles using entrance and
exit ramps would not confound the comparisons. That is, we determined the time
intervals by estimating the earliest and latest times that imaged vehicles downstream of
upstream ramps and upstream of downstream entrance ramps would pass the ground
sensors, where upstream and downstream directions are defined with respect to the
ground sensor. We shortened the intervals to the nearest minute for the volume-by-length
sensors and to the nearest second for the weigh-in-motion based sensors. :

The estimated volumes are presented in Table 2.1. In general, the estimates compare -
favorably with the ground sensor data at the I-70 and I-71 sites and less favorably at the
I-270 site, although the I-270 data compare fairly well with the video data. We
investigated the I-270 data in more detail and, upon contacting ODOT discovered that the
ground sensor (weigh-in-motion) was malfunctioning during the relevant time interval at
this site.

Despite the controls for clock differences and the effect of entrance and exit ramps, there
could still exist discrepancies between the classification volumes recorded by the ground
sensors and those estimated from the images that are not attributable to a failure to detect
vehicle classes in the imagery. The discrepancies could result from errors in the estimated
vehicle locations, which would cause errors in the X” and the U" discussed above. They



could also result from the fundamental difference in comparing data taken from images
covering a stretch of highway at a point in time to data collected from ground sensors at a
point in space during a time interval. In short, if a vehicle would accelerate or decelerate
from the estimated speed U used to estimate when it would pass X***, the estimated
time of passing X°** would be wrong. Depending on where it fell in the interval of-
analysis, this could cause discrepancies between the image-estimated volumes and the
ground sensor-recorded volumes used as ground truth, even if the vehicles were correctly
detected in the images. We have; therefore, begun developing methods and accompanying
software to determine upper and lower bounds on the classified volumes that would-pass
X* during specified intervals. The bounds would account for reasonable errors in
estimated vehi¢le locations and vehicle acceleration and deceleration characteristics.

Table 2:1. Volumes passing ground sensors estimated from air photos, video and
- recorded by ground sensors during estimated concurrent time intervals.’

Car Volume Truck Volume
Segment Ground | Photo | Video | Ground| Photo | Video
sensor sensor

1-70 WB, 1996 |
TimeInterval=6min | 63 | 72 | 64
I-70 EB,1996 | 1 o
Time Interval =2 min 16 | 16 | 16
I-270 NB, 1996 o o |
Time Interval = 0.83 min 18 31 28
1-270 SB, 1996 |
Time Interval = 1.58 min 52 | 4s 47
I-71 NB, 1996 ;
Time Interval =2 min 25 27 | .26
1-71 SB, 1996

Time Interval = 6 min

We have also begun investigating the contributions of various sources of error inthese -
estimations. Errors due to pixel resolution, digitization of vehicle locations, and projected
locations along digitized highway edgelines seem minor. It appears that errors due to.
estimating time offsets and to the registration of images could be more important.
However, in tests using real satellite data, the time offset errors could be reduced by
ensuring that the ground sensor clock is calibrated against a UTC clock, which would be
the time of the satellite image. The error due to registration of overlapping images should
also be reduced because of the precise locations associated with the satellite images. The
most important and, perhaps, most irreducible source of error in estimating when vehicles
imaged at a given time would pass a ground sensor, appears to be the error in determining
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the velocity profile of the vehicle between the time that the vehicle is imaged and when it
passes the sensor. The bounds we are developing and the accompanying software should
help in making useful comparisons between data collected from ground sensors and image-
based estimates collected with real satellite data. '

Finally, discrepancies between image-estimated and ground sensor-recorded volumes
could come from errors in the ground sensors themselves or the classification software
used. We mentioned above that we only discovered that the I-270 sensor was
malfunctlomng upon detailed analysis. We only thought to look at the sensor because of
the mdependent (video) source of data used to form estimates. It actually appears that the ‘
image-estimated volumes generally agree with estimates derived from the video data better
than with the volumes recorded from the ground sensors. In future feasrblhty tests, one
must, therefore be careful in considering data collected from ground sensors as ground -
truth. Obtaining concurrent video data might be necessary when conducting feasibility -
tests with real satellite data.
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‘Section 3. Image Processing

3.1 Identifying Stationary and Dynamic Pixels

We assume that the remotely sensed image has been segmented for the appropriate highway
section. In addition, we assume that we have a historical estimate of the gray-level image of the
same highway segment in which all pixels represent the background pavement (stationary pixels).
‘Given a current image of the same highway segment with vehicles, registered appropriately with
respect to the background image, we want to detect the pixels corresponding to vehicles. That is,
we want to classify pixels in the new image as either stationary (pavement pixels) or dynamic .
(vehicle pixels). In this section, we present a brief introduction of the statistical pattern recognition
procedure we developed to address this task. The technical details are presented in Appendix B.
Future development will investigate: (1) how to obtain. this initial estimate of the background
scene, and (2) classification of clusters of moving pixels, e.g;, into cars and trucks (or nelther)

Let B; denote the gray-level of the pixel in row i and column j in the estlmated background image
of the segment and let Yj be the gray-level of the same pixel of the current image. A priori, before

seeing the new image Y, we start with a prior probability, n,J, on the pixel (i, j) being stationary in
- the new image. Let .

m; = Probability that pixgl (1) is stationary in image Y. 3.1

In general, the new (current) image, Y, may not have the same overall brightness level as the

e ~ ted background image, B, due to different lighting conditions under which the two images
were acquired. We, therefore, transform the brightness level of the background image to make it
comparable to match the overall brightness level of the new image Y using a variety of point
operations (see, e.g., Castleman (1996), Section 6.3). Let ¢(B;;), where ¢:[0,255]->[0,255] is a
brightness adjustment transformation in a specified class of point operations, denote the
transformed background image. The parameters of the (unknown) transformation are estimated
adaptively from image to image.

Then we obtain the differences, R;;, in gray-level of the current image and the transformed
background, i.e.,

Ry = Y; - (By) | (32)

The stationary pixels in the current image, Y, are expected to have small values of R;;, whereas the
dynamic pixels are expected to have R;j that are, in general, large in absolute values. We then
estimate the distribution of R, given that the pixels are stationary, ps, and its distribution, given that
the pixels are dynamic, py, and compute the posterior probability of each pixel being stationary.
The posterior probability of a pixel being static is used to classify the pixel into static or dynamic.

The estimation of the transformation ¢, differencing of the current image and transformed

background image, computation of posterior probabilities, and classification of pixels are applied in
an iterative manner, until the posterior probabilities converge.

12




These posterior probabilities can either be used to classify each pixel individually or as input to a
rule based clumping procedure. A more advanced statistical pattern recognition procedure, such as
a flexible template-matching procedure, which uses the spatial relationship of dynamic pixel
clusters could also be used to classify groups of dynamic pixels.

3.2 0verv1ew of the Iterative Procedure

For each plxel in the current image, define the unobservable vanables X;; = 1 if pixel (ij) in the

image Y is a stationary pxxel and 0 otherwise. Let T Prob(XlJ = 1) denote the prior probablhty
that the pixel (i,j)is a background (statlonaxy) pixel.

The conditional dlstnbutlons of the differences R;; of the background pixels and the vehlcle pixels
in the current image are defined as follows:

p(Ri,- | X5 = 1) = pa(Rj), probability density of the background pixel differences,
p(Rij | Xij = 0) = pV(Rjj), probability density of the vehicle/background pixel diﬁ'erences._

Note that ps(.) should be a unimodal distribution centered at 0, but pv(.) depends on the gray levels
of' dynamjc pixels in the image Y.

Now the joint density of R and X is given by
- PRy, Xy) = w(Xy) pRy) ™ pv(Ry) T | 63y
Using Bayes theorem, the posterior probability of X;; =1 is given by

PB(Ri')”"
. =1|R.)= ’ ’
p()('l.‘. I “) pB(Rij)ﬂ"J +pv(RlJ)(l-”“)

(34)

To be able to compute these posterior probabilities, py (.), ps(.) and ¢(.) all need to be known. In
general, these three components in the model are unknown and need to be estimated. A full
Bayesian approach would include specifying priors on the unknown components. However, since

~ the amount of information about pv (.), ps(.) and ¢§(.) is overwhelming (tens of thousands of pixels -
- a small segment of the size 10 m x 10,000 m has 100,000 1-m pixels), any prior information
would likely be swamped by the data. Therefore, the approach adopted here is to estimate py (.) -
and pg(.) and ¢(.) in an iterative fashion, ignoring the fact that they were estimated when computing
the posterior probabilities p(Xj; =1 | R,,) in each cycle of the iteration. The detailed descriptions of
each component of this procedure are given in Appendix B. We illustrate the performance of this
procedure for a test image, as well as scanned 1 m x 1 m resolution aerial images in the next
section.

13



3.3 Numerical Study

To illustrate the potential of the methodology described in the prewous section, we conducted the
following studies. The first study is based on simulated images, while the second uses images
formed by scanning air photos taken during our field tests. In the future, we expect to form the
background image from an average of several images of the same location. Under light traffic
conditions, forming the average would smooth out any signals from vehicles, and the resulting
image should be a good approximation of the pavement background. In the studies reported below,
we did not have several images of the same location from which to form an average. We, therefore,
simulated the background as explained in the studies. The results of both studies show the promise
of our method in detecting dynamic plxels that would be assocnated with vehlcles and the
robustness of the results to the assumed prior probablhtles required by our algonthm

3.3.1 Simulated Images

To illustrate our approach under a controlled setting, we simulated two images. Specifically, we
formed two 30 x 20 i images and assumed that all pixels in the i images were either static,
representing the background pavement, or dynamic, representing vehicles. We assumed that there
were two rectangular vehicles of dimensions 5 x 7 and 6 x 8 in the current image, i.e., the image
that would be analyzed for vehicle counts. In this way, there were truly 14% (= (5 x 7+ 6 x 8) / (30
x 29) x 100%) dynamic pixels and 86% (= 100% - 14%) background pixels in the current image.
The remaining pixels in this current image were assumed to be pavement pixels. The second image-
was simulated to represent the background image. All pixels in this image were assumed to be
pavement. We generated gray tones from normal distributions. For the background image gray
tones for pixels in columns 4-7, columns 12-16 and columns 19-20, respectively, were generated
from N(110,20), N(120,20) and N (80,20) distributions. Gray tones for all other pixels were
generated from a N(150,20) distribution. We considered gray tones of pixels in the current image to
be the sum of the gray tones in the background image and a N(0,7) disturbance term. We
considered the gray tones of the dynamic pixels to be produced by either reflectance off a vehicle
or off the pavement covered with a vehicle shadow. The dynamic pixels produced from vehicle
reflectance for one vehicle (a darker vehicle) were generated from a N(40,5) distribution. The
dynamic vehicle reflectance from the other vehicle (a lighter vehicle) was generated from a
N(170,5) distribution. The dynamic shadow reflectance gray tones were generated from a N(0,5) -
distribution for both vehicles. We regenerated values whenever a negative value or a value greater
than 255 was obtained and quantized generated values to the nearest whole number One reallzatlon
ofthelmagesm shown in Figure 3.1. : : S

We compared our procedure on. these images, using 1- and 5-parameter transformations. We also
compared these procedures agamst a variant of a thresholding procedure we had used previously
(Merry et al., 1996). When using the transformations, after the procedure has converged, we
classified plxels with posterior probabilities greater than 0.5 as dynamic. For the thresholding
procedure, we subtracted the gray tones of the pixels in the incoming image from those of the
corresponding pixels in the background image. The assumption is that difference values of pixels
that were static (pavement) in the two images would be closer to 0 than difference values of pixels
that were static (pavement) in one image and dynamic (vehicle) in the other image. Based on this
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Figure 3.1. Simulated background and the incoming image used in the simulated image study.
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assumption, we classified the pixels in the tails as dynamic, where the number of pixels chosen was
obtained from the prior estimate of the number of dynamic pixels.

We calculated errors of omission and errors of commission for each of the procedures. Errors of
omission occur when dynamic pixels are not classified as dynamic. Errors of commission occur
when pixels that are classified as dynamic are in reality not dynamic. That is, an error of omission
occurs when a dynamic pixel is classified as being a background pixel, and an error of commission
occurs when a background pixel is classified as being dynamic.

These resulting errors of omission and commission for the three methods assuming three different
prior probabilities of dynamic pixels (1 - m, where m; is defined i in eq. 3.1) are. presented in Table
- 3.1. (As mentioned above, 14% of the pixels were truly dynamic in the incoming image. Therefore, ... -

this would be the correct prior probabrlrty that a random pixel would be dynamic.) The results "'

show the superior performance of the transformation methods on this srmulated set of i 1mages and
- its robustness across drfferent pnor estimates.

* i« ‘Table 3:1-Errors of omission. and cornrmssron in determining dynamic pixels for- three metho&s :
ona simulated pair of images, by prior estimate of the percentage of dynamrc prxels '
(true number (%) of dynamic prxels =" 83 (14%)) -

o .Prior estimate of | Method ' Errors of omission . | Errors of commzsszon |
- | dynamic pixels (I - my) | . - -
| S T _ i
5 Thresholding 52783 (63%) —0B1O%)
1-parameter transform 15/83 (18%) - 0/68 (0%).
| S-parameter transform - 3183 (4%) - 1/81 (1%)
15 Thresholding 7783 (8%) 15/91 (16%) _
o 1-parameter transform 10/83(12%) | -~ 3/76(4%) -
5-paran1'ete'rit1’ansform __283Q2%) - |- 3/84(4%)
25 Thresholding |~ 0/83(0%) = |  68/151 (45%).
.. . |1-parameter{ transform :»~10/83 (12‘7).,,'..#;,.. - 3A6(4%)- s
| 5-parameter transform ,2/83(2%) - o 5/86(6%)

The usual tradeoff between errors of omission and commission is apparent in Table 3.1 for all
methods, but it is much less pronounced in the transformation method than in the thresholding
method. This tradeoff occurs because the chance of misclassifying a background pixel as dynamic
can be reduced by classifying fewer pixels as dynamic, but doing so will increase the chance of -
omitting a dynamic pixel from being correctly classified as dynamic. If the prior estimates are
small or large enough, the thresholding procedure will have very few errors of commission or
omission, respectively. In the limit, when the prior estimate goes to 0, no pixels will be classified as
dynamic in the thresholding procedure, and there will be no possibility for errors of commission.
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This occurs, however, at the expense of a large number of errors of omission, which will go to
100% as the prior estimate goes to 0. On the other hand, as the prior estimate becomes large
enough, so many pixels will be classified as dynamic that no dynamic pixels will be omitted. The
percentage of errors of omission will go to 0, but the percentage of errors of commission will
become very large, as many background pixels will be wrongly classified as dynamic. These
extremes are apparent in Table 3.1 for the thresholding procedure. Because of this type of extreme
behavior, the thresholding procedure outperforms the transformation method on errors of
commission at low (5%) prior estimates. However, the improved performance is only marginal, and
the thresholding procedure performs markedly poorly on errors of omission. Snmlarly, the better
performance of the thresholdmg procedure on errors of omission is overwhelmed by its poor
performance on errors of commission at the high (25%) prior estlmate

When considen'ng the errors of omission and commission together, the transformation methods
perform much better than the thresholding procedure. Moreover, Table 3.1 indicates that the
performance of the transformation methods is not affected much by the prior estimate of the
percentage of dynamic pixels. This insensitivity to the prior estimate is encouraging, since it
indicates that good results could be produced from even poor estlmates of trafﬁc conditions that
were present when the image was obtained.

3.3.2 Scanned Images

We also investigated the performance of our method on a pair of air photos scanned to simulate 1-
m resolution. We used two overlappmg photos taken from I-70. We present these two images,
which we call Image A and Image B, m Figure 3.2.

We conducted two experiments on these images. In one we used Image A of Figure 3.2 as the
current image, representing the image containing dynamic and static pixels, and formed the
background image, representing an image of static pixels, from Image B. In the other experiment,
we reversed the roles, using Image A to form the background image and Image B as the current
image. To form the background images, we manually replaced the gray values of what we observed
to be pixels corresponding to vehicles and their shadows (i.e., the dynamlc plxels) with gray values
corresponding to the surroundmg pavement.

To conduct the expenments the i images had to be registered to a common coordmate system. In
both cases we registered the incoming image to that of the background image. Therefore, the
registrations were independent in the two experiments. We shall see the eﬁ'ect of imperfect
registration below . A

We ran the thresholding method and 1-, 2-, and 5-parameter transformations on the images for
prior estimates of dynamic pixels (1 - n;, where 7;; is defined in eq. 3.1) of 1%, 3%, and 7%. (In
reality, approximately 3% of the pixels were dynamic.) For each procedure and prior estimate, we
calculated errors of omission and commission as we did in the experiments on simulated images in
Section 3.3.1.
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In Figure 3.3, we plot the errors of omission against the errors of commission for the procedures.
The numbers next to the plotted points represent the value, in percent, of the prior estimate of
dynamic pixels used in the procedures.

Whether image A is used as the current image (Fig. 3.3a) or as the background image (Fig. 3.3b),
the transformation procedures are seen to produce fewer errors of omission than the thresholding
procedure for any prior estimate of dynamic pixel probability. For 1% and 3% prior estimates of
dynamic pixel probability, the thresholding procedure produces markedly fewer errors of

~ commission than the transformation procedures for the corresponding prior dynamic probability
estimates. This is not surprising, however, as explained in Section 3.3.1. When prior estimates are
so0 low, the thresholding procedure is expected to produce a low number of commission errors, but
it does so at the price of a large number of omission errors.

-Moreover, the effect of many of the errors of commission would be reduced when rules, such as
those proposed in Merry et al. (1996), are applied to determine whether the dynamic pixels are
associated with a vehicle or with nonvehicle elements. Images representing the classification of
dynamic and static pixels appear in Figures 3.4 and 3.5. In these figures, black pixels are those
classified as dynamic, and white pixels are those classified as static. In the transformation images,
there are many more isolated pixels being classified as being dynamic. Comparing the images of -
Figures 3.4 and 3.5 to those of Figure 3.2, one sees that the vehicles correspond to the clumps of
dynamic pixels seen in the processed images. The isolated pixels would be eliminated as noise
when examined in the context of rules designed to classify groups of dynamic pixels output from
the transformation as being vehicle or nonvehicle elements. Moreover, one sees that the shapes of
the groups of pixels classified as dynamic in the transformation procedures correspond closely to.
the shapes of the vehicles seen in Figure 3.2, indicating that vehicle classification rules should
perform well when operating on the output of the transformation method.

Examination of Figures 3.4 and 3.5 also shows that many errors of commission result from pixels
near the median of the highway segment being classified as dynamic. The long, narrow pattern
observed would again be conducive to rules correctly classifying the groups of pixels as not being
associated with vehicles. Moreover, this phenomenon results in large part from errors in registering
the images in the common coordinate system. The median shows up much less in Figure 3.5, where
Image B is used as the incoming image, than in Figure 3.4, where Image A is used as the incoming
image. (As a result there are many fewer errors of commission in Figure 3.3b.than in Figure 3.3a.)
We believe that our registration was significantly better in the former case than in the latter case.
Better registration should be available from satellite imagery than from the manually registered
scanned images used in this study. Still, we expect that the effects of registration will need to be

- investigated in real satellite images before we feel comfortable in interpreting the outputs of our
transformation procedures.

The results again show the robustness of the transformation procedures. Specifically, when the
prior estimates vary from 1% to 7%, the thresholding errors of commission and omission vary over
ranges of approximately 50% in Figure 3.3a and 35%-40% in Figure 3.3b. The curves produced
from the transformation procedures vary over much smaller ranges - approximately 15% and 5%,
for errors of commission and omission, respectively, in the two figures. Again, it appears that even
rough estimates of traffic conditions when the images are taken can lead to good performance.
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Figure 3.3. Percent errors of omisSiop vs. percent errors of commission in identifying dynamic
pixels for the thresholding and transformation (1-, 2-, and 5-parameter) procedures using the

images of Figure 3.2, for varying prior estimates of dynamic pixel probabilities (3% dynamic pixels

in the image).
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Figure 3.3. Percent errors of omission vs. percent errors of commission in identifying dynamic
pixels for the thresholding and transformation (1-, 2-, and 5-parameter) procedures using the
images of Figure 3.2, for varying prior estimates of dynamic pixel probabilities (3% dynamic pixels
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Figure 3.4.. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for the

_thresholdmg propedure and 1-, 2-, and 5-parameter transformations (image A used as incoming

image; modified image B used as background image; prior estimate of dynamic pixel probability
: was 1%).
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Figure 3.4. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for the
thresholding procedure and 1-, 2-, and S-parameter transformations (image A used as incoming
image; modified image B used as background image; prior estimate of dynamic pixel probability

~ was 1%).
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a. Thresholding. b. 1-parameter.

Flgure 3.5. Pixels contained in Figure 3.1 classified as dynamic (black) and static (whlte) for
. thresholding procedure and 1-, 2-, and S-parameter transformations (image B used as incoming
image; modified image A used as background image; prior estimate of dynamic pixel probability
was 1%).
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C. 2-parameter. d. 5-parameter.

Figure 3.5. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for
thresholding procedure and 1-, 2-, and 5-parameter transformations (image B used as incoming
image; modified image A used as background image; prior estimate of dynamic pixel probability

: was 1%). :
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Section 4. Use of Image Data

As mentioned earlier, the satellite data would consist of snapshots of the highway
segments at instants in time. Several snapshots could be obtained over time, and the
greatest benefit in the satellite data might be found in identifying spatial patterns in traffic
characteristics. For example, the data might indicate consistently high or low velocities
on certain segments. These indications could then be confirmed with traditional spot
speed studies. Or, the series of snapshots might show that certain segments exhibit
temporal patterns different from those of other segments in the same traffic monitoring

sampling class. Aggregate estlmates could then be improved by redefining the sampling
classes.

Despite these potential advantages, we limit our analysis in this study to the potential of
satellite data to improve estimates of Average Annual Daily Traffic (AADT) in
homogeneous classes of highway segments. The AADT estimates are used to estimate
Vehicle Miles Traveled (VMT) in the class of highway segments, and we also investigate
the ability of snapshot data to improve VMT estimates. We base homogeneity of traffic
classes on similarity of temporal expansion factors described below. We develop
computer software to conduct this analysis. Our software contains two main components,
a generation component and an estimation component, which we describe in Section 4.1.
" The generation component simulates true values of AADT and values that would be
observed in traffic counting programs. As explained below, we consider 24-hour
observations to be representative of data obtained from traditional ground-based sensors
and shorter duration observations to be representative of satellite snapshots. The

estimation component produces AADT and VMT estimates from the values produced in
the generation component. :

In Section 4.2, we describe the application of our software to investigate the benefits of
combining satellite-based data with ground-based data in the estimation component. The
benefits are considered in terms of reduced errors when estimating AADT and VMT, and
we investigate the reduction in errors as a function of the number of ground counts,
amount of satellite coverage, and variability associated with expanding a satellite
snapshot to a daily count.

4.1 Methodology

We consider a highway network consisting of N segments or links with length dj, I = 1,
2,..., N. We specify N as an input to the simulation program, and we randomly generate
the link lengths d; from a truncated normal distribution, di~ N(u, 6y, di > dmin

4.1.1 Generation of Volume Data
Of the N highway links, we consider that P are equipped with automatic traffic recorders
(ATR’s) that can count and record daily volumes every day of the year. We also consider

that two 24-hour volumes are recorded on M different links with movable traffic
recorders. The two daily (24-hour) volumes recorded by the movable recorders occur on
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consecutive days. The parameters P and M determine the supply of ground count
information collected and are specified as inputs.

The supply of satellite data is determined by inputs on the time T between satellite
passes that image links in the network and the number N of links imaged each time the
satellite passes. Each time the satellite images the area, N of the total N links to be
imaged are generated at random. A satellite that images with the 7*-day repeat period
will produce images of N links in the network 365/ 7% times per year. That is, there will
be 365 N'/T® link-images produced per year. . : SR

An Average Annual Daily Traffic A4DT) is generated for each link I = J, 2, ..., N of the
network from a uniform distribution with exogenously input lower and upper bounds,
AADTpimand AADT,,,,. Using the generated true AADT’s and randomly generated link

lengths, the corresponding value of the true Vehicle Miles Traveled (VMT) is calculated
as: ' ‘

VMT =3 ;-; . v di *AADT;. 4.1)

AADT’s are converted into 24-hour counts for day-of-the-year 8, 6 € {1, 2, ..., 365}, by
calculating a deterministic component U of the 24-volume using day-of-the-week and

" month-of-the-year expansion factors (McShane and Roess, 1990) and imposing random

error on U. Specifically, a set of month-of-the-year or variation expansion factors EFVY=
{(EFM,, m=1,2, ..1 2} and day-of-the-week expansion factors EF° = {EFDd,d =12
..., 7} are specified as input, where, for example, month m = ] corresponds to January,
month m = 2 corresponds to February, and so on, and day d = I corresponds to Monday,
day d = 2 corresponds to Tuesday, and so on,. The factors are chosen so that they would
represent expansion of the average volumes on a given month or day to the AADT --i.e.,

.....

The deterministic component of the 24-hour volume for link / on day Jis then:
Uys= AADT* EFyy™ * EFps”, , (42

where AADT; is the AADT of the link / generated as described above, and M{9) and D(9),
respectively, represent the month-of-the-year (M(9) € {1,2,...,12}) and day-of-the-week
(D(Y € {1,2,...,7}) corresponding to day-of-the year & (5 € {1,2,...,365}). Multiplying by
EFMM( "/ imposes the temporal effect associated with month M{d), whereas multiplying
by EFg7 D(a)'] imposes the temporal effect associated with day-of-the-week D(d).

The 24-hour count on link / on day Jis generated from the det  ~ “stic Ujsby
considering that the true volume varies from the deterministic model of (4.2) through a
specified stochastic model. We use two stochastic models: one uses a log-normally

distributed error term; the other generates volumes from a Poisson model (see Appendix
C).
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4.1.1.1 Log-Normal Generation. We primarily used the “log-normal error term”
model in our analysis. In this model, we generate a 24-hour count ¥® that would be
observed from a ground sensor (either a permanent ATR or a movable sensor) on link /
and day d as:

V5= U,s* exp(e® -0®7/2), (4.3)

where exp () is the inverse function of the natural logarithm and £% ~ N0, o®). (This
formulation ensures that the expectation of the error term is one, i.e., Efexp(¢® -
0®%/2)]=1.) We assume that V® is observed without any measurement error. That is, V®
is both the true 24-hour volume on link / and day & and that which is observed from the
ground sensor on this link and day.

To simulate the volume estimated from the satellite image, we assume that a satellite
image of a link is converted into a 24-hour count ¥ and simulate this 24-hour count as:

VO1s= Ups* exp(” -0 1), (4.4)

where exp (.) is again the inverse function of the natural logarithm and £~ N, ).
(Again, in this formulation the expectation of the error term is one, i.e., Efexp(é” -
6™%/2)]=1) The error a§s0¢iated with converting the satellite image into a 24-hour count
is handled through the magnitude of o™ relative to 6®. This process implies that, unlike
in the case when generating 24-hour volumes V® obtained with ground sensors, the 24-
hour counts V* estimated from the satellite data are not necessarily the true 24-hour-
volumes on the segment on the day of observation. We note here that determining the
relative magnitudes of o and o® to appropriately account for the error in estimating a
24-hour volume from the satellite data is an area for future research. We present our
results below as a function of the relative difference in these terms. '

4.1.1.2 Poisson Generation. The second stochastic model considers volumes to
be Poisson distributed. To generate a 24-hour volume obtained from a ground sensor, we
use the deterministic component U 5 of Equation (4.2) as the mean of a Poisson
distribution for 24-hour volumes and generate the volume from this distribution. That is:

- V%®,5~ Poisson(Uyy). S . @5

Again, the 24-hour volume obtained with the ground-based sensor is assumed to be the
true volume in this process. '

To generate satellite observations, we simulate a S-minute volume from a Poisson
distribution and convert this generated 5-minute volume to an estimated 24-hour volume.
(Time intervals other than five minutes could be used in our program, but we used five
minutes as a first approximation of the time interval corresponding to satellite data.) We
assume that the S-minute volume is observed without error, but that there could be error
in expanding the 5-minute volume to a 24-hour volume.
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To generate the S-minute volume, we convert the deterministic component of the 24-hour
volume U, s of Equation (4.2) to a simulated 5-minute volume obtained in hour 4, & = I,
2, ..., 24, where, for example, hour /# = I corresponds to 12:00a.m. - 1:00 am., =2
corresponds to 1:00 a.m. 2:00 a.m., and so on. The deterministic component of the 5-
minute count {7}, in hour # is obtained by factoring the 24-hour U by an hourly expansion
factor EF, taken from a set of exogeneously specified hourly factors EF” = {EF"), h =
1, 2, ..., 24}, and converting this hourly volume to a 5-minute count by assuming equal
distribution among the twelve 5-minute intervals in the hour: '

UPrsn="Us* (EF7,)1 1288 : (4.6)

As with the monthly and daily expansion factors, the hourly expansion factors EF*';, are
specified to represent expansion about average hourly volumes —i.e., (1/24) X'p-1 ., 24
EF?, = ] Dividing by 288 in Equation (4.6) represents the fact that there are 288 5-
minute intervals in 24 hours and assumes an equal distribution of a given hour’s volume
into twelve 5-minute intervals. Unequal distributions could be handled by an expansion
factor for subperiods, but since the actual volume will be a randomly generated
realization, it would seem overzealous to consider expansion factors for such a short
period.

" To generate a 5-minute volume °®; 5, obtained in hour / on day& on link / from a
satellite sensor, then, we use the deterministic component UP 155 of Equation (4.6) as the
mean of a Poisson distribution for 5-minute volumes and generate the volume from this
distribution. That is: '

Vs(’) L&h ~ POiSSOIl( U5 i &h)- . (4.7)
We then expand this 5-minute volume to an hourly estimate in hour # by multiplying by
12 and then the hourly estimate to a 24-hour estimate by multiplying by 24 times an
“estimate” of the hourly expansion factor EF*"". That is:

V(S)l,‘s: 12*%24 > EFH’}, * V5(S)I,¢§h =288* EFH’;, * Vs(s)z,&h. 4.8)

In the work reported here we set EF” ', either equal to the true expansion factor used in

generation or to EF”,, but future work could investigate the sensitivity of the solution to

erroneous estimates of the hourly expansion factor. In this way, the EF”*, value used is
not truly an estimate that depends on observations, but an exogenously specified
parameter. = ' o

4.1.1.3 Output of Data Generation. The simulation program considers one year
as the analysis period and uses either Equation (4.3) or Equation (4.5) to generate:

a 24-hour volume count for each of the 365 days of the year for each link assumed
to be equipped with a permanent ATR,;
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two consecutive 24-hour volume counts for each of the links assumed to be
covered by a movable ground sensor; these links are randomly generated (without
replacement) from the set of links not equipped with permanent ATR’s, and it is
assumed that the first of the two days that.a movable ground sensor collects data
on a link is the day after the second of the two days that the sensor collected data -
on the previously sampled link. ,

The simulation program also uses either Equation (4.4) or Equation (4.8) to generate:

an estimate of the 24-hour volume for each of M links randomly generated with
replacement every 7% days.

One can, therefore, think of partitioning the N links in the simulated network into the

following sets based on the types of traffic volumes assumed to be collected on. lmks in
the set: : :

a set P consisting of the links that are equippéd with permanent ATR’s; -

a set MS consisting of the links for which 24-volumes are obtained from a
movable ground sensor during the year and for which at least one 24-hour volume
estimate is obtained from satellite data during the year, ~ :

a set‘M consisting of the links for which 24—h0ur volumes are 6btained from a
movable ground sensor but for which no satellite-based 24-hour volume estimates
are obtained during the year;

a set S consisting of the links for which no ground-based 24-hour volumes are
' obtamed, but for which at least one satellite-based 24-hour volume estimate is
obtained during the year,

a set R consisting of the links for which neither ground-base nor satellite-based
24-hour volumes are obtained during the year.

We call Np, Ny, Na, Ns, and Ny, the numbers of links in the respective sets, with Np +
Nugs + Ny + Ns + Nr = N. We also assume that the links have been renumbered so that
the first Np links are those in set P, the next Ny slinks are those in set: MS, the next Nu
links are those in set M, the next Ns links are those in set S, and the ﬁnal Nrlinks are
those in set R. In this way, the output of the simulation program consists of “ground
based” and “satellite-based” data. The ground-based data are comprised of:

Ve, §=12 ..,3651=12 .., Np;
® s 5= Ag(l), AgM)+1; I=Np+l, Np+2, ..., Np+Nis+Nas,

where Ag(l) indicates the day on which the first of the two consecutive 24-hour ground-
based counts are obtained with movable ground sensors.
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The satellite-based data are comprised of*

V9 s, &=As,(1), Asy(1), ..., Asp(l); 1= Np+1, Np+2, ..., Np+Nigs,
NP+NA/{S+NM+1’ veny
Np+Npst+NartNg

where A4s,(7) indicates the day on which a satellite-based estimated daily volume was

produced on link / for the /* time in the year, and // indicates the number of times thata

satellite-based estimated volume was produced on link / during the year.

The simulation program also produces the true values of the AADT’s and link lengths for
each link / and the true VMT as output, i.e.:

d, | ) | 1=1 ., N,
AADT,, ' , I=1, ., N,
VMT.

A listing of the generation programs can be found in Appendix D.
4.1.2 Estimation of Traffic Parameters

Our estimation programs use the output of the simulation programs as input and estimate
Annual Average Daily Traffic (AADT) for each link / in the network and then Vehicle
Miles Traveled (VMT) from these AADT’s and the corresponding segment lengths dj.
We consider two methods — what we call the traditional method and what we call a
model-based method — to produce these estimates. We produce estimates when using
only the ground-based data and when combmmg the ground-based and satellite-based
data.

4.1.2.1 Traditional Esti  * n Method

Ground-based data only: Estitating AADT’s using the traditional method with only
ground-based data is similar to the commonly proposed method (U S. Department of
Transportation 1992, McShane and Roess 1990) of:

1) estimating expansion factors from data obtained from permanent ATR’s; .

i1) using these expansion factors to convert 24-hour volumes into annual
average estimates;

ii1)  averaging the different annual average estimates for the same link to
produce an estimate of that link’s AADT;

V) estimating AADT on links with no observations from the AADT estimates
of the links for which there were observations.
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Specifically, the AADT’s for the Np links in set P equlpped w1th permanent ATR’s are
estimated as the average of the 365 hourly volumes:

AADT® = T 5.1 365 V®, 51365, I=1, .., Np, 4.9)

where we append “®” to the AADT variable to indicate that the AADT is estimated from
ground data only.

The 365 7 volumes on these Np links are also used to estimate the month-of-year and
day-of-week expansion factors as: ,

EFOM = LAADT®, | < V5> viseml 1t ompn m=1,2, .., 120 (4.10)
EF(X) [AAD](g)[/< V(g)15> D(&—d] lef{l, ..,NP}) d= Iv 2: ey 7; (4'11)

where [ . ] 1<, .., vpp Tepresents the harmonic average over the Np segments with
permanent ATR’s, and <. >49-m and <. >p.5-4 represent the arithmetic averages over
ali days-of-the-year J that are, respectively, in month m and on day-of-the-week d, and

the “®” *s appended to the EFs indicate that the factors are estimated from ground-based
data only.

~ The AADT’s using ground-based data only for the links in séts MS and M where counts
have been taken with movable ground sensors are estimated as:

AADT®, =Y, 5=dg(l), de(l)+1 V®,s% EFY 9 * EFPpis) | 2, _
= Np'ﬁ], w.os Np+Nys+ Ny, (4.12)

that is, the average of the two 24-hour volumes obtained on the link on consecutive days

(Ag(1) and Ag(1)+1) after “expanding” the 24-hour volume into an estimate of the annual
average using the appropriate monthly and day-of-the-week expansion factors.

The AADT’s estimated when using only ground-based data for the links in sets S and _Ig,
where no ground-based data have been obtained, are estimated as the arithmetic average
of the estimated AADT’s of the links for which ground-based data have been obtained:

“AADT®, =34 _,, . nprwasoams AADT®; /(NP+NMS+NM) o
' o 1= Np+Nus+Nagt 1, .. N (4.13)

The VMT using ground-based data only VMT® is estimated as:

VMT® =Y., ..y di* AADT®, (4.14)
Combined satellite-based and ground-based data: When combining the satellite-based
data with the ground-based data in the traditional method, we treat 24-hour volumes

generated from simulated satellite observations in the same way that we treat 24-hour
volumes generated from simulated ground observations, except when simulated satellite-
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based estimates occur on one of the Np links assumed to have permanent ATR’s. In this
case, we ignore the satellite observation, since the ground-based data on the links
equipped with permanent ATR’s are assumed to be error-free data. .

Specifically, the AADT’s for the Nplinks of set P equipped with permanent ATR’s are
estimated from ground data only, so that:

AADT®®; = 44DT®, _ I=1, .. Np, - (4.15)

where AADT®, is determined from Equation (4.9), and we now use “*®” to indicate that -

we are considering the case where we can combine the satellite-based data with the
ground-based data to produce estimates. The month-of-year and day-of-week expansion
factors are again estimated using the ground-based data on the links assumed to be
equipped with permanent ATR’s so that;

EFOM = pp@M | m=1, .., 12 (4.16)
EFt®P, = EpeP, d=1,..,7. (4.17)

where EF®M_ and EF®P, respectively are determined from Equations (4.10) and (4.11).

* For the Nyslinks on which 24-hour volumes are observed with a movable ground sensor

and for which at least one satellite observation is obtained during the year — i.e., the links
in set MS — the 24-hour volumes (whether obtained from the ground sensor or estlmated
from the satellite observation) are expanded to an estimate of the annual average using
the appropriate expansion factors and then averaged. That is:

AADT®®1= (X s sey, e+ V® IJ*EFMM(A) EFPp,

+ 3 ssiq... a0 VOis* EF s EF% b V(@2 + 1), '
l=Np+l, . .» Np+Nys, (418)

where the average is seen to be taken over the 2 ground-based observations and the I
satellite-based observations.

The AADT’s for the set M of links simulated to have ground-based observations taken
from a movable ground sensor but for which no satellite data are obtained are estimated
from the ground-based data only as in Equation (4.12). When only considering ground-
based data, Equation (4.12) was used to estimate AADT’s for all Njs+Ny, links where
ground-based data were obtained with movable sensors. The equation would only be used
for the Njslinks in set M when considering combined satellite-based and ground-based
data. That is:

AADT®®;= 44DT¥, = Np+Nys+1, .., Np+NustNy,  (4.19)

where 44DT®,is determined in Equation (4.12).
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The AADT’s for the set S of links for which no ground-based data were simulated, but
for which at least one satellite observation is obtained during the year are estimated as the
average of the expanded satellite-based estimates of the 24-hour volumes. That is:

AADT®® 1= X sopaw,... sn@ Vi 5% EF v * EFPpg 11,
I = Np+Nys+tNart1, ..., Np+Nays+NartNs, (4.20)

where the average is seen to be taken over the J; satellite-based observations.

Finally, as before, the AADT’s of links for which no data are available - i.e., the links in
set R — are estimated as the arithmetic average of the estlmated AADT’s of the links for
which some data have been simulated:

AADT{S D)= (X k=1, ... NP+NMS+NM+NS AADT{ 0y (NP+NMs+NM+Ns)
I = Np+NystNy+Ns+1, ..., N. 4.21)

When combining ground-based and satellite-based data, the VMT, now denoted VAM7®®
is estimated as:

VMI® =%, v d* AADT®®, : (4.22)
A listing of the traditional method estimation codé is provided in Appendix D.
4.1.2.2 Model-Based Estimation Method

Ground-based data only: When assuming the log-normal error model as that which
generates the link volumes, our model-based method uses a least squares approach to
estimate AADT’s. Unlike the traditional estimation method, the model-based model uses
all observations to estimate the parameters of the model assumed to produce the
observations.

Specifically, when using ground-only data the model-based method assumes that
Equations (4.2) and (4.3) produce observed link volumes. Substituting Equation (4 2) into
Equatlon (4 3) and takmg the natmal loganthm of both S1des produces

an@i;;— In-A4DT; - InEFP - In EF°pig - o@/2+ég’,,s, | |
5=1,.,365 1=1 ., Np = (4.23a)

for the Nplinks in set P, and

In V¥, 5= In 4AADT; - In EF*yy5 - In EFPpg5 - 6%/2 + &2 L5
| 0= Ag), Ag)+1; 1=Np+l, ..., Np+Nys+Ny;, (4.23b)

for the Njss+Njy links in sets MS and M. These 365Np+ 2(Njs+Nyy) equations are used in
a least squares routine to minimize the sum of the squares of the £, sterms and produce
estimates of the (Np+Nys+Nyy) In AADT!s, the 12 In EFY)5’s, the 7 In EF”pg’s, and
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0®” /2. We denote the estimated values of the In AADT’s by In AADT®". Unbiased
AADT estimates A4DT®; can be shown to be:

AADT®, = exp(in AADT®"|— %°12) , I=1,..., Np+Nyss+Nis; 4.24)
where 77is the (estimated) variance of the In AADT® ", estimate.

Unbiased estimates 44DT%®, of the AADT’s on the NS+NR links where no ground data
were obtained can similarly be shown to be:

AADT®; = exp(<in AADT® &> &, npsnnassnng —
: Var<inAADT® & g1, NP+NMs+m! 2)
I=Np+Nys+Nys+1, ..., N; (4.25)

where <in AADT® "&£ =1, NP+aMs+am and Var<in AADT® £ g1, NPHNMS+NM >
respectively, represent the arithmetic average and variance of the average of the
estimated “ln AADT’s” for the links in sets P, MS, and M output from the least squares
routine. o

The estimated VMT using ground data only VMT® is then computed as:

VMT@ =2i=1. th*AADT(g) - (4.26)

- where the AAD](g)z values are determined from Equations (4. 24) or (4. 25) and the d; -

values were generated in the simulation program.

Combined satellite-based and ground-based data: When assuming the log-normal error
model and combining satellite and ground data, the model-based method parallels that
described when using ground-based data alone and assuming the log-normal error model.
Equations (4.2) and (4.3) are again assumed to produce 24-hour link volumes that are
observed by ground-based sensors, and Equations (4.2) and (4.4) are assumed to produce
24-hour estimated link volumes derived from satellite observations. Therefore, in
addition to Equations (4.23a) and (4.23b), the satelhte-based data can be used w1th
Equatlons (4.2) and (4.4) to produce:

mV(’)L,;— 0 AADT; - n EPygg - In EFPpp - 692 /2+ 6,5
o=A4s(l),.., Asy; 1 =Np+l, ..., Np+Nys;, o
Npt+Noss+Not 1, .. Np+ Nogs+Nogt N, (4.27)

The 365Np+2(Nus+Nyy equations associated with the ground-based data (Equations
(4.23a) and (4.23b)) and the 2 1-np+1,,..np+Mas () + 2 1=NP+NMS+NMM+1,,,,. NP+NMS+Nb+NS (T))
equations associated with the satellite-based data (Equations (4.27)) are used in a
weighted least squares routine (Chambers and Hastie, 1992) to minimize the (weighted)
sum of the squares of the £¥; sand £, sterms to produce estimates of the (Np+Nass+Nyr+
Ny) In AADTy's, the 12 In EF™9°s, the 7 In EFPp5’s, 0®7 /2, and 6™ /2. (The weights
used in the routine are inversely proportional to the variances o®? and the o7, which are
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assumed to be known as inputs for the routine in this preliminary work. In reality, these
variances would be unknown — indeed, they are estimated in the routine, as seen in
Equations (4.23) and (4.27). A process could be developed that iterates until the variances
assumed whendete ~ ° g the input weights are close to those that are estimated from
the routine.)

We now denote the estimated values of the In AADT’s by In A4DT®®" to indicate that
both satellite and ground data have been used in this estimate. Similar to what we did
above, we form the unbiased AADT estimates as:

AADT®®,; = exp(in AADT" 0 ’ 1,2/2) I=1,..; Np+NystNp+Ns;  (4.28)
where 77 is, again, the (estimated) vvariauce' of the estimated In AADT*® L

The unbiased estlmates of the AADT’s on the NR links in set R where no ground data
were obtained are, then:. e } e

AA.DT(Sg)z = exp(<in AADT™® '§>§—.1.  NP+NMS+NM+NS —
Var<InAAD7{ o '£ £-1,.. NP+NMS+NMNS/2) 5
IZNp+Nyast NogtNst 1, ., N: (4.29)

where <In AADT®® ">, . wpeapssimnesns and Var(<in AADT® "> ro . npnassaneonss
respectively, represent the arithmetic average and variance of the average of estimated
“log AADT’s” for the links in sets P MS,M,and S output ﬁ'om the least squares routine.

The estimated VMT using combined satellite and ground data Wvﬂ{g) is then computed
as: -

VMI®® =%,_, xd*AADT®, (4.30)

where the AAD](’g)Ivalues are determined from Equatlons (4.28) or (4. 29) and the g,
values were generated in the s1mulat10n program.

We developed but did not 1mplement the underlymg theory of the methodology for
model-based estimation when assummg volumes were generated from a Poisson

distribution. That is, when assummg Poxsson generation, we only used the traditional
model.

A listing of the model-based estimation code is presented in Appendix E.

4.2 Numerical Study

We ran our simulation program for several sets of input values. In all cases, we
considered a network with N = 100 links and Np = 3 links; i.e., we assumed that 3% of

the links were equipped with permanent ATR’s, a percentage roughly equal to that in the
Ohio Department of Transportation system. We generated the link lengths 4 from a
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truncated normal distribution with y; = 1.5, oy = 1.0, and d,;, = 0.3, and the true link
AADT’s from a uniform distribution with A4 DT, = 10,000 vehicles and AADT e =
90,000 vehicles (see Section 4.1 and Table 4.1). We set the variance of the error-term of
Equation (4.3) o*® = 0.04 and the satellite repeat period at 7% = 18.25 days.

We considered different numbers of movable ground sensors, variance of the error term
associated with satellite data in Equation (4.4), and number of links imaged by the
satellite per repeat period. Specifically, we considered combinations of Ny, = 0, 12, 25, -
38, 50, ¥ = 0.04, 0.16, 0.36,and N' = 5, 10, 15. In McCord et al. (1995) we estimated
that a 1-m resolution satellite would be capable of imaging roughly 0.5% of the links in
the continental United States per day. This percentage accounts for the fact that images
could not be obtained in cloudy conditions or at nighttime. Therefore, a 1-m sensor on a
satellite platform would be capable of imaging 365*0.5% of the N=100 network links per
year. Since the satellite is assumed to image N links each of the 365/T% times per year it

repeats its coverage of the region, we can consider the “equivalent satellite coverage”
ESC as:

ESC =N *(365/T% /(365 * 0.005 * N) = 200 * (N/N) / T}
=200 * (N'/100) / 18.25=N'/9.125. 4.31)

This equivalent satellite coverage represents the fraction of data from a 1-m resolution
'sensor equivalent to that which would be produced with the assumed N and 7* values.
For example, N’ = 5 links would correspond to using roughly half (i.e., ESC =
5/9.125~0.5) of the data produced from a 1-m sensor on a satellite platform.

We summarize these input parémeters and the expansion factors used in Table 4.1.

For each set of input values, we ran the simulation-generation program 100 times,
simulating 100 independent replications of a one-year analysis period. Each run produced
for each link / one true AADT, one AADT estimated when using the ground-based data
only, and one AADT estimated from combined ground-based and satellite-based data. As
above, we denote these values A4DT}, 44D1%®, and AADDT®®,, respectively. We formed
the relative AADT error for link / for each simulation run » when either using ground-
based data only or when combininﬁ satellite-based data with ground-based data as
(AADT?,, - AADT,,) / AADT,,, ¢ |

mean squared relative error in AADT across all links for a given simulation run as r:

RMSREaadt”,= (Z1-,,..n (AADT?), - AADT,,) [ AADT;, ),
O=@® 6., 1 . 100, (4.32a)

From these 100 values, we formed the average of the root mean squared relative errors
across all runs as:

ARMSREaadt” = %,.; 100 RMSREaadt”, 1 100, O=® & (432p)

.....
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Table 4.1 Values of input parameters used in simulation-estimation runs.

Parameter name (notation)

Values used in program -

Number of total network links (N) 100
Number (%) of links equipped with 3(3%)
permanent ATR’s (Np) .

Number (%) of links equipped with 0 (0%), 12 (12%), 25 (25%), 38 (38%), 50
movable ground sensors (Nj,) (50%)
Mean of link length distribution (14;) 1.5
Standard deviation of link length 1.0
distribution (oy)

Lower bound of link length dlstnbutlon 03
(dmin) ,
Upper bound of AADT distribution 10,000
(AADT e )

Lower bound of AADT distribution 90,000
(AADT i) o ‘

Day-of-the-week expansion factors (EF- =
\(EFPd=1,..7})

| {1.072000, 1.121000, 1.108000, 1.098000,

1.015000, 0.899000, 0.790976}

| Month-of- the-year expanswn factors (E_E
= {EFMm, m=1, 12})

{1.215000, 1.191000, 1.100000, 0.992000,
0.949000, 0.918000, 0.913000, 0.882000,
0:884000, 0.931000, 1.026000, 1.152032}

Hourly expansion factors @H = {EFHg, h

=1,..., 24}) (used for Poisson generation)

{1.011000, 1.123000, 1.221000,1.709000,
2:062000, 1.532000, 0.925000, 0.703000,
0.331000, 0.433000, 0.825000, 0.995000,
1.601000, 1.774000, 0.964000, 0.734000,
0.402000, 0.373000, 0.854000, 1.437000,
1.755000, 2.158000, 2.105000, 1.123191}

Variance of “ground-based data error term

(Cao)

0.04

Variance of “satelhte-based data error 10.04, 0.16, 0.36
term” (o’(’)) _
Satellite repeat period (T°) - | 18.25 days

[ Number of links imaged per pass (V) 15,10,15
Approximate eqmvalent satellite coverage | 0.5, 1.0, 1.5

(ESC) (determined by 7% and N

We used the generated link lengths to estimate the true VMT, the VMT estimated when
using ground-based data only, and the VMT estimated when combining satellite-based
with ground-based data as in Equations (4.1), (4.14), and (4.22). Somewhat similar to
what we did in summarizing the AADT errors, we formed the relative VMT error for a
given run r and the average relative errors across all runs, respectively, as

REvmt?, = | VMT, - VMT®, |/ VMT, ,

O=0 6. . _] . 100 (4.33a)
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AREvmt®=3,_; 100 REvent”, /100 | =@ 6 (4.33b)

.....

In Figures 4.1a-4.1c, we graph the average AADT errors ARMSREaadt of Equation

‘(4.32b) as a:function-of the number of movable-ground sensors A/ when using enly
ground-based data (solid curve) and when combining satellite-based and ground-based

data-(dashed curves). In these figures, the abscissa portrays the number of moveable
ground sensors as a proportion of the N=100 liriks in the network. That is, an abscissa

~value-of 0.2, for example, is obtained from M/N = 20/100. The results in these figures

were produced using the log-normal generation and traditional estimation programs. We
present results for. equivalent satellite coverage ESC approximately equal to 0.5 satellites

‘(i.e., N' = 5) in Figure 4.1a, 1.0 satellite (i.e., N = 10) in Figure 4.1b, and 1.5 satellites
. (i.e., N' = 15)in Figure 4. 1c.

The different curves for.the combined satellite-based and ground-based data represent the
use of different variances of the error term in the satellite-based information. As
mentioned above, we held o?® = 0.04 for all runs. The lowest combined satellite-based
and ground-based data curves in the figures were produced with *® = 0.04, representing
a case where the 24-volume estimates from the satellite data would be as good as those

~ obtained from ground sensors. This would be an unrealistic case, but it serves as a lower

bound on the combined satellite- and ground-data case. The middle and highest combined
satellite-based and ground-based data curves were produced with *” = 0.16 and & =
0.36, respectively. As mentioned above, an appropriate relation between o and o*® is
unknown at this time, anddete ~ g such a relation would require future research. Still,
we note that when o®® = 0.36 the variance of the error term used in producing satellite-
based estimates would be nine times that of the error term used in producing the ground-
based volumes, which could be considered a large increase.

In Figures 4.1a-4.1c, we see that all the curves produced when combining satellite-based
and ground-based data lie entirely below the curve produced when using only ground-
based data. (The ground-based data only curve is the same in the three figures, since the
figures differ only in the amount of equivalent of satellite coverage.) More specifically,
even when covering up to 50% of the links per year with movable sensor (Proportion of
movable ATR’s — 0.50) and when using the equivalent of only one-half of available
satellite data (Fi igure 4.1a), using satellite data markedly decreases AADT error from that
produced when using ground-based data only, even when the error associated with
scaling up the satellite snapshot to a 24-hour volume is considered high (6*® = 0.36).

Note also that the error associated with using only ground-based data when the
proportion of movable ground sensors is 0.50 (50% of the N links) is greater than that
associated with combined satellite-based and ground-based data when the proportion of
moveable ground sensors is 0.12 (12% of the N links), even in the o*® = 0.36 case and
when using only half the available satellite data (Figure 4.1a). Since we are considering a
time period of one year, a 0.12 proportion of movable ground sensors represents a
scenario in which all the links of the network would be covered with movable counts

39



oy

‘(poylouws uoneWIIS —a.:o_:vg. ‘uonyeIousd [eurtou-3of) va.ﬁomﬁ-vg&m._ v
pue paseq-a)ij[ajes JuIUIqUIOD UaYMm pue ejep paseq-punoid Ajuo Suisn usym (572 SOIRWINSI PAsLq-aI[[2)uS Ul DUBLIEA PUE SIOSUSS
punoid ajqesous jo uorpodord jo uonouny € se — POOTYSWYY — LAVY Ul SIOND dANR[aI parenbs-ugaw-j001 o8e10Ay 1 21ngi

'§°0 == DST 9819407 aN[[ores juS[EAINbY &

H1V 8|qeanojy Jo uoiodold

_ : L | | A ] _ {

. - N i QO

(&)

. O

(\V)

. ©

H

. O

o))

L O

(0 )

) b

Qg = JUNOJ JES JO BOUBIIBA ‘BIED JES pUB pUNOIE) - — — o
91" = JUNOJ JES JO BOURHEA 'BIEP JBS pUB PUNOID) - - ~ - .

¥0° =1unog;jes jo rom_hw\m ‘BlEP |BS PUB PUNOIY) . «ovoveeee o i .|r

Ajuo Blep punoIy)  ——— . Ao

-

cosz:mm |leuonipes |
:Sejewl}se | Qv Ul Jouie eAle|es palenbs ueaw jooy

o118 aAije|al paenbs uesw J00Y




|12

‘(poyrowr uonewinsa [euoniper ‘uoneIsusd [euniou-3of) viep paseq-punoid
pue paseq-a)ijja1es SuilIquIod Usym pue ejep paseq-punoid A[uo Suisn usym /L SAIBUILSS PAseq-o[[3)8S Ul J0UBLIBA PUE SIOSUSS
punoid sjqeaow o uonodoid Jo uonounj 8 se — JPEPTYSNYY — LAVV Ul SIOND 2A1e]a1 patenbs-usswi-j001 038194V ['p 231y

0’1 = DS 99e19A0)) Af[9IeS JUsRAINbT q

H1V 8|qeano jo uojuodold

co o 0 20 L'0 00
! : | | | |
| O
o
L O
L U Z
.......................... ...............................
e O
— : e . o
T T .l. . B :
llllllll . . e i ) »
lllllll -—
———— - L @
192
./ i .O
(00]
-—h
9¢" =1Un0O JES JO BOUBLIBA ‘EIEp JBS PUB PUNOID - — — )
91’ =1uUnoo Jes jO BOUBIEBA 'BjBP JBS PUB PUNOID - - - -
$O' = 1UNOD BS J0 BOUBLEA .ﬂaGU jes pue punoJe  --eeeeeen - .|r
Ao glep punory  —— 7u

| uolewsa [euopes |
'S9JeWISa | QVV Ul 10118 aAle|al pasenbs ueaw Jooy

-~

r . : . , i O I B 1

[

E3 N

10418 aAnejal patenbs ueaw j00y



[44

‘(poyiswr uonewnss [euonIpen ‘uonersusd [euriou-goj) vjep paseq-punoid
pue paseq-ajl|[1es JUIUIQUIOD UAYM pue ejep paseq-punoid Ajuo Suisn uaym (72 SSIRWINSI P3seq-)1[[2)es Ul SOUBLIBA PUB S10SUSS
punoig s[qeaow jo uorodold Jo uonouny e se — JPOPYSINY Y — LAVY Ul SIOLS 9A1E|31 parenbs-uesu-)00s afe1say | p amnfig
'§'T = DSH 93.19A0D) [0S JuseAlnby o

HLV eiqeanop Jo uoniodoid

50 v'0 20 20 Ho 00
1 ! _ ' _ |
| 9
o
o
R TR TR TP R U T B 3
s L PN L N M reeeiaiencieenransancstocartaneniniatannanonnan Y z
———— - T ee e L # e e e e -
e —_.——— - 2
O e e e - A
. 9
o))
— o
// @
/./ =
9¢" = JUNOJ jBS JO BIUBLEBA ‘BIBP JBS pUB PUNOID) - — — ©
91 = JUNOD 8BS JO BOUBIBA ‘BIEP JBS pUB PUNOID -~ ~ - .
b0’ = JUNOD JBS JO-8OURLIEBA ‘BIED JBS PUB-PUNOID  --o-oveae -
_ Auo ejep punosy —— N

uonewnsa jeuonipels |
'Sajewisa 1 vy Ul Jola aAnejal paienbs uesw J0oYy

louia aAlje|al pasenbs uesw jooy




approximately every eight years, whereas a 0.50 proportion represents one in which the
network would be completely covered with movable counts every two years. According
to these results, then, incorporating satellite data into the estimation of AADT’s would
allow ground crews to operate on an 8-year cycle and still produce better estimates than if
they operated on a 2-year cycle without satellite data, even when there is great variability
in scaling up satellite snapshots to 24-hour volume estimates. Fewer DOT resources
would be required for an 8-year cycle (i.e., the “with satelllte data” scenario) than for a 2-
year cycle (i.e., the “without satellite data” scenario). :

In Figure 4.2 we graph the average relative VMT errors AREvmt’s of Equation (4.33b)
for equivalent satellite coverage of 1.0. Again, we see that the combined satellite-based
and ground-based data curves lie below the ground-based only data curve. From the
figure, we see again that the error when a proportion of 0.12 of the links is covered with
movable ground sensors on the ¢*=0.36 combined satellite-based and ground-based
data curve is no worse than the error at a 0.50 proportion on the ground-based data only
curve. That is, covering the links of the network with movable ground sensors on an 8-
year cycle when incorporating satellite data would lead to VMT estimates that are as
accurate on average as those produced when covering the network on a 2-year cycle
when not using the satellite data, even when scaling up satellite snapshots to 24-hour

~ estimates is very “noisy” (high ™.

In Figure 4.3 we graph the average VMT errors ARMSREvmt of Equation (4.33b) when
using the traditional estimation method, but when assuming that volumes are generated
from a Poisson distribution. We again graph as a function of the number of movable
ground sensors M when using only ground-based data (solid curve) and when combining
satellite-based and ground-based data (dashed curve). Since there is only one parameter
of the Poisson distribution (the mean), we cannot parameterize the simulation by
variances, as in-the log-normal case. Therefore, there is only one curve for the combined
satellite-based and ground-based data estimation.

Under this different set of assumptions (Poisson generation) the value of the satellite data
in reducing the error in AADT estimation is again strikingly apparent. The curve
produced when combining the satellite-based data with the ground-based data lies below
that produced when using only the ground-based data. Again, covering the network with
ground-based counts on an 8-year cycle when coupled with satellite data produced better
results than covering the network on a 2-year cycle without satellite data.

We also investigated the improvements that would stem from using the model-based
estimation procedure with the log-normal generation assumption (see Section 4.1.1.1). As
we did in Figures 4.1a-4.1c, we plot in Figures 4.4a-4.4c the average AADT errors
ARMSREaadt of Equation (4.32b) as a function of the proportion of movable ground
sensors when using only ground-based data (solid curve) and when combining satellite-
based and ground-based data (dashed curves). Whereas the results in Figure 4.1a-4.1c
were produced when using the traditional estimation method, the results graphed in
Figures 4.4a-4.4c were produced when using the model-based method.
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The results in this set of figures again show that adding satellite data is markedly reduces
estimation errors even in the high variance (¢*”=0.36) case and when using only half the
satellite data (ESC - 0.5). Once again, lower average error is produced from covering the
network with ground counts on an 8-year cycle with only half the satellite data (ESC =

0.5) than on a 2-year cycle without satellite data, even in the high variance case (see Fig.
4 4a).

A comparison of the Figures 4.4a—4.4c curves to their counterparts in Figures 4.1a-4.1c
shows that our model-based estimation method improved on the traditional estimation
method. The improvement was most pronounced when using ground-based data only and
seemed least pronounced for the combined satellite-based and ground-based data curves
with high variance in the satellite error term (**'=0.36) with the highest satellite
coverage (ESC=1.5).

We also note that the o*® —0.36 combined satellite-based and ground-based data curve
produced when using the traditional estimation method has smaller errors than the -
grounid-based only data curve produced when using the model-based estimation method.
That is, even when the satellite-based data are "noisy," using these noisy data with an
inferior (traditional) estimation method decreases AADT estimation errors more than
using a better (model-based) estimation method without the data,. )

The errors graphed in Figures 4.4a-4.4c are based on averages over 100 replications of a
one-year analysis period. In Appendix F, we present scatter plots of the 100 paired
(traditional method vs. model-based method) RMSREaadt values of Equation (4.32a):
when using only ground-based data and when combining the satellite-based and ground-
based data at various o* values for 0.25 (M=25) and 0.50 (M=50) proportion of links
covered with moveable ground-based sensors, and at ESC=1.5. Comparing the results of
Figures 4.4a-4.4c to Figures 4.1a-4.1c, we saw that our model-based estimation method
performs better on average than the traditional method. The scatter plots confirm that the
model-based method does better than the traditional method in most individual
replications. Still, there are many cases where the traditional method outperforms the
model-based method, and we feel that future improvements could be made to our model-
based method.
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Section S. Summary and Future Work
In this report, we documented progress on three issues that would need to be addressed
before high-resolution satellite imagery could be used to complement traffic monitoring
programs:

e demonstrating that vehicles can be identified and classified accurately from real
satellite imagery; _

o developing efficient image processing methods;

e dete ~ ° gmethods to integrate the imagery with ground-based data and assessing
the value of this mteglatlon

Although substantxal progress has been made, we feel that further work is needed in each
of these areas.

We have been developing a methodology to compare vehicle classifications obtained
from satellite images with those obtained from traditional ground counts and writing

- software that would automate much of the analysis. The results of field tests designed to

demonstrate the methodology, where we used scanned aerial photographs to simulate
satellite imagery, were encouraging and instructive.

When high-resolution satellite data becomes available, the methodology we have been
developing should be applied to show that vehicles could in fact be identified and
classified in high-resolution satellite imagery. Because of the different types of data —
data obtained over space at an instant of time in the images, and data obtained over time
at a point in space in the ground data — discrepancies can occur between the two
classifications. These discrepancies can occur even if every vehicle is correctly identified
and classified in the satellite imagery. Therefore, we suggest that more work be devoted
to reducing the size of this discrepancy and developing a maximum size of discrepancy
that can be tolerated and still conclude that vehicles are being classified acceptably in the
two data sets. Whenpl g for tests with real satellite data, additional thought will also
have to be given to differences that can arise when using real satellite data. For example
thought should be given to differences in data format, the ease with which the
appropriate highway segments can be identified in large area images, and an edge
detection algorithm to efficiently determine the highway edge lines. '

We are also encouraged by the progress made in our image processing approach.
Specifically, we have developed a means to transform the steady-state background image
of a highway segment to those of a time t-image that is to be analyzed for vehicles. Our
objective is to classify the subtracted pixel values of the two images into dynamic and
static pixels, where the dynamic pixels would serve as an indication of movement
attributed to vehicles. Experiments on simulated images and scanned aerial photographs
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produced encouraging results and demonstrated the robustness of the resuits to prior
estimates of traffic density, estimates required as input to our approach..

Future work would be necessary to develop, test, refine, and code the image processing
algorithms we have been developing. Until now, we have used simulated images or
scanned aerial photographs to serve as the steady-state background images of the
highway pavement. In practice, we would expect that the background image would be
constructed from a series of images taken over time. For example, the background image
could be obtained by averaging images of a specific segment acquired at different times.
Each time a new image is acquired, it would be combined with the present background to
form an updated background image. Averaging the images should substantially reduce
the contribution of the dynamic signals (principally, vehicles) after a sufficient number of
observations, leaving a background image that corresponds almost entirely to an average
of pavement signals. This averaging procedure could be tested using a series of satellite
images when such images become available. Until then, a series of scanned aerial
photographs or digital photographs of the same highway segment at different times could
be used. This approach is motivated by an assumption that the dynamic (vehicle) signals
are sufficiently few that they would be filtered out after averaging a few images. This
should be the case on lower vehicle density highways. However, it is also necessary to
determine a good procedure for constructing the background image on highways with
higher vehicle densities.

It appears that our transformation procedure is working well. Still, it should be tested
more systematically and under a variety of conditions. It would be more efficient to.
conduct large-scale testing on simulated images, but some real images — either scanned
aerial photographs, digital images taken from an aircraft, or real satellite images — should

also be investigated to ensure reasonableness of the process generating the simulated
images.

The transformation and subtraction procedure must also be integrated with a vehicle
classification module. The classification module would operate on the pixels that
received a sufficiently high probability of being dynamic after subtracting the
transformed background image from the time s-image. Decision rules can be used to
determine whether groups of such dynamic pixels constitute a vehicle or a nonvehicle
object. If the group of pixels is identified as a vehicle; the group of pixels must thenbe -
classified by vehicle type. Previously, we developed rules to operate on a binary output of
a thresholding procedure (Merry et al. 1996). These rules worked well in conditions

- where vehicle shadows were pronounced. We feel that it will be possible to modify these
rules to work well with our transformation and subtraction approach under a wider set of
conditions, but other methods should also be investigated.

Further work is also warranted in determining the value that imagery data would add to
traffic monitoring programs and to integrating these data with those obtained from
ground sensors. We have been concentrating on estimating Average Annual Daily Traffic
(AADT) and Vehicle Miles Traveled (VMT). Based on results produced from the
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simulation and estimation programs we have developed, it appears that adding satellite
data to ground-based data would improve the quality of the AADT and VMT estimates
while requiring fewer ground personnel to collect ground-based traffic counts.

These encouraging results were obtained even when using methods similar to those -
traditionally employed, methods that were not designed to take advantage of the two
different types of data. Our first attempt at “model-based” methods improved the
estimates further. However, we expected to see greater improvement with the model-
based method, and we therefore feel that this method can be refined in the future: Also,
the method should be investigated for robustness to data that are not entirely compatible
with the assumed model. More radically different methods should also be investigated for
combining ground-based and image-based data more effectively — for example, methods -
that take advantage of spatial correlation in the traffic pattems that can be observed in the
satellite images.

We also feel that slight modifications in the generation and estimation software we have
developed would produce powerful tools for investigating other questions. For example,
this type of software could be used to identify temporal patterns in traffic flows that lead
to especially large or small additional value that could be contributed by the satellite

- data. Such knowledge would ultimately be useful in deciding which highway segments to
target with pointable satellite sensors. The software could also be used to assess the
relative effectiveness of ground-based sampling patterns when using satellite data. This
information could then be used to design sampling strategies in state Departments of
Transportation (DOT’s),-or other agencies interested in estimating AADT and VMT.

In addition, other issues not addressed in this study should be investigated if satellite
imagery is to be incorporated in traffic monitoring or other transportation programs. For
example, institutional issues associated with obtaining data in standard formats on a
long-term and reliable basis, preprocessing these data, making them accessible to state
DOT’s, and having the DOT’s integrate them into their operations would need to be
addressed. Moreover, exploring the use of the imagery data to identify parameters other
than AADT or VMT seems ted. For example, the image data could be useful in
developing classes for volume or weight samples, targeting resources for speed studies,
detecting high truck volumes on alternatlve routes to those passmg open welgh statlons
or calibrating flow prediction models. :
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Appendix A. Description of the Software Code for Computing Traffic Measures

Introduction

We developed software that computes traffic measures at a location on the highway
during a time interval from a snapshot of the highway. We called this software COUNT.
The basic input data for COUNT are the highway axis, vehicle records, count location,
and the time interval during which the measures are to be computed. The output data are
traffic measures during this time interval at the specified location. Additionally, this
software has the capability to compute the maximum time interval allowed by the ,
highway limits for extracting traffic measures. COUNT is written in FORTRAN and is
complied and linked using a FORTRAN-77 compiler on a workstation platform. It can
easily be adapted to any other FORTRAN compiler or other platforms.

In this chapter we describe the input data required by this software, the output, and the

- code of the software. The next section describes the input and output data and gives

examples of the data format. The following sections describe the various modules of the
program.

- Software Input Data

In this section we describe the input data for COUNT and provide examples to illustrate
these data. The data format described is that read by the version of COUNT used at the
time of this writing. This version is the one described in here. All the components of the
data must be included as input to COUNT; however, the format and order of the
components can be changed. The modules that read the input data may be modified to
read the input in different formats. Thus, the input format would have to be changed to fit
the requested input format by that version. '

In this section, we first explain the highway axis data, then the vehicle record data, the

highway count data, and the highway limit data.

Highway Axis Data
Highway axis data are used as an axial reference for all the vehicle locations on the

- highway at different times. The Euclidean distance computed using the coordinates of two

locations would determines the straight line distance between these two locations on the
highway. However, distances on highways are not necessarily straight. For example, a
vehicle does not travel in a straight line when navigating a horizontal curve. The highway
geometry can be represented by the highway axis. The axis is a linear feature of the
highway. We found it useful to have this axis correspond to the inner edge of road
pavement. In this research, we refer to this highway inner edge axis as axis for simplicity.



Highway axis data used in this software are a highway datum point and the digitized
highway axis coordinates. The datum point is an arbitrary distance corresponding to the
first point of the axis. It could, for example, be the linear distance from a known landmark
on the road to the point, the mile marker distance of the point, or any other arbitrary
distance specified. The coordinates of each digitized point are denoted (xa;,ya;), where xa;
refers to the xa coordinate of the ith digitized point and ya; refers to the ya coordinate of
the ith point on the axis. These coordinates could be given with reference to any
coordinate system, but the digitized axis coordinates for one highway segment should
refer to the same coordinate system. and datum.

This version of COUNT assumes that the datum point is given in units of meters because
this soﬁware is set toprocess images with resolution given in Metric units. Flgure A-1
shows an example of a highway axis input data file corresponding to the images shown in
Figure A-2. The first line in this data is the datum point distance, which was arbitrarily
set to a value of 2000..If desired, the real mile marker distance could have been used as the
reference distance for the datum point.“'We choose the datum value to be some distance
greater than zero so that if an extension beyond the begmmng of the highway axis is _
extended by some distance from the starting end, the axis distance in the extended part of
the axis will remain positive. We explain this aspect in more detail when we talk about the
highway axis module.

Axis coordinate data start on the second line in Figure A-1. This line contains the

. coordinates of the datum point of the highway axis whose arbitrary distance was given in
the first line..In this example, the point-at xa = 1087 and ya = 6106 is 2000 m from some
datum. The coordinates of the following points along the axis follow in order.
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Vehicle Record Data

~ Location and time data for imaged vehicles are also required as input for this software.
Using the location of a vehicle on an image, the time when the vehicle was imaged at that
location, the location of the count point, and the speed of the vehicle, the time when the
vehicle would pass the count point is estimated. (Count point is where vehicles are to be
estimated to pass during the time interval of interest.) Using time and location records of a
vehicle in two consecutive images, the average speed of the vehicle when traveling
between these two locations can be estimated.

"Each vehicle observed in an image receives a record. Records of vehicles in different
vehicle classes are saved in separate lists. The version of COUNT described here only
considers two classes of vehicles, large vehicles and small vehicles. For simplicity we refer
to them as trucks and cars in this research. Thus, the vehicle records are sorted into two

lists, one list for cars and one list for trucks. A record contains information that identifies -

the vehicle with an integer identity number, locates it in the coordinate system through its
x and y coordinates, and indicates when the vehicle was at the given location with a time
stamp.

A vehicle that is imaged more than once will have more than one record. However, the
integer identification number would be the same for different records corresponding to
this vehicle. Identifying the same vehicle at different locations in different images leads to
- velocity estimates of the vehicle. The velocity is estimated as the distance traveled
between the image when the vehicle was at these locations.

Vehicle coordinates are the coordinates of the vehicles located with reference to the

* coordinate system used for the highway axis. The vehicle coordinates are referenced by -
(x"i, ¥'}), where x"j represents the x coordinate of the jth-vehicle and y*; represents the y

~ coordinate of the jth vehicle. The time when the vehicle is seen at the specified location
(xj, y*;) is the time when the vehicle was imaged at these coordinates.

To illustrate, consider the vehicle record data in Figure A-3. The first line in the fileis a 1
to indicate that the following are records of cars, which are identified as class 1 of vehicles
in this study The first line in the records of cars contains the record of a vehicle that is
identified as car 4. The following two numbers are the x and y coordinates of the location
of this car. The last number in the record is the time when this car 4 was at these
coordinates, represented in hours:minutes:seconds. This line indicates that car 4 was at
x=1018 and y = 5846 at time 10:54:31. The second line contains the records of vehicle 5.
This record indicates that vehicle 5 was at x=1017 and y=5828 at 10:54:31. Line 7
contains the records of car 11, which indicates that car 11 was at x=921 and y=5451 at
10:54:31. Lines 17 and 24 also contain records of car 11. However, these records
correspond to car 11 being imaged at times 10:54:36 and 10:54:41, respectively. Line 27
has the values (-1, -1 -1, -1, -1). This is the indictor for the end of car data. The next
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line contains a 2, which indicates that the following data are data records of trucks, the
record category of vehicles in this study. The truck data are arranged in the same format
as the car data. Like the car data, the last line has the values (-1, -1, -1, -1, -1, -1), which
indicate the end of the data in this class. If more vehicle classes are eventually used, then
class numbers can be added. The module that reads the data would have to be modified to
read data of more classes. We will indicate the lines code where this module needs to be
modified to read more data when we explain the modules in the following sections.

Vehicle data are listed in order of the time when the images were taken. The records of the
vehicles imaged at an earlier time are listed before the records of the vehicle imaged ata
later time. The software assumes that the data are arranged in this time ascending format
in the input data file. If vehicles are not arranged in an ascending order, we could write a
module to rearrange it in this ascending format.

Highway Count Data : _
To compute level of service measures at a loraf.zon, the software requires highway
parameters, count location data, and count interval: Highway parameters are the number
of lanes of the highway and the passenger car equivalent of trucks. The number of lanes of
the highway must be recorded for the specific highway at the given location. The
- passenger car equivalent of a truck is also predefined for the specific highway dependmg
on the terrain of the highway at the specific location. (Highway terrain is classified as
level, rolling, or mountainous, and each type of terrain has a different passenger car
equivalent of trucks for different highway class (see Highway Capacity Manual (TRB,
1997).) Count location data consist of the x and y coordinates at the location on the
highway where the traffic measures are estimated. (Traffic measures are estimated at a
point location on the highway to compare the measures estimated from the image data to
the measures estimated from at ATR location at this point. This work was motivated in a
large part by our desire to compare measures estimated from satellite data to those
estimated from ATR data.) The time interval is the time during which traffic measures are
computed at the count location. We denote the beginning of this time interval by t' and
the end by t*.

To illustrate, consnder the example of hlghway count data in Flgure A-4 Thesedata .
correspond to the same highway for which the axis and vehicle data in Flgures A-1 and A-
3 were obtained. The highway has three lanes (line 1) and has a passenger car equivalent
of trucks-of 1.5 (line 2) (The passenger car equivalent of 1.5 was obtained from Table A-1
of the HCM for level terrain. The three lanes and 1.5 passenger car equivalent are entered
to this input file manually.) The count location coordinates are (x=903, y=5393) and the
time interval for the count begins at10:54:30 (line 5) and ends at 10:55:00 (line 6).

Highway Location and Limit Data

We mentioned earlier that the COUNT software has the capability to compute the largest
time interval allowed by the highway limits for extracting measures. Given images of a

A4



5

highway segment we can estimate traffic measures at any location on this highway. Time
interval for computing these traffic measures is limited by the length of the highway
segment imaged or by ramps. This software requires the limits of the highway and the
count location as an input to compute the largest possible time interval for computing
traffic measures. The highway location is defined by the x and y coordinates of the count
location. Highway limit data include the farthest points of the highway that have been
imaged. Figure A-5 shows an example of count location and highway limit data. The first
two lines present the coordinates (x=1011, y=5795) of the count location. The next two

- lines indicate the coordinates of the limits of the highway. For example, the first limit of

the highway is at (x=1080, y = 6077) and the other limit is at (x=947, y= 5530).
SOFTW MODULES

In this section we describe the main program of the COUNT software and its various
modules. We present the general logic in flowcharts and explain the code in detail.
COUNT first reads the highway axis from input files described in the previous section
and computes the linear distances of these points from the datum. Tt then reads the
vehicle coordinate data from input files and projects the vehicle coordinates to locations

» along the highway axis defined by the highway axis coordinates. Then the software gives

the user the option to compute traffic measures during a specified time interval at a
specified location, or to compute the largest time interval possible for computing traffic
measures at a specified location for given highway limits. If the user chooses to compute
traffic measures during a specified time interval, the software requires the user to input
the count location and count time interval. If the user asks the software to compute the
time interval, the software requires the user to input the count location and the highway
limits. Figure A-6 shows the general flowchart of this software.

The Main Program

The main program declares variables and calls modules. This program is listed in
Appendix Al. Lines 4 through 63 in this listing declare the variables used in the program.
Comment lines have been added to explain where each variable is first used in the
program. : ' '

The main program ﬁrst ca.lls the module CENTERLINE This module reads the hlghway
axis data and computes the axial distances from the original data of the coordinates in the
highway axis data file. The command to call this module is in line 66 of the main program
listing found in Appendix Al. In line 67, the main program then calls MINMAX C, the
module that uses the axial distance to find the minimum and maximum distance of the axis
coordinate point in the output from CENTERLINE.

The main program then calls the VEHICLE, LOG_VEH, ORDER_VEH, DIRECTION,

and SPEED modules to read the vehicle data and process them to determine the individual
vehicle speeds and average speeds of cars and trucks. The commands to call these
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modules and associated comment are in lines 68 through 100. These are 12 command lines
to call modules in these lines are only 12. These 12 lines call 7 modules, 5 of which are
called twice, once for cars and once for trucks. Some of the call command lines take more
than one line of program list lines due to the large number of variables being passed to and
from these modules and due to the length of the variable names. (Most of the command
lines that call modules require more than one program list line and there are comment lines
that explain the program within the command lines.)

Next the main program calls CNT__.-'I_‘YPE, the module that asks the user to choose
between computing traffic measures during a time interval or computing the time interval
for the given highway limits. It does this by asking the user to respond with 1 to compute
traffic measures during a time interval and with 2 to compute the time interval for the
given highway limits. CNT_TYPE also accepts the user’s response. Depending on the
user’s choice, the main program calls different sets of modules. The flowchart in Figure
A-6 depicts the options. Line 104 in Appendix A1 is where the call is made to the module
that gives the user the choice and reads the user’s response. If the user chooses “17, the
main module calls the:modules to compute the traffic measures for the given count
location, and lines 106 through line 124 are processed. If the user chooses “2”, it calls the
modules that compute the time mterval for given highway limits, and lines 126 through
~ line 187 are processed

Htghway szs Module , ' ‘ '

The CENTERLINE module, which. process the hi ghway axis data to compute linear
distances along the axis, is listed in lines 1 through 74 of Appendix A2. This module reads
the coo_rdmates of the points that define the highway axis contained in Highway Axis
Data Input file and computes the distances of these points from the sameé reference datum
as the first point in the file. The x and y coordinates of the points are saved in arrays XC
and YC. The distances at these axis points are saved in an array, LOC_CL. The |
coordinate values and the distance fora given point are saved at the same reference
location in their respective arrays.

The XC, YC, and LOG_CL arrays are sized at the beginning of the main module and the
highway axis module. The statement to declare the sizes of the arrays is found in line 6 of
the main module (Appendix Alyand in line 5 of the ‘highway axis module (Appendnx A2).

Presently these arrays are sized to 800 spaces. If there are more than 800 points that
define the highway axis, the statements to set the sizes of these arrays should be modified
in these two arrays. (The FORTRAN compiler used to compile this software does not
allow for dynamic allocation of memory and has problems with giobal vanables.
Therefore, we allocate a memory size for the arrays at the beginning in the main module.
For the same reason we allocate the memory size at the beginning of each module for the
arrays that are being used in that module.)
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After reading the data and assigning distances to the coordinate points, the axes are
extended at the edges and an extra point is added to each end of the highway axis. The
axes are extended so that vehicles that lie around the beginning or end of the axis can be
projected to the axis. This extension becomes important when the highway axis is at an
angle with reference to the coordinate axis of the images. (This case is explained in more
detail in the LOG_VEH module section.) The need to do this will become clear when we
explain the method of assigning distances to vehicles with reference to the highway axis.
To allow for these “extensions”, the first place in each array is saved for the extension of
the beginning of the highway axis. The extension at the end of the axis 1s saved in the
place followmg the last point of the axis.

CENTERLINE first asks the user for the name of the file that contains the centerline data
in line 13 and accepts the user’s response in line 14 (see Appendix A2). Afier reading the
name of the file, the CENTERLINE ‘module calls the command to open the file (line 16 of
Appendix A2). If the file is opened with no problem, lines 26 through 68 are processed.
Otherwise, a failure message is printed at line 70, and the entire program is terminated.
When the file containing the axis data is opened, the value in the first line of the data file is
read (line 26) and saved in the second space in the array of centerline distances. As
explained above, this number represents the distance from some exterior datum to the first
axis point, the coordinates of which are listed in the second line of the axis data file. As
mentioned above, the first space in the LOG CL array is kept vacant to save the distance
at the extended point of the axis.

Next, CENTERLINE reads the coordinates of the highway axis points in a loop (lines 29
through line 38 of Appendix A2). After reading the first line of the data file the loop
starts. The x and y coordinates of each point are read and saved into arrays XC and YC
sequentially through this loop. While reading the data the module checks for invalid data.
Any data other than numerical values are considered invalid. Alphanumeric characters or
any other symbol characters in the data are considered invalid data. Similarly numerical

data with more than one decimal point, for example 2.2.0 or 2.2.0.0 are considered mvahd
_input. If any invalid data are read the program is terminated.

In addition to reading the data and checlqng for validity, the module checks for the end of
file within the loop and counts the number of axis points. The number of axis points is
used to define the size of the axis arrays to be used to save the data and to read data from.
A counter is used to count the number of axis points and this counter increments by 1
every time a new coordinate set is read. When the end of file is encountered the counter
stops incrementing and the loop is terminated. These checks are performed through
decision statements listed in lines 31 through 38.

When the loop is terminated two extra data records are added to the array. The firstis

added at the first location, and the second is added at the location following the last record
in the array. These records are for the extension of the axis. The beginning of the axis is
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extended by creating a point located at a distance from the first point of the axis data that
is equal to three times the linear distance between the first two points of the input data.
The end is also extended in a similar manner, by creating a point located at a distance from
the last point of the axis that is equal to three times the linear distance between the last’

two points of the axis. The beginning of the axis is extended by adding x and y coordinates
' to the first space in the arrays XC and YC. This is done in lines 43 and 44 of Appendix
A2. The last point is extended by adding x and y coordinates to the spaces following
those where the last point of axis had been saved. This is done in lines 47 and 48. -

The distance read from the first line in the axis data input file was assigned to the second
space in array LOG_CL because the coordinates of the point with this distance (i.e., the
second line in the axis coordinate data file) are saved in the second spaces of arrays XC
“and YC. Given the coordinates of this point and those representing the extension of the
axis explained above, the Euclidean distance of the extended chord is computed. This
distance is subtracted from the distance of the first axis point to yield the distance at the

extended first point of axis. The distance is saved in the LOG_CL array in the first space.

The software then processes a loop (lines 61-68 in Appendix A2), beginning with the -
third point, that computes the distances of each point and saves them at the appropriate
locations in the distance array, LOG_CL. The distances are determined by computing the
Euclidean distance between each point and the previous point and adding this incremental
distance to the cumulative distance of the previous point. The logic of this module is
illustrated in the flowchart shown in Figure A-7.

Within the same loop (lines 61-68) the module checks for the largest distance in the x or y
direction between two consecutive points. This distance is used later in the module that
computes the distance of vehicles along the road axis. The largest distance is assigned to a
variable called DINC. The module initializes DINC to zero (line 10). Whenever, the loop
increments to compute the distance at a point on the axis, the linear distance between the
present point and the previous axis point is checked to determine if it is larger than DINC
(lines 65 and 66). If the distance is larger than DINC, this distance value is assigned to
DINC. When the loop is terminated, the value of DINC is the largest difference in either x
ory direction between the coordinates of consecutive pomts ThlS va.lue is saved and
passed to the main program. - : : '

When completed CENTERLINE retums the control to the main program. It also returns
the values of the axis coordinates, the distances along the axis, and DINC to the main
module of the software. After completing the CENTERLINE module, the main program
calls the MINMAX_C module that determines the minimum and maximum values of the
array LOG_CL. These values are needed in later modules. They are saved in variables
CMIN and CMAX and passed to the main program.
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Vehicle Modules

There are six modules that read vehicle data and process them to obtain vehicle speeds
and then the average speed of each class of vehicles. We call these modules the vehicle
modules. The first vehicle module is called only once. The other five are each called twice,
once for processing car data and again for processing truck data. The first module, called
VEHICLES, reads the car and truck data and saves them in arrays. The other five modules
use these arrays to determine distance and speeds of cars and trucks. The flowchart

shown in Figure A-8 illustrates the order in which these modules are called. The first of
these five modules is LOG_VEH. This module uses the vehicle data arrays and the
centerline data to compute locations of vehicles, represented as distances, along the
centerline. This module is called once for each class of vehicles, cars and trucks in this
research. Module ORDER_VEH is called next for each class of vehicles. This module

sorts the vehicle data by their ID numbers and returns the vehicle data in the sorted

format. After sorting the vehicle data the DIRECTION module is called. This module
returns a value of +1 for the variable DIRECT if the distances of the vehicles increase as
they travel downstream, otherwise it returns a -1 for the value of the variable DIRECT;
that is, a +1 if the distances are measured in the direction of traffic flow and -1 if the
distances are measured opposite to the direction of flow. This is important in computing
the speeds of vehicles to ensure that the speed values are all positive. It is also important
when estimating the times when vehicles pass the count location. We explain this in more
detail when we explain the modules that estimate the time when vehicles pass the count
location. Once the direction of the increase in the vehicle distances is determined, the
SPEED module is called to compute the speeds of the vehicles. Again, SPEED is called
once for each class of vehicles. After the speeds of individual vehicles have been

computed, module AVG_SP is called. This module computes the average of all the speeds
of the vehicles. It computes the average speeds of each class of vehicles separately and is
called once for each class. The commands to call the vehicle modules are listed in lines 68
through 100 of Appendix Al. Next, we describe these modules in more detail.

VEHICLES Module. This module reads the data in the format explained in the
VEHICLE RECORD DATA section. Every vehicle has a record for every time when it
was imaged. The record contains the vehicle identification number, x and y coordinates of
location of the vehicle, and the time when the vehicle was at that location.

The code for this module is listed in lines 76 through 132 of Appendix A2. This module
first asks the user for the name of the file that contains the vehicle data (line 88). After
reading the name of the file input by the user (line 89), the module calls the command to
open the file (line 91). If the file is opened without problem, lines 94 through 129 are
processed. Otherwise, a failure message is processed and printed (line 132), and the
program is terminated.
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When the file is successfully opened the counters for cars and trucks are set to initial
values of 1(lines 95 and 96), and a loop to read the data is executed. (The counters are
defined by variables CRS and TKS for cars and trucks, respectively.) One large 1oop
(lines 98 through 124) is executed once for each class of vehicles. This loop starts by
reading the class of the vehicles and, depending on the value of the class, one of two
smaller internal loops is executed. If the class is 1, the loop that reads the car data is
executed (lines 102 through 107), and if the class is 2, the loop that reads the truck data is
executed (lines 110 through 115).

The loop to read car data starts by reading the first car identification number, the x and y
coordinates of the car location, and the time when this car was at this location. The time is
given in a format consisting of three numbers that represent the hours, minutes, and
seconds. The time is then converted to.units of hours by calling module T CONV. The
car data is saved in the space defined by the counter for cars, which starts with 1, in the
arrays | CAR_ID, XCAR, YCAR, and CAR_TIME _ID. The valués saved in these arrays

are the car identification number, x coordinates of the car location, y coordinates cf the car
location, and the time in the units of hours. If the car identification niumber is not -1, the
counter for the number of cars is incremented by one (line 106) and the loop is repeated.
The next time through the loop the data of the next vehicle is read and saved in the arrays
at the location defined by the counter. If the car identification number is -1, which
indicates the end of car data records (see the nghway Axis Module section), the loop
terminates. ; -

The loop to read the truck data is similar to the loop that reads the car data. The truck
data is saved in the arrays TRK_ID, XTRK, YTRK, and TRK_TIME _ID at the

. locations defined by the counter for trucks. The values saved in these arrays are the truck
identification number, x coordinates of the truck location, y coordinates of the truck
location, and the time in the units of hours when the truck was at that location.

After both the car and truck data are read, the larger loop is terminated and the module
passes the data to the main program. This module presently considers only two vehicle
classes, cars and trucks. It can be expanded to accommodate more classes of vehicles.
More loops can sxmply be added to read data for more classes. The new loops would
have to be added w1thm the larger loop that contains the smaller read loops. ‘

LOG_VEH Module. The module LOG_VEH computes the linear distances (i.e.,
distances measured along the road axis) of the vehicles with respect to the externally
defined datum. The input data for this module are the arrays that contain the highway axis
and vehicle data and the value of DINC. (Recall that DINC was defined in module
CENTERLINE above and represents the largest distance in the x and y direction between
two consecutive points on the axis line.) The LOG_VEH module passes back to the main
program the array of linear distances that represent the vehicle locations along the
highway axis. To calculate the linear distance of a vehicle, a perpendicular to the centerline
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is projected from the x and y coordinates of the vehicle to the centerline axis. Then, the
distance from the external datum to the point where the perpendicular line intersects the
axis is computed and assigned as the vehicle location distance.

A flow chart of this module is presented in Figure A-9. The code for this module is listed
in lines 1 through 181 in Appendix A3. The distances of all the vehicles are computed
through a loop that repeats once for each vehicle record.

To determine the distance of a vehi.c.le, the road axis points that are within a given
proximity of the vehicle location are identified. The module defines a search proximity
box with the vehicle location coordinates in the center and a width and height that are
equal to 4 times DINC, which was determine in module CENTERLINE. Any chord that
is partially within the search box is inspected. Imaginary perpendicular lines to these
chords are drawn from vehicle location. The point of intersection between the
perpendicular line and the chord or its extension is determined by calling module
INTERSECT (line 26 of Appendix A3). If the point of intersection between the chord
and the perpendicular is on the chord, this is defined as the point to reference the vehicle
by. If the point of intersectin is on the extension of the chord, the chord is dlsregarded
and the next chord is checked.

To illustrate, consider the schematic of a highway axis and a car represented in Figure A-
10. In this figure highway axis is represented by points C1, C2, C3, and C4 by the chords
(C1,C2), (C2,C3), and (C3,C4), where C1, C2, C3, and C4 are the points whose
coordinates are saved in arrays XC and YC that represent the highway axis. The car
location is represented by the center of the rectangle labeled CAR1. The perpendicular
drawn from the car location to the chords (C1,C2), (C2,C3), and (C3,C4) or their
extension are points X1, X2, and X3, respectively. Points X2 is on chord (C2,C3), while
X1 and X3 are on the extension of the chords (C1,C2) and (C3,C4), respectively.
Therefore, we consider point X2 to represent the location of the vehicle. We determine
the distance of CAR1 location as being the distance at C2 added to the Euclidean distance
between point C2 and X2.

This process is done through a loop that goes through many checks. Lines 31 through 174
are the list of the different check code lines for the intersection point of the two lines.
When the intersection is determined on axis chord, module D_LOG is called to compute
the distance along the intersection point on the axis. This is done by adding the Euclidean
distance from the intersection to the chord edge point to the distance at the end of the
chord. This distance is then assigned to the vehicle as its location distance.

Lines 15 through 178 are the commands that process the loop to find the distance location
of one vehicle. The large loop determined by lines 12 through 179 is processed once for
each vehicle. When all the vehicle distances are computed, the module passes the new
vehicle records to the main program. The new vehicle records contain the vehicle
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identification number, the vehicle distance along the highway axis, and the time when the
- vehicle was at this location. Figure A-11 presents car record data, for the vehicles in
Figure A-2, in the format passed from this module to the main program.

Module INTERSECT takes the coordinates of the end points of the two lines, the
highway axis chord line and the perpendicular line, as input and returns the coordinates of
the intersection point. This module listed in lines 183 through lines 197 uses basic
trigonometry to find the intersection of two lines. It takes line 1, which represents the
chord on the highway axis; and line 2, which represents the perpendicular to the chord
from the vehicle location, and finds their intersection. Line 1 is defined by coordinates
(x1,y1).and (x2, y2) and line 2 is defined by coordinates (x3,y3) and (x4,y4). Point of
intersection is defined by point (x5,y5) and the equatlon to compute these coordinates are
listed in lines 194 and 195.

In determining the vehicle location distance with reference to the road axis for the vehicles
that lie at the beginning or end of the axis, the perpendicuiar may intersect at a point on
the first chord outside the-axis limits. When the axis of the highway is at an anglé with
reference to the coordinates of the first image, locations of some vehicle could be out of
the range of the axis. This case is represented in the schematic of Figure 12. The schematic
represents a case of a first image in a series of images. The axis of the highway in this
image is at a.sharp angel with the respect to the image X axis of the image. Truck-1 is out
of the ranges of the highways axis. When a perpendicular is dropped from the location of
Truck-1to, the axis, the intersection of the axis and the perpendlcular lies outside the

ranges of the i image limits and thus the range of the axis.

ThisAcase-i_bs treated in our work by extending the axis beyond the starting point at the
limit of the image. This extension should be long enough to ensure that the intersection of
the axis and the perpendicular on the axis of the highway lie on this extension.

Ro;_callv,h we éﬁ;plained in the Highway Axis Module section that the highway axis are
extended at the ends to consider the vehicles that may lie at the beginning and end of the

highway. This was the reason for extendmg the axis at the begmmng and theend inthe
CENTERLINE module. . :

ORDER_ VEH Module. :Module ORDER_VEH sorts the vehicle data in
ascending order of vehicle identification number. The new sorted vehicle data and
identification numbers are saved in new arrays. Vehicle data are ordered such that vehicles
with similar identification numbers are in consecutive locations. Figure A-13 presents the
vehicle records of Figure A-11 in the new format.

The general process of this module is presented in the flowchart shown in Figure A-14.

The code for this module is listed in Appendix A3 in lines 229 through 297. As seen in
the flowchart, we determine a vehicle to be the present vehicle under consideration. We
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call the vehicle that is being processed the present vehicle and use the variable
LATESTVEH to indicate the ID of this vehicle. We start the loop by defining the present
vehicle to be the vehicle with the smallest identification number of all the vehicles in the
class (line 254 in Appendix A3). The smallest identification number is defined by calling
module MINMAX with the array that contains vehicle identifications (line 249 of*
Appendix A3). This array returns the smallest and largest vehicle identification numbers.

The vehicle records are sorted through two nested loops. The outer loop changes the
present vehicle ID every time the loop is incremented. The inner loop checks the entire
set of vehicle records to find all the vehicles with the same identification number. Each
vehicles with identification numbers identical to the present vehicle identification number
is saved in a new array N_VEH_ID in the order that it is found in VEH_ID each in the
next available cell. At the same time these vehicles are marked for deletion in the old array
VEH_ID of identification number. These vehicles are marked for deletion so that this cell
will not be checked the next time we go through the array to check a different vehicle

identification. When the last vehicle in the array VEH_ID has been checked to find all the -

vehicles with identical ID as the present ID, the LATEST VEH variable is incremented
(line 266) and the smaller loop is terminated. The larger loop checks for the

LATEST_ VEH to be less than or equal to the largest vehicle ID. When an ID greater than
that of the LATEST VEH is found there are no more vehicles left to be ordered, and the
larger loop is terminated. '

As the vehicle identification numbers are saved, their distances and time data are also
saved in the same reference location in new arrays N_VEH_LOG, and
N_VEH_TIME ID, respectively. This module process all the vehicle data and passes the
new set of arrays that contain the vehicle data sorted by vehicle identification number to
the main program. These new vehicle data are used in the next modules.

SPEED Module. This module computes the speed of every vehicle that is listed
more than once in the vehicle data. A vehicle is repeated more than once when its
identification number is repeated more than once in the list of identification numbers. This
would be the case when the vehicle is imaged more than once. Vehicles that do not appear
more than once are given a speed of zero. The speed of every vehicle is saved in a new
array called VEH_SP in the same reference location as that of the corresponding vehicle as
the other arrays. The vehicle location and identification are saved in N_LOG_VEH and
N_VEH ID in a location marked by the vehicle counter. The speed is saved in the array
VEH_SP at the location marked by the same counter. The data used in this module are the
sorted data that were passed from module ORDER_VEH. The process of this module is
presented in the flowchart of Figure A-14. The code for this module is listed in lines 290
through 312 of Appendix A3.

Speeds are computed in a loop that starts at the second location in the vehicle
identification array. If the identification of the vehicle in this record is equal to the
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identification number of the vehicle in the first location, the speed of the vehicle is
computed and saved in array VEH: SP. Otherwise, the vehicle is assigned a speed of zero
and the module proceeds to process the next vehicle. Only consecutive vehicle -
identifications have to be checked because the vehicles have been ordered in the previous
module such that the consecutive appearances of the same vehicle are in consecutive
locations in this list.

Speed is computed by dividing the difference in thelocation distances by the time

~ difference of these two vehicle locations. Recall that the distances are linear distances,
since the vehicles locations were projected to the axis in module LOG_VEH. The
calculated speed represents the average speed between these two locations during the time
when the vehicles were imaged at these locations. The speeds of the vehicles are saved in
the array in the same reference location parallel location to the second appearance of the
vehicle. The speed in the location referenced by the same reference location as first

appearance of the vehicle is given a zero in.the speed array. The speed of the vehicle is
comnuted in line 303 in Annendix A3 In the nresent vnrsnon the distance of vehicles ig
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assumed to be meters and' the time in hours; therefore, speed is divided by 1000 (line 303)
to convert the speed to units of kilometers per hour (KPH).

* This module passes the array of speeds of vehicles to the main program. These speeds are
used in later modules. :

AVG_SPD Module. This module computes the average speed of all the vehicles
in the array that contains the speed data. This module calculates the average speed as the
sum of the speeds divided by the number of non-zero speed values. This gives the average
speed of the vehicles in the class for which the data are being processed. This average
corresponds to the space mean speed of the vehicles. The code for this module is listed in
lines 314 through line 329 of Appendix A3.

This space mean speed is then substituted for the speed of vehicles that have been imaged
only once. The speeds of these vehicles had been temporarily set to zero. Recall that the
speeds of speeds of cars are generally greater than speeds of trucks; therefore;

substituting the average speed of cars for the speeds of a cars would tend to lead to more
accurate results than when substituting the average speeds of all-the vehicles. Similarly;
substituting the average speed of trucks for the speeds of trucks would tend to lead to
more accurate results than when substituting the average speeds of all the vehicles. For
this reason, we compute the average speed of each vehicle class separately by calling this
module to compute the average speeds of cars once and to compute the average speed of
trucks once.

Count Type

This is a simple module that asks the user to enter the choice of modules to run. It
requires the user to enter a 1 to compute traffic measures at a given location and time
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interval or to enter a 2 to compute the largest time interval for which parameters can be
estimated for the given road location highway limit. The user might not be able to define
the count interval from the data, in this case the user can define the highway limits from
the image and determine the maximum count interval that this highway limits would
allow. This interval then can be used to determine the count intervals, within this interval,
that the user wishes to use to get traffic parameters.

This is the module that represents the choice in the general flowchart of the program
shown in Figure A-15. This module is listed on lines 1 through 37 of Appendix A4. If the
user enters a 1 or a 2 as a response, the module returns the control to the main program
and passes the response back too. If the user’s response is anything else other than a 1 or
a 2, a message is presented to indicate that the response is invalid, and the response is
requested from the user again.

According to the user’s response, different sets of lines are processed in the main
program. When the user’s response is 1, lines 107 through 148 of the main program, listed
in Appendix Al, are processed. These lines call a series of modules called COMPUTE-1.
When the user’s response is 2, lines 151 through 188 are processed. These lines call a
series of modules called COMPUTE-2.

COMP -1 Modules :

Compute modules are modules that read the highway data file and compute traffic

m at the given location during the given time interval. The flowchart presented in
Figure A-16 shows the general process of this set of modules.

In COMPUTE-1, traffic measures are computed from the estimated times of when the
vehicles pass the count location. Since this work is motivated in large part by a desire to
compare measures estimated from satellite images to those that would be estimated from
an ATR (Automatic Traffic Recorder), we refer to the count location a ATR location. The
count location does not have to correspond to a true ATR location; it could be any

location on the given highway. This name is used for simplicity to identify the count
location. § _—

The times when the vehicles would pass the ATR locations are estimated from the given
location and time data in arrays N_VEH:LOG and N_VEH_ _ID. When a vehicle
has more than one location and time data, the closest location of the vehicle to the ATR
location is used to estimate the time when it would pass the ATR location. The user can
either use the average speed of the vehicles of the class or the speed of the individual
vehicle at the location where it resides to estimate the time it would take to travel from
the given location to the ATR location. We use these options to compare the measures

that we estimate using each speed to check the accuracy of both versus the measures
estimated from an ATR.
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In COMPUTE-1 series of modules, the first module called is XYATR, which reads the
highway data from a data file and passes the data back to the main program. Then, the
user is given a choice of which speed to use to project the vehicles to the ATR location. If
the user chooses to use the average speed of vehicles, then the BRING_TO_ATR A _SP
module is called twice, once with truck data and once with car data. Otherwise, if the user
chooses to use individual speeds of vehicles, BRING_TO_ATR module is called twice,
again once for truck data and once from car data. The BRING_TO_ATR and
BRING_TO_ATR_A_SP modules pass the estimated time when the vehicles pass the
ATR location to the main program. When these modules are completed, the COMP_PAR
module, which computes the parameters and pnnts them, is called

In the following sections we present details of the modules used in COMPUTE 1in the
order that these modules are called.

Count Locations Module. This module is called XYATR and it is listed in lines 1
through 48 of Appendix A4. XYATR first asks the user for the name of the fuc that
contains the count location data (line 15) and accepts the user’s response (lines 17): After
reading the filename, the module calls the command to open the file (line 21). If the file is
opened successfully, lines 21 through 42 are processed. Otherwise, a failure message is
prmted at line 44, and the module and the entire program are termmated

When the file is opened, the module reads the data. The number of lanes and the
passenger.car equivalent of trucks are read and assigned to variables NL and Et,
respectively, in lines 21 and 22. Line 23 reads the ATR location x and y coordinates, start
of count interval, and end of count interval. Each of the times is read in three numbers that
represent hours, minutes, and seconds. Module T_CONYV is called to convert each of the
times to one number in hour units. This module, called twice (lines 29-30), converts each
of the times - count start time, and count end time - to hour units. These times are
returned as values of the variables T1 and T2. o

Module LOG_LOCATION, called in line 34, compﬁtes the count location distance along
the highway axis and assigns it to DIS_ATR. After determining the count location
distance, this XYATR module terminates and passes all the data to the main program.

BRING_TO_ATR_A_SP Module. The BRING_ TO ATR_A_SP module
estimates the time when each vehicle passes the ATR location using the average speed of
the vehicles of the class of the vehicle being estimated. When a vehicle has only one
location record, this location is used to estimate the time when it passes the ATR
location. When a vehicle has more than one location record, the location closest to the
ATR is used to estimate the time when the vehicle passed the ATR location. The time
when the vehicle was at the location of the ATR is computed by estimating the time that
the vehicle would take to travel from the defined location to the ATR location and adding
this time to the time when the vehicle was imaged at the location of record closest to the
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ATR. The speed of the vehicle while traveling to the ATR location is the average speed of
the vehicles of the class of vehicles that are being processed. Recall that when the user
chooses to use the average speed of vehicles, module BRING_ TO ATR A SPis called.
Figure A-17 presents a flowchart of the process of this module. The code for this module
is listed in lines 49 through 200 in Appendix A4. (The data that are used in this module
are the data that are sorted in the ORDER_VEH module. Thus, the location and time
records of a vehicle are listed in consecutive order.) Line 93 is the start of a large loop that
repeats with every vehicle record. Each time through this large loop, a small loop listed in
lines 96 through 102 is processed. This smaller loop checks whether the vehicle has more

than one record. The first and last records of the same vehicle are determined in thls small
loop.

If the vehicle has only one record the time when it would have passed, the ATR location
is computed in the equation listed in lines 106 and 107. In these lines, atr t_veh is the
variable representing the estimated time when the vehicle pass the ATR location,
n_veh_time_id is the variable representing the time when the vehicle was imaged, log_atr
is the variable representing the location of the ATR, n_log_atr is the variable representing
the location of the vehicle, and spd is the variable representing the average speed of
vehicles.

If the vehicle has more than one record, lines 105 through 151 are processed. In these lines
first the location of the ATR is checked (lines 114 through 133) to determine whether it is
located between any consecutive locations of the vehicle. If this is the case, then the time
when this vehicle passed the ATR is estimated using the first one of these two locations
for this vehicle. This is done in the loop that is listed in lines 111 through 122. If the
location of the ATR is not between 2 consecutive locations of the vehicle, then the
location record closest to the ATR location is determined and used to compute the time
when the vehicle would have passed the ATR. This is done in lines 123 through line 150.

The new times when the vehicles are estimated to pass the ATR location are saved in a
new array called ATR_T_VEH. The minimum and maximum values in this array are
determined in line 158 and 159 and saved in variables TMIN and TMAX, respectively.
The identification numbers of these vehicles are saved in array ATR_V_ID in parallel
locations to their times in the array ATR_T_VEH. When the data of the vehicle with the
same identification have been processed, the loop finishes one cycle at line 163 and
increments to run the for a vehicle with new identification number. If the last vehicle has
been processed, this loop terminates and line 164 is processed. The check for more
vehicle data is performed at line 160.

After the times that the vehicles are estimated to pass the ATR locations have been
determined, the number of vehicles estimated to pass the ATR location during time
interval [t',t?] is determined. This is done in a loop that starts at line 173 and runs through
line 179. The vehicle identification numbers and speeds for the vehicles that are in the
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time interval are saved in the new arrays ID_IN_T and SP_IN_T, respectively. Then the
vehicles that have speeds are counted and the average of these speeds is computed. This
is done in a loop listed in lines 185 through line 194.

After computing the average speeds of vehicles in the count interval, this module
terminates and passes the data to the main program.

BRING_TO.ATR Module. The BRING TO_ATR module estimates the time
when each vehicle passes the ATR location using the individual speed of the vehicle.
Recall that when the user chooses to use the individual speed of vehicles, module
BRING_TO_ATR is called. This module uses the individual speeds to project the
vehicles to the ATR location.

This module works in the same manner as the previous module,
BRING_TO_ART_A_SP, except that the speed used to bring the vehicle to the ATR
iocation is the average speed of the individual vehicle. If the vehicle has only one location
record and no speed was estimated for this vehicle, the average speed of the vehicles of
the class is used in the equation to estimate the time at the ATR. If the vehicle has only
one speed record, this speed is used to estimate the time at the ATR location. When a -
vehicle has more than one speed record, the speed of the vehicle at the location closest to
the ATR, as explained in module BRING TO ATR_A SO, is used to estimate the time.
This module is listed in lines 202 through 363 of Appendix A4.

. COMPUT_PAR Module. The COMPUTE_PAR module computes the traffic
parameters at the given ATR location during the time interval given. Module
BRING_TO_ATR or BRING_TO_ATR_A _SP computed the number of cars and the
number of trucks that are estimated to pass the ATR location in the given time interval -
[t.,?]. The average speeds of all the vehicles that pass this location in this time interval
was also computed. Module COMP_PAR takes this speed and the number of cars and
trucks that are estimated to have passed the ATR location during time interval [t',t*] and
the highway count data described in the Highway Count Data section and computes
traffic parameters, The parameters computed in this module are'the volume of cars in time
interval [t',t?], the number of trucks, total number-of vehicles, percent of trucks, flow in
passenger car equivalent (PC), the space mean speéd, and the density in vehicles and in
PC. This module then lists the output to the screen. - '

The code for this module is listed in lines 1 through 41 in Appendix AS5. Traffic
parameters are computed in lines 15 through 23 and printed out in lines 25 through 39.
Figure A-18 shows an example of an output printed out by this module.

COMPUTE-2 Modules ‘
Compute modules are modules that read the highway data file and compute the largest
count time interval for the given data. In COMPUTE-2, the time interval is determined.
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As in BRING_TO_ATR and BRING_TO_ATR_A_SP, explained in the COMPUTE-1
Modules section, the times when the vehicles pass the specified location, ATR location,
are estimated. From these times the earliest time and the latest time when a vehicle passes
the ATR are determined. These earliest and latest times determine the allowable time
interval for the count. Module X1X2 is called to read the count location time and highway
limits data explained in the Highway Location and Limit Data section. Modules
BRING_TO_ATR_X1X2 AS and BRING_ TO_ATR_X1X2 are called to estimate the
time when the vehicles pass the ATR location using the average speed of vehicles and the
individual speeds of vehicles, respectively. Module CHECK_T1T2_X1X2 is called to
determine the maximum allowable time interval for the count. '

The first module called is X1X2. This module reads the highway limit data and passes the
data back to the main program. (Highway limits data are the coordinates of the first and
last location on the highway segment under consideration.) Then the user is given a choice
of which speed to use to project the vehicles to the ATR location. If the user chooses the
average speed of vehicles, then BRING_TO_ATR _X1X2 AS module is called once with
truck data and once with car data. Otherwise, the individual speeds of vehicles are used to
project these vehicles to the ATR location. In this case BRING_TO_ATR X1X2 module
is called. Both modules pass the estimated time when the vehicles pass the ATR location
to the main program. Then CHECK_T1T2_X1X2 module, which prints out the time
interval is called. :

X1X2 Module. The X1X2 module is listed in lines 1 through 57 of Appendix A6.
Module X1X2 starts by prompting the user for the name of the file that contains the
count location data and waits for the user to enter the filename. The commands for this
prompt and response are listed in lines 21 and 22 of Appendix A6. After reading the
filename in line 23, the-module calls the command to open the file. If the file is opened
successfully lines 27 through 51 are processed. Otherwise, a failure message is printed at
line 53, and the module and the entire program are terminated.

When the file is opened, the module reads the data. The loop listed in lines 29 through line
38 reads the x and y coordinate data for the count location, the beginning limit of the
highway, and ending limit of the highway. Module LOG_LOCATION is called next to
compute the distances along the highway axis for the location and limits of the highway.
After being determined, the location distances are printed and module X1X2 terminates
and passes the ATR location and highway limits data to the main program. -

BRING _TO_ATR _X1X2 AS Module. The code for the
BRING_TO_ATR_X1X2_AS module is listed in lines 59 through 211 of Appendix A6.
This module estimates the times when the vehicles pass the ATR location using the '
average speeds of vehicles. It has the same logic as modules BRING TO ATR A SP
used in COMPUT-1, which was explained in the BRING TO_ATR_A_SP Module
section. It differs in that the estimated time that a vehicle passes the ATR in
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BRING_TO_ATR_X1X2_ASis checked against the maximum and minimum times. If
the estimated time that a vehicle passes the ATR is larger than the maximum time, this
time is set to be the maximum. Similarly, if the estimated time that the vehicle passes the
ATR is smaller than the minimum time, this time is set to be the minimum time. The
maximum time is determined to be the latest time when the vehicles of the class pass the
ATR locations. The minimum is determined to be the earliest time when the vehicles of
the class pass the ATR location. These minimum and maximum times are the times to
determine the count interval to.estimate traffic measures from the given satellite data. The
values of the minimum time and the maximum time-are passed to the main program when

each of the modules terminates. This module is called twice, once for cars and once for
tucks

BRING_TO_ATR_X1X2 Module. The code for the BRING_TO_ATR_X1X2
module is listed in lines 213 through 374 of Appendix A6. This module estimates the
times when the vehicles pass the ATR location using the individual speeds of vehicles. It
has the same logic as module BRING_TO_ATR used in COMPUT-1, which was
explained in the BRING_TO_ATR Module section. As in ,

BRING TO_ATR_X1X2 AS, this module checks the estimated time that the vehlcles
pass the ATR location against the maximum and minimum times. If the time that a vehicle
passes the ATR is larger than the maximum time, this time is set to be the maximum.
Similarly, if the time that the vehicle passes the ATR is smaller than the minimum time,
this time is set to be the minimum time. The maximum time is determined to be the latest
time when the vehicles of the class pass the ATR locations. The minimum is.determined
to be the earliest time when the vehicles of the class pass the ATR location. As explained
in the previous section, these minimum and maximum times are the times to determine the
count interval to estimate traffic measures from the given satellite data. The value of the
minimum time and the maximum time is passed to the main program when each of the
modules terminates. This module is called twice, once for cars and once for tucks.

CHECK _TIT2_ X1X2 Module. The code for the CHECK _TI1T2_X1X2
MODULE module is listed in lines 104 through 129 in Appendix A7. This module takes
the minimum and maximum times.that cars and trucks would have passed the ATR - '
location, whlch were estimated in modules BRING_TO_ATR_X1X2 orin
BRING TO ATR _X1X2 AS, and determines the maximum allowable interval for the
count. The largest of the minimum car and trucks times is considered the start of the

count interval and the smallest of the maximum car and truck times is considered the end
of the count interval.

A20




Figure Al. Sample of highway axis data. .
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1080,
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Figure A2. Photographs 94 and 95.
The reference axis of the photographs and the first axis point.

Photo #94. Time 10:54:31

(x.y) = (950,5618)

(xcl,ycl)

Photo # 95. Time 10:54:36

(x.y) =(950,5618)




Figure A3. Sample of vehicle record data.
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1018, 5846, 10 54 31
1017, 5828, 10 54 31
959, 5615, 10 54 31
936, 5527, 10 54 31
931, 5481, 10 54 31
921, 5451, 10 54 31
- 910, 5413, 10 54 31
922, 5439, 10 54 31
914, 5405, 10 54 31
887, 5293, 10 54 31
878, 5272, 10 54 31
922, 5472, 10 54 36
903, 5392, 10 54 36
896, 5331, 10 54 36
890, 5306, 10 54 36
884, 5297, 10 54 36
876, 5278, 10 54 36
880, 5270, 10 54 36
872, 5239, 10 54 36
844, 5121, 10 54 36
837, 5103, 10 54 36
848, 5135, 10 54 41
846, 5144, 10 54 41
832, 5074, 10 54 41
-1, -1, -1, -1, -1

1050, 5981, 10 54 31
1042, 5951, 10 54 31
1036, 5921, 10 54 31
1017, 5862, 10 54 31
979, 5687, 10 54 31
939, 5527, 10 54 31
946, 5550, 10 54 36
904, 5379, 10 54 36
892, 5349, 10 54 36
-1, -1, -1, -1, -1




Figure A4. Sample of highway count data.
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803, 5393

10 54 30
10 55 00

Figure AS. Sample of highway limits data.

1011, 5795

1080, 6077
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COUNT

Highway axis data .
.——> Vehicle record data.

' 1 Choice 2
lor2?
¢ Highway data e Count location data.
e Count location (A) data o Highway limits data
e Intervaldata
] ]
Traffic measures at the fixed locatio ' Limits of time from the limits of
in time interval [t1,12): : highway [t1,t2]

Figure A6. General ﬂowcﬁm of the COUNT software.



Highway axis data include:
e Highway Datum point
e Highway axis coordinates (xc,yc)

Vehicle record data contains:

e  Vehicle coordinates (xv,yv)

e Time vehicle was at (xv,yv) coordinates

e Identifier of vehicle at (xv,yv) coordinates
e Class of vehicle at (xv, yv) coordinates. -

Highway data include:
e Highway number of lanes N1
e  Trck Terrain factor Et

Count location data include: _ _
e Traffic estimate location (A) coordinates (xa,ya)
e Time point A was imaged

Interval data include:
o Time interval limits [t1.12]

Count location data include:
e Traffic estimate location (A) coordinates (xa,ya)
e Time point A was imaged

Highway limits data include
e Highway limits coordinates (x1,y1), (x2,y2)
¢ Time when these limits of the road were imaged.

Traffic measures at the fixed location in time interval [t1,22):
Volume of cars

Volume of trucks

Total volume

Percent of tracks

Equiv. Of passenger car flow

Space mean speed

Equivalent passenger car density




A- AXIS MODULE

Highway axis data that include:
¢ Highway datum point
e Highway axis coordinates (xc, yc

Distance at 2™ point of axis = datnm

(L3

Lincar axis one point before the first axis
int and make it first point of axis. Find distance
this first point.

Extend Linear axis one point beyond the last axis
pomtandmakethlsthelastptofaxxs Find distance
at this point.

: pxevnous pomt + Euchdmn dlstance
* between present point and previous
point |

pend hnear distance to the present
axis point record.
M _ — —¥
+— Next axis point

o Number of Chordy in Highway
e  Armay of distance along the axis
appended to the axis records

Figure A7. Flowchart of highway axis module.



B- VEHICLE MODULES

¢ Highway axis data.
e  Vehicle record data.
L

BI- VEHICLES
Read vehicle record data file

‘ -B'z-,u'iﬁvnﬂ'

Determine linear distance of vehicles along
highway axis and append to vehicle records

-BS-UR]*i(‘VhH

Sort Vehicle Records by Ascending Order
ofldentifier -

: -B4- DIRECTION ,
Determine Directionof Increase Distances

de

Determine vehicle velocities and append
them to vehicle records

-B6- AVG_SP
Determine average velocity of vehicles

‘

Vehiclq mcords sorted by identifier after,
appending axial distances and speeds.
e Average velocities of vehicles

Figure A8. Flchhart that shows the order for calling the vehicle modules.




w

- LINEAR DISTANCES OF VEHICLE

¢ Highway axis data.
o  Vehicle record data.
. .

L

+ End of vehicle

Yes -
Records »

Project vehicles to Highway Segment

Ind hnear dtsl:m{e of projected vehicl
location s

v

[ Nextvel_:icle record _ ]

v

o Records of vehicle a!led linear distance

of vehicles along the highway axis

F igure A9. F ldwchart of LOG_VHE mddule.



-B2- SORT VEHICLE RECORDS BY IDENTIFIER

{* Vehicle records data. C

First vehicle record 1s present

record

v

Present record is the first record of
the sorted wl.ehicle records.

A___; Markpresent‘vehicle record for
deletion

First vehicle record is the first
record of slmrch list

YES

recordmarkedfor
deletion?

Present
Search'record identifier = present
resorted record identifier?

KE P!
sorted vehxcle records.

‘-b marked fordeletion

No. of sorted S

> _ Vehicle records = Totat No.

of vehicle records

NO e  Vehiclerecords
sorted by identifier
First vehicliécord is the
presentrecord
[
NO

L Mark record lfor deletion

]

Present vehiicle record is
the next record of sorted
list of Yehiclos

“—

Next seaﬁ record

< Nextvehicle record

F__

4

Figure A14. Flowchart of the general process of Module ORDER_VEH.




< Sorted Vehicle records <

The second vehicle record is
present v_e!;‘icle record

Yes
e  Sorted vehicle records with

velocities appended

No

Velocity =
Diff in distance/Diff. in time Velocity =0
v
Append velocity to present vehicle
: record
< Nextrecprd ‘———v

Figure A15. Flowchart of SPEED module.



Highway data :
Count location and interv:
Sorted vehicle records
Average velocity of vehicles

Project couniocation (A) to
Mghwax"mgnem‘ ‘

v

Determine the axxaldlstance of

location A at the projection point.

Speed of vehicles hich
r Speed to use
Average
Speed
C2- -Cl- .
Estimate the time when vehicles Estimate the time when vehicles
pass count location A using pass count location A using
individual speeds averagespeed.
| i
¢ L 4
-C3-
Compute paramenters

Figure A16. Flowchart that showé the process of calling the set of COMPUTE modules.

1

Traffic measures ai lomtioh Ain E

time interval {t1,22]




o

®  Axial distance at A.
e  Sorted vehicle records
e  Average velocity of vehicles

Present vehicle record is the first in
the sorted list of vehicle records

ndof
Vehiclerecords

o New record of vehicles with ti
when each vehicle passed locatio
A

NO

ime when vehicle passed A = timg
hen vehicle was seen + (Lincar

i at A - Linear distance of
chicle)/Averagespeed :

v

Vehicle location 1s the location of thd
vehicle at its closest sitting to

Locz_ltion A

ime when vehicle passed A = time
hen vehicle was seen + (Linear
istance at A — Linear distance of

chicle)/Averagespeed

;

Append time at A to vehicle record | g

v

Nextvehicle record

Figure A17. Flowchart of the BRING TO_ATR_ A_SP module.



OCONONHEWN =

APP_A1arev.xls

program count
lmpll(:lt none
! variables introduce for the first time in centerline subroutlne
integer numci
real xc(800),yc(800),log_ci(800), dinc
! variables introduce for the first time to find min and max
! of CL points
real cmin,cmax
! variables introduce for the first time in Vehicles subroutine
integer crs,tks,car_id(400),trk_id(400)
real xcar(400),ycar(400),xtrk(400),ytrk(400)

- - real trk_time_id(400),car_time_id(400) -

a——

variables introduce for the first time in minmax_\ veh tlmes
real tt_sttt endtc_sttc endt startt end

variables introduce for the first time in log_veh subroutine
real log_car(400),log_1rk(400)

real xcl{400), yci(»‘ow ,.xc2(403). yc2{400}

real xt(400),ytl{400),xt2{400),yt2(400)

variables introduce for the first time inorder_veh subroutine
integer n_car_id(400),n_trk_id(400)

real-n: log_car(400),n_log_trk(400)

-real n_trk_time_id(400),n_car_time_id(400)

variables introduce for the first time in direction subroutine
integer direct

variables introduce for the first time in speed subroutine
real car_sp(400),trk_sp(400)

variables introduce for the first time in avg_sp subroutme .-
real a_sp_cars, a_sp_trks

variables introduce for the first time in cnt_type subroutine
integer f_type '

variables introduce for the first time in x1x2 subroutine
integer NL

real dis_atr,dis_x1,dis_x2, Et

real t0, t1,t2

to the ATR location
integer speed_type,ie

- -

integer c_nx1x2,t_nx1x2

integer x12_car_id(400),x12_trk_id(400)

integer atr_c_id(400), atr_t_id(400)

real tminc_x12,tmaxc_x12,tmint_x12 tmaxt x12

real x12_car_tid(400),x12_trk_tid(400)

Teal x12_car_log(400),x12_c_sp(400)

real x12_trk_log(400),x12_t_sp(400)

real atr_c_t(400),atr_t_1(400),atr_c_sp{400),atr_t_sp(400)
variables introduce for the first time in xyATR subroutine
None

-

r— .t

integer cars_in_t,c_sp_i_ttrks_in_t,t sp_i t
real tminc tmaxc.tmint,tmaxt,a_sp_c_in_t.a_sp_t_in_t
variables introduce for the first time in volume subroutine

integer trks_in_x1x2,cars_in_x1x2

Page 1 of 4

variable inrtoduced to choose the speed to use to bring vehicles back

variables introduce for the first time in bnng to_aftr x1x2 subroutine

variables introduce for the first time in bring_to_atr_a_sp subroutine



o

107
108
108
110
111
112
113
114
115

APP_Atarev.xis

integer cnt_trk_id(400),cnt_car_id(400)
real cnt_trk_log(400),cnt_trk_sp(400)
real cnt_car_log(400),cnt_car_sp(400)
real t1_t2 tt1 ct2 ¢

variables introduce for the first time in check_t1t2 subroutine
integer fail

call centerline(xc,yc,log_cl,numcl,dinc)
call minmax_cl(numecl,log_cl,cmin,cmax)

call vehicles(xcar,ycarxtrk, ytrk,
car_id,trk_id tks,crs,trk_time_j |d car_time_id)
,tmin,tmax)- :
call log_veh(dinc xc,yc,log_c¢l, numcl xcar,ycar, Iog_car
crs,car_id,car_time_id,xcl,ycl,xc2,yc2)
call log_veh(dlnc XC,yC, |og_cl numcl,xtrk,ytrk,log_trk
tks, trk_id,trk_time_id,xt,ytl xt2,yt2)

call minmax(crs,car_time_id,tc_st,tc_end)
call minmax(tks,trk_time_id,tt_st.tt_end)
t_start = tt_st

t_end =tt_end

if(tc_st.1t.tt_st)t start =tc_st
if(tc_end.gt.tt_ end)t_end =tc_end

call order_veh(log_car,crs,car_id,car_time_id,
n_log_car,n_car_id,n_car_time_id)
call order_veh(log_trk,tks,trk_id,trk_time_id,
n_log_trk,n_trk_id,n_trk_time_id)
This subroutine gets the direction of the Center Line Increase
call direction(direct,crs,n_log_car,n_car_id,n_car_time_id)
The following subroutine wili compute the speeds of vehicles
print*,’
print*,'CARS '
call speed(crs,n_log_car,n_car_id,n_car_time_id,car_sp,direct)
call speed(tks,n_log_trk,n_trk_id,n_trk_time_id,trk_sp,direct)
The following will get me the average speed lftrks & and cars
print*
call avg_sp(crs,car_sp,a _sp_cars)
call avg_sp(tks,trk_sp.a_sp_trks)

print*,'average speed of cars =", a_sp_cars,’ Kmph'
print*,'average speed of trucks =‘,a_sp_trks," Kmph'
call cnt_type(f_type) '
print*,'type of count is ', {_type
if(f_type.eq.1)then
call xyATR(NL Et,dinc,numcl,xc,yc,log_cl,dis_atr,10,t1,12)
call which_sp{speed_type)
print*,’ Your start time is =",t1
print*,' Your end time is ='.2
if(speed_type.eq.1) then

~call cars

read*
call bring_to_atr_a_sp{crs.n_log_car,
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116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

147
148
149
150
1561
152
153
154
166
156
157

158
159
160
161

162

163
164
165

167
168
169
170
17

+ + + 4+

+ 4+ + +

APP_Atarev.xls

n_car_id,n_car_time_id,
car_sp,direct,a_sp_cars,dis_atr, -
atr_c_id,atr_c_t,t1,12,tminc,tmaxc,
cars_in_t.a sp_c_m_t c_sp_it)
call trucks

call bring_to_atr_a_sp(tks,n_log_trk,
n_trk_id,n_trk_time_id,
trk_sp,direct,a_sp_trks,dis_atr,
atr_t_id,atr_t_t.t1,12 tmint,tmaxt,
trks in_ta sp_t in tt sp_i_t)

else if(speed_type.eq. 2) then
call cars
read”
call bring_to_atr(crs,n_log_car,n_car_id,n_car_time | |d
car_sp,direct,a_sp_cars,dis_atr,
atr_c_id,atr_c_t,t1,t2,tminc,tmaxc,
cars_in_ta_sp_c_in_tc sp it)
read*
call trucks
call bring_to_atr(tks,n_log_trk.n_trk_id,n_trk_time_id,
trik_sp,directa_sp_trks dis_. atr
atr_t id.atr t_tt1 t2 tmlnt_.tmaxt
trks_in_ta_sp_t_in_tt sp_i t)
end if
call out_times(t1,12,tminc,tmaxc,tmint,tmaxt)
call check_cl_limits(direct,t1,t2,tminc,tmaxc,tmint,tmaxt,
a_sp_cars,a_sp_trks,dis_atr,
log_cl(2),log_cl(humci-1),
-~ te_stte_end,tt_sttt end)
call check_t12(t1,2, tmmc tmaxc tmnnt.tmaxt fail)
if (fail.gt.0) stop v
call comp_par(NL,Ett1, tzcars ln t.trks_in_t,
a_sp_c_in_tc sp_i ta sp__t_m_t t_sp_it)
elseif(f_type.eq.1)then
call x1x2(NL,Et,dinc,numct,xc,yc, Iog_cl
dis_x1,dis_x2,dis_atr,t0,t1.2)
call check_x1x2(dis_x1,dis_x2,direct,log_cl,numcl)
call veh_in_x1x2(dir,t1,2,d_x1,d_x2,crs,n_car_id,
n_log_car,n_car_time_id,car_sp,
x12_carx12_idc,x12_lgex12_te,x12_spc)

call veh_in_x1x2(dirt1,£2,8_x1,d_x2 tks,n_trk_id,

+ + 4+ + 4+

+
+
+

n_log_trk,n_trk_time_id,trk_sp, - -
x12_trk,x12_idt, x12_lgt,x12_ttx12_spt) .
call which_sp(speed_type)
if(speed_type. eq 1)then
call cars o '
call bring_to_atr x1x2as(cfs n_log_car,n_car_id,
n_car_time_id,
car sp,dlrecta sp_cars,dis_atr,dis_x1, dls X2,
tminc_x12,tmaxc. x12,
atr_c_id.atr_c_tatr_c_sp,
cars_in_ta_sp_c_in_t.c_sp_i t)
call trucks
call bring_to_atr_x1x2as(tks,n_log_trk,n_trk_id,
n_trk_time_id,
trk_sp,direct,a_sp_trks,dis_atr,dis_x1,dis_x2,
tmint_x12,tmaxt_x12,
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172 + atr_t_idatr_t tatr t_sp,

173 + trks_in_ta_sp_t in_tt sp_i_t)

174 else if(speed_type.eq.2) then

175 call cars

176 call bring_to_atr_x1x2(crs,n_log_car,n_car_id,
177 + n_car_time_id,

178 + car_sp,direct,a_sp_cars,dis_atr,dis_x1,dis_x2,
179 + tminc_x12,tmaxc_x12,

180 + atr_c_id,atr_c_tatr_c_sp,

181 + cars_in_t.a_sp_c_in_tc sp_i t)

182 call trucks

183 call bring_to_atr_x1x2(tks,n_tog_trk,n_trk_id,
184 + n_trk_time_id,

185 + trik_sp,direct,a_sp_trks,dis_atr.dis_x1,dis_x2,
186 + tmint_x12 tmaxt_x12,

187 + atr_t idatr_t_tatr t sp,

188 + trks_in_t,a_sp_t_in_tt sp_i_ t)

189 endif

180 call check_t1t2_x1x2(t1,12, tminc_x12 tmaxc_x12,
191 +  tmint_x12,tmaxt_x12)

192 end if

193 999 stop

194 end
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implicit none
real xc(800),yc(800),log_cl(800),dist,dinc
integer iof,ior,k,kk,sign
character*20 cent_file
data iof,ior/0,0/
sigh =1
dinc=0.0
k=2
print*, _ .
print*,” Please Enter the Center Line Data File name; '
read(5,10) cent_file
format(a)
open(unit =11 file=cent_file, status="old' jostat=iof)
if(iof.ge.0) then
Reading the mileage of the first point of the CL.
It is the second point in the array because | am going
to add a point at the beginning of the CL. Therefore,
the first point that we read for the CL is the second
point of the array.
This value, the mileage or distance of the first point,
is the value given on the first line of the CL data file.
read(11,*,iostat=ior) log_cl(2)
print*,'Mileage at first point of CL is *,log_cl(2)
dowhile(ior.ge.0)
read(11,* iostat=ior)xc{k),yc(k)
if(ior.it O)then
Kk = k-1
elseif(ior. gt O)then
print* 'Error in reading data STOP’
stop
else
k=k+1
end if
end do
print*, Center line points k =", k
close(11)
nnm
Adding one point at the beginning of the Cener Line
x¢(1) = xc(2)-{xc(3)-xc(2))*3
ye(1) = ye(2Hyc(3)-ye(2))*3
Adding.one point at the end of the Center Line
xc(k+1) = xe(k+(xe(k)-xc(k-1))*3
ye(k+1) = ye(k)+(yc(k)-ye(k-1))*3
k=k+1
At this point if we want to input the mileage at the
beginning of the CL we can read it in here instead of
reading it from the data file.
just use the following 2 lines.
print*,'Enter the mileage distance at beginning of the CL :*

app_a2 Page 1
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read*,log_cl(2)

dist = sqrt((xc(2)-xc(1))"*2+(yc(2)-yc(1))**2)

log_cl(1) = log_cl(2) - dist :

dokk=3, k

dist = sqrt((xc(kk)-xc(kk-1))"*2+(yc(kk)-yc(kk-1))*2)
log_cl(kk) = log_cl(kk-1)+dist

if(kk.gt.2.and.kk.it.k) then

if(abs(xc(kk)-xc(kk-1)).gt.dinc) dinc = abs(xc(kk}-xc(kk-1))

“if(abs(yc(kk)-yc{kk-1)).qt.dinc) dinc = abs(yc(kk)-yc{kk-1))

end if

end do

else o

print*,'Center Line Data File failed to open’

STOP -

end if

return

end

subroutine vehicles(xcar,ycar xtrk,ytrk,
car_id,trk_id,tks,crs,trk_time_id,car_time_id)

Ltmin,tmax)

implicit none

integer car_id(400),trk_id(400)

integer iof2,ior,car_trk tks,crs,pho_n ,classes

real trk_time_id(400),car_time_id(400), pho_t,hh,mm,ss

real xcar(400),ycar(400),xtrk(400),ytrk(400)

character*20 veh_file

data iof2,ior/0,0/

classes =2 .

Print*,'Please Enter the Vehicle Location Data File name:’

read(5,10) veh_file

format(a)

open(unit =12 file=veh_file,status="old',iostat=iof2)

if(iof2.ge.0) then

ior=0

tks=1 .

crs=1

dowhile(ior.ge.0)

read(12,* iostat=ior) pho_n,hh,mm,ss
call t_conv(pho_t,hh,mm,ss)

_if(ior.ge.0) then

car_trk=1

- do while(car_trk lt.classes )

read(12,*)car_trk
if(car_trk.eq.1) then
car_id(crs)=0
dowhile (car_id(crs).ne.-1)
read(12,*)car_id(crs),xcar(crs),ycar(crs)
car_time_id(crs) = pho_t
if(car_id(crs).ge.0) crs = crs +1
end do

else if(car_trk.eq.2) then
trk_id(tks) =0

. dowhile(trk_id(tks).ne.-1)

read(12,*)tri_id(tks).xtrk(tks), ytrk(tks)
trk_time_id(tks) = pho_t

app_a2
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116 if(trk_id(tks).ge.0) tks = tks+1

117 end do

118 ! Iif we have more classes than 2 then we should add an
119 ! if statement here and have more arrays to save the data
120 ! in them.

121 else

122 print*,'Error in data format’

123 print*,'At photo # : *, pho_n

124 print*, car_id(crs-1),xcar{crs-1),ycar(crs-1)

125 print* trk_id(tks-1)xtrk(tks-1), ytrk(tks-1)

126 stop

127 end if

128 end do

129 else

130 print*,'End of Vehicle data File '

131 end if

132 end do

133 crs=crs-1

134 tks =tks - 1

135 print*, !

136 print*,' number of cars =',crs: :

137 print*' number of trks =" tke

138 print*,’ !

139 eise

140 print*,'Vehicle Location Data File failed to open’
141 STOP

142 end if

143 return

144 end

145 U LI BUTTEH B HTUSHTHUIHIU U

146 subroutine minmax(n,yarray,ymin,ymax)

147 implicit none - : C

148 integer i,n

149 real yarray(n),ymin,ymax

150 ymin = yarray(1) ISet ymin and ymax to
161 ymax = yarray(1) ! first array element.
152 doi=2n Test balance of array
163 if (yarray(i).gt.ymax) then ! elements.

154 ymax = yarray(i)

155 elseif (yarray(i).t.ymin) then

156 ymin = yarray(i)

157 _ endif

158 enddo

159 return

160 end IEnd of subroutine.

161 ! ,

162 subroutine minmax_cl(nc,carray,cmin,cmax)

163 implicit none

164 integeri,nc

165 real carray(nc),cmin,cmax

166 cmin = carray(2) ISet cmin and cmax to
167 cmax = carray(2) Isecond array element.
168 doi=3,nc ITest balance of array
169 if (carray(i).gt.cmax) then lelements.

170 cmax = carray(i)

171 elseif (carray(i).lt.cmin) then

172 ~ cmin = carray(i)

173 endif

174 enddo
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return
end IEnd of subroutine.

implicit none

real hh,mm,ss,t_con

t_con = hh + mm/60. + ss/3600.
return

end

implicit none

real hhh,mmm,sss,tt_con

hhh = int(tt_con)

mmm = int{(tt_con-hhh)*60.)

sss = (((tt_con-hhh)*60)}-mmm)*60.
return

end
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subroutine log_veh(dinc,xc,yc,log_cl,nc,xv,yv,logv,veh,

+ v_id,v_time_id,x1,y1,x4,y4)

implicit none

integer veh,i,ii,flag,nc

integer v_id(veh)

real v_time_id(veh)

real xc(800),yc(800),log_cl{(800),xv(400),yv(400),logv(400)

real angle,anglet,xv1,yv1,x5,y5,d,dinc,dd '

real x1(400),y1(400),x4(400),y4(400)

dd =dinc * 2

doi=1, veh

i=1

flag=1

dowhile(flag.eq.1)

if(ii.eq.nc) then

flag=0

else

if{{xclii).le xv(iY+dd.and xc(ii).ge.xv(i)}-dd)
.and.(yc(ii).le.yv(i}*dd.and.yc(ii).ge.yv(i}-dd))then

angle = atan2d((yc(ii+ 1)-yc(ii)), (xc(ii+1)-xc(ii)))

if (angle.gt.360) angle = angle - 360

angle1 = angle+90.

xvi=xv(i)+dinc*cosd{angle1)

yvi=yv(i)+dinc*sind(angle1)

call intersect(xv1,yv1,xv(i),yv(i),xc(ii), ycii),
xc{ii+1),yc(ii+1),x5,y5)

if((xc(ii).eq.xc(ii+1).and.y5.ge.yc(ii+1).and.
y5.le.yc(ii)) .or.
(xc(ii).eq.xc(ii+1).and.y5.le.yc(ii+1).and.
. y5.ge.yc(ii))) then
call d_log(xc(ii),y5,xclii),xc{ii+1),yc(ii),yc(ii+1),
log_cl(ii),log_cl(ii+1),logv(i),x1(i),y 1(i))
x4(i) = xv1 .
y4(i) = yv1
flag=0
elseif((yc(ii).eq.yc(ii+1).and.x5.ge.xc(ii+1).and.
x5.le.ycii)) . or. -
(yc(ii).eq.yc(ii+1).and.x5.le.xc(ii+1).and.
x5.ge.yc(ii)))then
call d_log(x5,y5,xc(ii),xc(ii+1),yc(ii),yc(ii+1)
log_cl(ii),log_cKii+1),logv(i),x1{i),y1(i))
x4(i) = xv1
y4(i) = yv1
flag=0
else if((x5.ge.xc(ii).and.x5.le.xc(ii+1).and.
y5.ge.yc(ii).and.y5.le.yc(ii+1)).or.
(x5.ge.xc(ii+1).and x5.le.xc(ii).and.
y5.ge.yc(ii+1).and.y5.le.yc(ii)).or.
(x5.ge.xc(ii+1).and.x5.1e.xc(ii).and.
y5.ge.yc(ii).and.y5.le.yc(ii+1)).or.
(x5.ge.xc(ii).and.x5.le.xc(ii+1).and.
y5.ge.yc(ii+1).and.y5.le.yc(ii))) then
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call d_log(x5,y5,xc(ii),xc(ii+1),yc(ii).yc(ii+1)
+ log_clii).log_cl(ii+1),logv(i),x1(i).y1(i))

x4(i) = xv1

YA() = yvi

flag=0

else if{
+ (x5.ge.xcfii).and.x5.le.(xc(ii)+0.5).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+0.5)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+0.5).and.
+ y5.ge.yc{ii).and.y5.le.(yc(ii)+0.5)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ji)+0.5).and.
+ y5 . le.yc(ii).and.y5.ge.(yc(ii)+0.5)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii}+0.5).and.
+ yb.le.yc(ii).and.y5.ge.(yc(ii)+0.5)).or.
+ (x5.ge.xc(ii+1).and.x5.le.(xc{ii+1)+0.5).and.
+ y5.ge.yc(ii+1).and.y5.le.(yc{ii+1)+0.5)).or.

+ (x5.le.xc(ii+1).and x5.ge. (xc(ii+1)+0.5).and.

+ y5.ge.ycfii+1).and.y5.le.(yc(ii+1)+0.5)).or.
+ (x5.ge.xcfii+1).and.x5.le.(xc(ii+1)+0.5).and.
+ y5.le.yc(ii+1).and.y5.ge.(yc(ii+1)+0.5)).or.

+ (x5.le.xc(ii+1).and.x5.ge.(xc(ii+1)+0.5).and. -

+ y5.le.yc(ii+1).and.y5.ge.(yc(ii+1)+0.5)).or.
+ (x5.ge.xc{ii).and.x5.le.(xc(ii)-0.5).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii)-0.5)).or.

+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-0.5).and.

+ y5.ge.ycfii).and.y5.le.(yc(ii)-0.5)).or.

+ (x5.ge.xc(ii).and.x5.1e.(xc(ii}-0.5).and.

+ y5. le.yc(ii).and.y5.ge.(yc(ii}-0.5)).or.

+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-0.5).and.

+ y5.le.yc(ii).and.y5.ge.(yc(ii)-0.5)).or.

+ (x5.ge.xc(ii+1).and.x5.1e.(xc{ii+1)-0.5).and.
+ y5.ge.yc(ii+1).and.y5.le.{ycl(ii+1)-0.5)).or.

+ (x5.le.xc(ii+1).and.x5.ge.(xc(ii+1)-0.5).and.

+ yb.ge.yc(ii+1).and.y5.le.(yc(ii+1)-0.5)).or.
+ (x5.ge.xc(ii+1).and.x5.le.(xc(ii+1)-0.5).and.
+ y5.le.yc(ii+1).and.y5.ge.(yc(ii+1)-0.5)).or.
+ (x5.le.xc{ii+1).and.x5.ge.(xc(ii+1)-0.5).and.
+ y5.le.yc(ii+1).and.y5.ge.(yc(ii+1)-0.5)))then
call d_log(x5,y5,xe(ii),xc(ii+1),yc(ii),yc(ii+1)
log_c\(ii),log_ci(ii+1),Jogv(i),x1(i).y1(i))
x4(i) = xv1
y4(i) = yv1
! flag=0

else if ((x5.ge.xc{ii).and.x5.le.{xc{ii)+1).and.

+ y5.ge.yc{ii).and.y5.le.(yc(ii)+1)).or.

+ (x5.le.xc{ii).and.x5.ge.(xc(ii)+1).and.

+ y5.ge.yc(ii).and.yS.le.(yc(ii)+1)).or.

+ (x5.ge.xc(ii).and x5 le.(xc(ii)+1).and.

+ yb5.le.yc(ii).and.y5.ge.(yc(ii)+1)).or.

+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+1).and.

+ y5.le.yc(ii).and.y5.ge.(yc(ii)+1)).or.

+ (x5.ge.xc(ii+1).and.x5.le.(xc(ii+1)+1).and.
+ yb5.ge.yc(ii+1).and.y5.le.(yc(ii+1)+1)).or.
+ (x5.le xc(ii+1).and.x5.ge.(xc(ii+1)+1).and.

+ yb.ge.yc(ii+1).and.y5.le.(yc(ii+1)+1)).or.

+ (x5.ge.xc(ii+1).and.x5.1e.(xc(ii+1)+1).and.
+ y5.le.yc(ii+1).and.y5.ge.(yc(ii+1)+1)).or.
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+ (x5.le.xc(ii+1).and.x5.ge.(xc(ii+1)+1).and.
+ y5.le.yc(ii+1).and.y5.ge.(yc(ii+1)+1)).or.

+ (x5.ge.xcfii).and.x5.le.(xc(ii)-1).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii}-1)).or.

+ (x5.le.xc(ii).and.x5.ge.(xc(ii}-1).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii)-1)).or.

+ (x5.ge.xc(ii).and.x5.le.(xc(ii}-1).and.

+ y5 le.yc{ii).and.y5.ge.(yc(ii}-1)).or.

+ (x5.le.xc(ii).and.x5.ge.(xc(ii}-1).and.

+ y5.le.yc(ii).and.y5.ge.(yc(ii}-1)).or.

+ (x5.ge.xc(ii+1).and.x5.le.(xc{ii+1)-1).and.
+ y5.ge.yc(ii+1).and.y5.le.(yc(ii+1)-1)).or. -
+ (x5.le.xc(ii+1).and.x5.ge.(xc(ii+1)-1).and.

+ y5.ge.yclii+1).and.y5.le.(yc(ii+1)-1)).or.

+ (x5.ge.xc{ii+1).and.x5.le.(xc{ii+1)-1).and.

+ y5 le.yc(ii+ 1).and.y5.ge (yc(ii+1)-1)).or. -

+ (x5.le.xc(ii+1).and.x5.ge.(xc{ii+1)-1).and. -

+ y5 le.yc(ii+1).and.y5.ge.(yc(ii+1)-1)))then
call d_log(x5,y5,xc(ii),xc(ii+1),yc(ii),yc(ii+1)

+ log_cKii),log_cl(ii+1),logw(i),x1(i),y1(i))
X4(i) = xvi ‘ C
YA(]) = yvt

else if ((x5.ge.xc(ii).and.x5.le.(xc(ii}+5).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii)+5)).or.

+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+5).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii}+5)).or.

+ (x5.ge.xc(ii).and.x5.le.(x¢(ii)+5).and.

+ y5.le.yc(ii).and.y5.ge.(yc(ii)+5)).or.

+ (x5.le.xc{ii).and.x5.ge.(xc(ii)+5).and.
+ y5.le.yc(ii).and.y5.ge (yc(ii)+5)).or.

+ (x5.ge.xc(ii+1).and.x5.le.(xc(ii+1)+5).and.
+ y5.ge.yc(ii+1).and.y5.le.(yc(ii+1)+5)).or.

+ (x5.le.xcl{ii+1).and.x5.ge.(xc{ii+1)+5).and. |

+ y5.ge.yc(ii+1).and.y5.le.(yc(ii+1)+5)).or.

+ (x5.ge.xc(ii+1).and.x5.le.(xc(ii+1)+5).and.
+ y5.le.yc(ii+1).and.y5.ge.(yc{ii+1)+5)).or.
+ (x5.le.xcf{ii+1).and.x5.ge.(xc(ii+1)+5).and.
+ y5.le.yc(ii+1).and.y5.ge.(yc(ii+1)+5)).or.

+ (x5.ge.xc(ii).and.x5.le.{x¢(ii}-5).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii}-5)).or.

+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-5).and.

+ yb5.ge.yc(ii).and.y5.le.(yc(ii}-5)).or.

+ (x5.ge.xc{ii).and.x5.le.(xc(ii}-5).and.

+ y5_le.yc(ji).and.y5.ge.(yc(ii}-5)).or.

+ (x5.le.xc(ii).and.x5.ge.{xc(ii}-5).and.

+ y5.le.yc{ii).and.y5.ge.(yc(ii}-5)).or: - - - ¢

+ (x5.ge.xc(ii+1).and.x5.le.(xc(ii+1)-5).and.
+ y5.ge.yc(ii+1).and.y5.le.(yc(ii+1)-5)).or.
+ (x5.le.xc(ii+1).and.x5.ge.(xc(ii+1)-5).and.
+ y5.ge.yc{ii*1).and.y5.1e.(yc(ii+1)-5)).or.
+ (x5.ge.xc{ii+1).and.x5.le.(xc(ii+1)-5).and.
+ y5 le.yc(ii+1).and.y5.ge.(yc(ii+1)-5)).or.
+ (x5.le.xc{ii+1).and.x5.ge.(xc(ii+1)-5).and.

+ yS.le.yc(ii+ 1).and.y5.ge.(yc(ii+1)-5))}then .

call d_log(x5,yS,xc(ii)xc(ii+1),yc(ii),yc(ii+1)
+ log_cl(ii),log_cl(ii+1),logv(i),x 1(i),y1(i))
. x4(i) = xv1

yA(i) = yvi

end if
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end if
i = ii+1
end if
end do
end do
return
end

|mp||cttnone ..................................................
real x1,X2,x3,x4,x5,y1,y2,y3,y4,y5
real a1,b1,c1,a2,b2,c2

al = y2-y1
b1=x1-x2
c1=x2"y1 -x1*y2
a2 = y4-y3
b2 = x3 -x4

. €2 = x4"y3 -x3*y4

x5 = (b1*¢c2-b2*c1)/(a1*b2-a2*b1)
y5 = (c1*a2 - c2*a1)/(a1*b2-a2*b1)
return

end

implicit none .
real x5,y5,xc1,yc1,xc2,yc2,loge1 loge2,logv,xl,yl.d
xl = x5

yl=y5

if(logc1.gt.logc2)then

d = ((x5-xc2)*"2+(y5-yc2)**2)**.5
logv = d + logc2

else

d = ((x5-xc1)™*2+(y5-yc1)*2)**.5
logv = d + loget

end if

return

end

subroutine dis_xy(x5,y5,xc1,xc2,yc1,yc2,loge1,logc2 logv)

L
implicit none

real x5,y5,xc1,yc1,xc2,yc2,logc1,loge2,logv,d
if(logc1.gt.logc2)then .

d = ((x5-xc2)*2+(y5-yc2)**2)**.5

logv =d + logc2

else

d = ((x5-xc1)**2+(y5-yc1)**2)**.5

logv =d + logc1

end if

Teturn

end

subroutine order_veh(log_veh,veh,veh_id,veh_time_id,

+ n_log_veh,n_veh_id,n_veh_time_id)
|mphc|tnone ...................................................
integer iii,ii,i, veh,veh_id(400),n_veh_id(400)
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integer min_veh_id,max_veh_id

integer flag,flag2,latestveh,veh_del(400)
real veh_time_id(400),n_veh_time_id(400)
real log_veh(400),n_log_veh{400)

format(/,60(*~)./,

'ID Distancelog Time '/60(-')/,

i9/60("-"))
do i= 1,veh
veh_del(i)=0
end do

This loop will organize the data in the vehicle ID assending order format

that we want

call minmax(veh,veh_id,min_veh_id,max_ veh _id)

print*’

print*,'minimum vehicle ID is =
print*,'maximum vehicle ID is = ', max_veh_id

print*,’
latestveh = min_veh_id
i=1

' min_veh_id

dowhile(i.le.veh.and.latestveh.le.max_veh_id)

flag=0
i=1

do while(flag.eq.0.and.ii.le. veh)

if(veh_id(ii).eq.latestveh.and.veh_del(ii).eq.0) then

n_veh_id(i) = latestveh .
n_log_veh(i)= log_veh(ii)

n_veh_time_id(i) = veh_time_id(ii)

veh_del(ii) = 1

fiag=1

latestveh = latestveh + 1
i=i+1 :

else if(ii.eq.veh) then

latestveh=latestveh + 1
end if

ii= ii+1

end do

flag2=0

ili=1ii

do while(flag2.eq.0.and.iii.le.veh).

if(veh_id(iii).eq.latestveh-1.and. veh del(m) ne: 1

and.iii.le.veh)then
flag2=1
latestveh = latestveh - 1
end if
iii = ii+1

if(flag.eq.0) latestveh = latestveh + 1

end do
end do
return
end

implicit none
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integer veh,i, direct

integer n_veh_id(400)

real veh_sp(400),n_veh_lg(400),n_veh_time(400)

real dt_time

Now We request the time difference between the set of photos.
write(6,300)

veh_sp(1)=0

do i= 1, veh-1

if(n_veh_id(i).eq.n_veh_id(i+ 1)) then

dt_time = (n_veh_time(i+1)-n_veh_time(i))
veh_sp(i+1)=(n_veh_lg(i+1)-n_veh_ig(i)/dt_time/1000*direct

*3.6) direct

if(veh_sp(i+1).1.40) veh_sp(i+1)= 0.
if(veh_sp(i+1).gt.150) veh_sp(i+1)= 0.
else
veh_sp(i+1)=0
end if
end do
return
end

implicit none

integer n,i,nn

real veh_sp(n),a_sp_vehs,sum
sum=0

nn=0

do i=1,n
if(veh_sp(i).ne.0) then -
nn=nn+1

sum = sum + veh_sp(i)
end if

end do

a_sp_vehs = sum/nn
return

end

implicit none
integer direct ,veh,n_veh_id(veh),i, n
real n_log_veh(veh),n_veh_time(veh),sp
n=0
direct=1
do i= 1, veh/2
if(n_veh_id(i).eq.n_veh_id(i+1)) then
sp=(n_log_veh(i+1)-n_log_veh(i))/1000/
(n_veh_time(i+1)-n_veh_time(i))
if(sp.it.0) n =n-1
if(sp.gt.0) n =n+1
endif -
end do
if(n.it O)direct = -1
print*,’ )
print*'nis= ", n
print*,'Direction is =, direct
print*;’ !
return

log_veh4
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subroutine xyATR(NL,Et,dinc,nc,xc,yc,log_cl,dis_atr,t0,t1,£2)
implicit none

integer NL,nc , iof,ior

integer p_id(2)

real xc{nc),yc(nc),log_cl(nc),xp(1).yp(1),log_p(1)

real xp1(1),yp1(1).xp4(1),yp4(1),p_time(1),dinc

real hh,mm,ss,t0,t1,hh1,mm1,ss1,82,hh2,mm2,ss2

real dis_atr, Et . '
character*20 xy_atr -

ASK FOR A FILE WITH XY-ATR AND t0 DATA FILE AND FIND THE
COORDINATES WITH REFERNCE TO THE CENTER LINE.

print*,'Please Enter the name of the file that has '
print*,'XY-ATR to, t1, {2
read(5,10) xy_atr

10 format(a)

open(unit =9 file=xy_atr,status="old"iostat=iof)
if(iof.ge.0) then ‘ T
read(9,* iostat=ior)NL

read(9,* iostat=ior)Et

read(9,* iostat=ior)xp(1),yp(1),hh,mm,ss,

+ mm1,ss1,HI4,mm2,ss2

if(ior.ne.0)then
print*,'Check data format in data file???'
stop
end if
call t_conv(t0,hh,mm,ss)
call t_conv(t1,hh1,mm1,s51)
calt t_conv(t2,hh2,mm2,ss2)
p_time(1)=t0
_id(1) =1 .
call log_location(dinc,xc,yc,log_cl,nc,xp,yp.log_p.1)

dis_atr =log_p(1)
printg‘l . [ . N
print101, dis_atr,hh,mm,ss,hh1,mm1,ss1,t1,hh2,mm2,ss2t2

101 format(’ ATR is at distance : ', £10.2/
+ ' Base time is :',f4.0,4.0,6.3/
+ * Start time is :',14.0,14.0,16.3,f11.5/
+ ' End time is :",f4.0,14.0,16.3,11.5)

else
print*,'X1,X2,t data file failed to open'
STOP
end if
return
end
! NOTES
! This Subroutine brings all the vehicles to the atr location
! using the average speed of all the vehicles in the same
! class to compute the time by taking distance/speed

~ subroutine bring_to_atr_a_sp(veh,n_log_veh,
+ n_veh_id,n_veh_time_id,
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veh_sp.dir,a_sp_veh,log_atr,atr_v_id,atr_t veh,
t1,£2, tminv,tmaxv,iii,a_sp_in,i_sp)
LIS U QI RBHU BB UL
implicit none .

integer dir,veh,k.i.i1,i2,flag1,flag2,flag3,iii,i_sp

integer n_veh_id(veh), atr_v_id(400),casev(400)
integer id_in_{(400)

real sp_in_t{400)

real n_log_veh{veh),veh_sp(veh),n_veh_time_id(veh)
real atr_t_veh{veh),atr_v_sp(400)

reala_sp_vehspd -

real log_atr.t1,12 tminv tmaxv

real | _i1,1_i2 -

real tmin,tmin_diff.t_diff.t_diff2,tt

_ reala_sp_in,sum_sp -

13
+
+
+
+

a_sp_in=0. -
isp=0
tminv = 9999
tmaxv= 0
print13,log_atr,t1,t2
format(60(’-'),/’ATR dist inside the subroutine is:",f9.1,
I'Start time for count is ='.f11.7,.
FEnd time for countis ='f11.7,
II'The values of the log and speed are:'//
‘# ID Dist_veh Speed'/60(*-"))

do i=1,veh
print*,i,n_veh_id(i),n_log_veh(i),veh_sp(i)
end do : ’

tmin = 1./(30.*3600.)

tmin_diff = 5./3600.

flagi =0

i=0

i1=1

2=1

spd = a_sp_veh

do while(flag1.eq.0)

i=i+1

flag2 =0

do while(flag2.€q.0)

if(n_veh_id(i1).eq.n_veh_id(i2+1))then

i2= i2+1 o

else

flag2=2

end if

" end do

+
+
+

atr_v_id(i) = n_veh_id(i1)
if(i1.eq.2) then
casev(i)=1
atr_t_veh(i) = n_veh_time_id(i1) +
(log_atr - n_log_veh(J4))/(1000*spd)* dir
atr_v_sp(i)=0.0
elseif(i2.gt.i1) then
flag3=0 . .
do k =i1,i2-1
if((n_log_veh(k).ge.log_atr.and.
n_log_veh(k+1).le.iog_atr).or.
{n_log_veh(k).le.log_atr.and.
n_log_veh(k+1).ge.log_atr))then
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atr_t_veh(i) = n_veh_time_id(k) +
(log_atr - n_log_veh(k))/(1000*spd)*dir
atr_v_sp(i) = veh_sp(k+1)
flag3 =1
casev(i) =2
end if
end do
if(flag3.eq.0) then
1 i1 =n_log_veh(i1)
1_i2=n_log_veh(i2)
if (dir.gt.0) then
if(1_i2.le.log_atr) then
atr_t_veh(i) = n_veh_time_id(i2) +
(log_atr - n_log_veh(i2))/(1000*spd)*dir
atr_v_sp(i) = veh_sp(i2)
casev(i)= 3
elseif(l_i1.ge.log_atr) then
atr_t_veh(i) = n_veh_time_id(i1) +
(log_atr - n_log_veh(i1)}(1000*spd)*dir
atr_v_sp(i) = veh_sp(i1+1)
casev(i)= 4
end if
else if(dir.it.0)then
if(L_i1.le.log_atr) then
atr_t_veh(i) = n_veh_time_id(i1) +
(log_atr - n_log_veh(i1))/(1000*spd)*dir
atr_v_sp(i) = veh_sp(i1+1)
casev(i)=5
elseif(l_i2.ge.log_atr) then
atr_t_veh(i) = n_veh_time_id(i2) +
(log_atr - n_log_veh(J5)){(1000*spd)*dir
atr_v_sp(i) = veh_sp(i2)
casev(i)=6 :
end if
end if
end if
else
print*,'
print*,** SOME THING IS WRONG IN THE CHECK **
print*,** AT VEHICLE #'i' =~ ™
prin t'l
end if
if(atr_t_veh(i).gt tmaxv) tmaxv = atr_t_veh(i)
if(atr_t_veh(i).lt.tminv) tminv = atr_t_veh(j)
if(i2.eq.veh) flagt = 10
i1=2+1
2=i
end do
print®,
print*,™* Directionis =° dir,, **
print*,** # of vehicles=",i, ' **
print*,
dok=1,i
write(6,130)k,atr_v_id(k).atr_t_veh(k),atr_v_sp(k),casev(k)
end do

130 format(i5, i7,3x,112.7,9.3,i4)

ii=0
dok=1,i
if(atr_t_veh(k).ge.t1.and.atr_t_veh(k).le.t2) then
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iii=iii+ 1
id_in_t(iil) = atr_v_id(k)
sp_in_t(iii) = atr_v_sp(k)
end if
end do
print140,tminv, tmaxv
140 format(60(-')'For this segment Tminis = ' f11.7/
! & Tmaxis="HM1.7/
60(-')/'Vehicles that are included in the count are’,
/60('"'y # ID SPEED(kmph) '/60(*-")
i_sp=0
sum_sp=0
do k = 1,iii -
print150 k.id_in_t(k).sp_in_t(k)
if(sp_in_t(k).gt.0) then
isp=isp+1
sum_sp = sum_sp + sp_in_{(k)
end if
end do
if(i_sp.ne.0) a_sp_in=sum_sp/i_sp
print160,a_sp_in, i_sp
160 format{E0{-'}The average speed of these vehicles is,
+ 9.4, kmph '/This is for’,i4,’ Vehicles'/60(-'Y)
150 format(2(i5),f11.4)
return
end
NOTES .
This Subroutine is based on the fact the same vehilce th
sppears more than once is organized in the format that the
the vehicle's first appearance is listed firts.

subroutine bring_to_atr(veh,n_log_veh,n_veh_id,n_veh_time_id,
+ veh_sp,dir,a_sp_veh,log_atr,atr_v_id,atr_t veh,
+ 1,82 tminv,tmaxv,iii,a_sp_in,i_sp)

LI BEHUTHH R U BHH R

implicit none

integer dir,veh k,i,it,i2,flag1,flag2 flag3,iii,i_sp

integer n_veh_id(veh), atr_v_id(400),casev(400)

integer id_in_t(400)

real sp_in_t(400)

real n_log_veh(veh),veh_sp(veh),n_veh_time_id(veh)

real atr_t_veh(veh),atr_v_sp(400) '

real a_sp_veh,spd

real log_atr,t1.£2.tminv.tmaxv

real |_i1, _i2

real tmin,tmin_diff,t_diff,t_diff2,tt

real a_sp_in,sum_sp C

isp=0

spd=0

tminv = 99999

tmaxv =0

print13,log_atr.t1,©2

13 format(60(*-'),/ATR dist inside the subroutine is:",f9.1,
+ [Start time for countis ="', f11.7,
+ [End time for countis ="'111.7,
+ II'The values of the log and speed are:'//
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'# ID Dist veh  Speed'/60(-"))

do i=1,veh
print*,i,n_veh_id(i),n_log_veh(i),veh_sp(i)
end do
tmin = 1./(30.*3600.)
tmin_diff = 5./3600.
flag1 =0
i=0
i1=1
=1
do while(flag1.eq.0)
izi+1 -
flag2 = 0
do while(flag2.eq.0)
if{(n_veh_id(i1).eq.n_veh_id(i2+1))then
2=i2+1
else
flag2=2
end if
end do
atr_v_id(i) = n_veh_id(i1)
if(i1.eq.i2) then
casev(i) =1
atr_t_veh(i) = n_veh_time_id(i1) +
{log_atr- n_log_veh(J4))(1000*a_sp_veh)* dir
atr_v_sp(i)=0.0
elseif(i2.gt.i1) then
flag3=0
dok=iti2-1
if((n_log_veh(k).ge.log_atr.and.
n_log_veh(k+1).le.log_atr).or.
{n_log_veh(k).le.log_atr.and.
n_log_veh(k+1).ge.log_atr))then
spd = veh_sp(k+1)
if(veh_sp(k+1).eq.0) spd = a_sp_veh
atr_t_veh(i) = n_veh_time_id(k) +
(log_atr - n_log_veh(k))/(1000*spd)*dir
atr_v_sp(i) = veh_sp(k+1)
flag3=1
casev(i) =2
end if
end do
if(flag3.eq.0) then
Li1 = n_log_veh(i1)
L2 = n_log_veh(i2)
if (dir.gt.0) then
if{l_i2.le.log_atr) then
spd = veh_sp(i2)
iflveh_sp(i2).eq.0) spd = a_sp_veh
atr_t_veh(i) = n_veh_time_id(i2) +
(log_atr - n_log_veh(i2))/(1000*spd)*dir
atr_v_sp(i) = veh_sp(i2)
casev(i)=3
elseif(l_i1.ge.log_atr) then
spd = veh_sp(i1+1)
if(veh_sp(i1+1).eq.0) spd = a_sp_veh
atr_t_veh(i) = n_veh_time_id(i1) +

+ (log_atr - n_log_veh(i1))/(1000*spd)*dir
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atr_v_sp(i) = veh_sp(i1+1)

casev(i)= 4

end if

else if(dir.t.O}then

if(L_i1.le.log_atr) then

spd = veh_sp(i1+1)

if(veh_sp(i1+1).eq.0) spd = a_sp_veh

atr_t_veh(i) = n_veh_time_id(i1) +

(log_atr - n_log_veh(i1))/(1000*spd)*dir

atr_v_sp(i) = veh_sp(i1+1)

casev(i) =5

elseif(l_i2.ge.log_atr) then

spd = veh_sp(i2)

if(veh_sp(i2).eq.0) spd = a_sp_veh

atr_t veh(i) = n_veh_time_id(i2) + '

(log_atr - n_log_veh(J5))/(1000*spd)*dir

atr_v_sp(i) = veh_sp(i2)

casev(i) =6

end if

end if

end if

else

print*, v :
print*,** SOME THING IS WRONG IN THE CHECK **
print*,"** AT VEHICLE #'0 -

print*,
end if
if(atr_t_veh(i).gt tmaxv) tmaxv = atr_t_veh(i)
if(atr_t_veh(i).it.tminv) tminv = atr_t_veh(i)
if(i2.eq.veh) flag1 = 10

i1=i2+1

2=i

end do

print*,
print*,™* Directionis ="' dir,, **
print*,"** #ofvehicles=",i, ' *~
print*, ?
dok=1,i
write(6,130)k,atr_v |d(k) atr_t_veh(k),atr_v_sp(k),casev(k)
end do

130 format(i5, i7,3x,112.7,19.3,i4)

i=0

dok=1,i
if(atr_t_veh(k).ge.t1.and.atr_t_veh(k).le.t2) then
it = iii + 1 o
id_in_t(ii) = atr_v_id(k) , R
sp_in_{iii) = atr_v_sp(k) 2

- end if

140
+
+
+

end do
print140,tminv, tmaxv
format(60('-'y'For this segment Tmin is = ',f11.7/
) & Tmaxis="M1.7/
60("-')/'Vehicles that are included in the count are’,
/160(-y # ID SPEED(kmph) '/60(-"))
isp=0
sum_sp =0

. do k = 1,iii

print150,k,id_in_t(k),sp_in t(k)
if(sp_in_t(k).gt.0) then
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isp=isp+i

sum_sp = sum_sp + sp_in_t(k)
end if

end do

a_sp_in =sum_sp/i_sp
print160,a_sp_in, i_sp
format{60('-')/ The average speed of these vehicles is’',
9.4,' kmph ' [This is for',i4,’ Vehicles'/60(*-'))
format(2(i5),111.4)
print*,'Cars with Speed =',a_sp_in ,' Speed=',i_sp
return '
end
NOTES -
This Subroutine computes that earlist time and the latest
time that we can do the count in. Based on the first and last
points of the CL and using the speeds of the cars and the speeds
of the trucks.

HIEHRH BT IR BRI IBHHHHH
subroutine t_ci_b_e(d_strt,d_end,dimr tmin,tmax,
+ a_sp_cars,a_sp_trks,dis_atr,t1,12)
ST T M HU I B BT
implicit none

integer dirr

real d_strt,d_end,dir,tmin,tmax

real a_sp_cars,a_sp_trks,dis_atr,t1,t2

real car_strt_t,car_end_t.trk_strt_ttrk_end_t

print*,'Inside the subroutine

print*,’ Your start time is = 't1

print*,’ Your end time is =",12

if(dirr.gt.O)then -

car_strt_t = tmax+(dis_atr - d_end)/ (1000*a_sp_cars)

car_end_t = tmin+(dis_atr - d_strt)/(1000*a_sp_cars)

trk_strt_t = tmax+(dis_atr - d_end)/ (1000*a_sp_trks)

trk_end_t = tmin+(dis_atr - d_strty(1000*a_sp_trks)

else if(dirr.1t.0) then

car_strt_t = tmax-(dis_atr - d_strt)/ (1000*a_sp_cars)
car_end_t = tmin-(dis_atr - d_end)/(1000*a_sp_cars)
trk_strt_t = tmax<(dis_atr - d_strt)/ (1000*a_sp_trks)
trk_end_t = tmin-(dis_atr - d_end)/{(1000*a_sp_trks)

end if
print205,d_strt,d_end,dis_atr,tmin,tmax,dirr,
a_sp_cars,a_sp_trks

print210,car_strt_tcar_end_t trk_strt_ttrk_end_tt1t2
if(t1..car_strt_tort1.k.trk_strt_t) then
print*,'Your start time is invalid '
print*,'TErminating process *
stop
end if
if(2.gt.car_end_tor.2.gt.trk_end_t) then
print*,'Your end time is invalig ’
print*,'TErminating process '
stop
end if
format(/,70(*-'y/

' Start distance of CL is =",f11.2/

'End distance of CL is =',f11.2/
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411 + 'Distance of ATR is ="' f11.2/

412 + ’Starttime of photos is ='f11.7/
413 + 'End time of photos is =",f11.7/

414 + 'Directionis =',i4/

415 + ' Average speed of cars is =',110.2/
416 + ‘'Average speed of Trucks is =',110.2/)
417 210 format(/,70("-'y¥

418 + ' Start time of Car count =" f11.7/
419 + 'End time of Car count ='.f11.7/
420 + ' Start time of Truck count =',f11.7/
421 + 'End time of Truck count ='f11.7//
422 + 'Your start time is ="f11.7/ _
423 + 'Yourend time is ='11.7/70(-)))
424 return

425 end

426 e e

App_Adrev.xls




CRANDODNDBWN -

+

+
500

+

O O A ¥

APP_ASrev.xis

subroutine comp_par(NL Et, t1,£2,vol_c,vol_t,
a_sp_c,c_ia_sp_tt i)

implicit none

integer vo!_c,vol_t,c_i,t_i,tot_vol

integer NL

real t1,t2,t_interv,h1,m1,s1
real a_sp_c.a_sp_t,s_m_sp ,
real Et, per_t.fhv, flow_toteq pc_fl,density,dens_pc_In
print*,'cars with speed ="',c_i,’, Their speed=",a_sp_c
print*,'trucks with speed ="'t i, Their speed=",a_sp_t
print*,'Number of lanes = ' NL
print*,'The value of Et read from data file .',Et

Et=1.5 :
tot_vol = vol_c + vol_t

s_m_sp=(a_sp_c®c_i+a_sp t*t i)((c_i+t_i)*1.)/1.609

t_interv=(t2 - t1)*60
per_t = vol_t*1. fiot_voi* 100.
thv = 1/(1+per_t/100*(Et-1))
flow_tot = tot_vol ® 60 /t_interv
eq_pc_fl = flow_tot Ahv/NL
density = flow_tot/s_m_sp
dens_pc_In = density / NL/thv
call t_conv_back(t1,h1,m1,s1)
print500,h1,m1,s51,t1,t_interv,vol_c,vol_t,tot_vol,per_t,
eq_pc_fl.s_m_sp.density,dens_pc_In
format(//60("-'y
' Measure/ Parameter [units]  '/60('-')/
* Initila Clock Time to [hh:mm:ss]’,11x,f3.0,f3.0,/6.2,§10.6/
' Time interval dt [mins} I 7.2/
* Volume of Cars Vc [veh] " 11x,i6/
* Volume of Trucks Vt [veh) " 11x,i6/
' Total Volume Vveh [veh] L 11x,i6/
' Percent Trucks Ptrk [%)] " 11x,§7.2/
* Equiv Passenger Car Flow Qpcpl[pcphpcT,5x,f7.2/
' Space Mean Speed Us [mph]  °,11x,f7.2/

‘Density K [veh/mi] - ‘' 11xf7.2/
' Equiv Passenger Car Density Kpcpl{pcpmpl),4x,7.2/
60(-)) | .
return
end ' . :
i HHBRHBIBHETHH B RHBHBHI
comp_par
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subroutine x1x2(NL,Et,dinc,nc,xc,yc,log_cl,
dis_x1,dis_x2,dis_atr t0,tx1,tx2)

implicit none

integer nc, iof,ior,i

integer NL

real xc(nc),ye(nc),log_cl(nc),xp(3),yp(3), Iog_p(3)
real Et, dinc C

real h(3),m(3), s(3)t0 tx1,b2,dis_x1, dis_ )Q dis_atr
character*20 x1x2_file

The following variables can be deleted if we delete the variables

in the subroutine log_veh

These are being used here only because I have to pass then to

this Subroutine.
real xp1(3),yp1(3).xp4(3).yp4(3)

ASK FOR A FILE WITH X1 & X2 POINTS AND THEN FIND THESE POINTS

WITH REFERENCE TO THE CENTER LINE.
iof=0
print*,'Please Enter the name of the ﬁle that has
print*,’X1,X2 points’
read(5,10) x1x2_file

format(a)
open{unit =9, file=x1x2_file status='old' iostat=iof)
if(iof.ge.0) then :
read(9,* iostat=ior) NL
read(9," tostat"nor) Et
doi=1,3

only the valu.e- of Xp and Yp are needed for the ones in the
report. But for the later more comprehensive one these values

are needed.
read(9,*,iostat=ior)xp(i),yp(i).h(i), m{i),s(i)
if(ior.ne.O)then
print*,'Check data format in data file???
stop
end if
end do

call t_conv(t0,h(1),m{1),s(1))

call t_conv(tx1,h{2),m{2),s(2))
call t_conv(b2,h(3),m(3),s(3))
print* 10="10,’ xt1="tx1,' xt2 =" tx2
call log_location(dinc,xc,yc,log_cl,nc,xp,yp.log_p,3)
dis_atr = log_p(1)
dis_x1 = log_p(2)
dis_x2 = log_p(3)
print*,’ !
print*,' x1 and x2 points are: '
print* log_p(2),’ & 'log_p(3)
print*’ ATR at:'log_p(1)
print*,’ '
else
print*,'X1,X2,t data file failed to open’

. stop

end if
return

x12.f
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57 end

58 RS HENTHB IR BHA R IHBHT BT

59 ! NOTES A

60 ! This Subroutine is based on the fact the same vehilce that
61 ! appears more than once is organized in the format that the
62 ! the vehicle's first appearance is listed firts.

63 ! This subroutine is only for the vehicles that are between -
64 ! the X1-X2 locations.

65 ! This subroutine brings all the vehicles back to the ATR
66 ! using the individual speeds of vehicles.

67 LRI T GBI RS BT :

68 subroutine bring_to_atr_x1x2as(x12_veh,x12_Igv,x12_idv,
69 + x12_tv,x12_spv, - :
70 . + dir,a_sp_veh,x_atr,x1,x2,

71 + tminv_x1x2 tmaxv_x1x2,’

72 + atr_v_id,atr_t_veh,atr_v_sp,

73 + i,a_sp_in,i_sp)

74 ISR BRI GRS U U

75 implicit none

76 integer dir,x12_veh,k,i,i1,i2,flag1,flag2,flag3,iii,i_sp

77 integer x12_idv(x12_veh), atr_v_id(400),casev{400)

78 integer id_in_t(400)

79 real sp_in_{(400) a

80 real x12_Igv(x12_veh),x12_spv(x12_veh),x12_tv(x12_veh)
81 real atr_t_veh(x12_veh),atr_v_sp(400)

82 real a_sp_veh,spd

83 real x_atr,x1,x2,tminv_x1x2 tmaxv_x1x2

84 real i1, _i2

85 real tmin tmin_difft,t_diff,t_diff2tt

86 real a_sp_in,sum_sp

87 real log_min,log_max

88 isp=0

89 spd=0

90 tminv_x1x2 = 9999.9999

91 tmaxv_x1x2=0

82 print13,x_atr,x1,x2

93 13 format(60('-'),/ATR dist inside the subroutine is:',f9.1,

94 +  [Start distance for count is =',f11.5,

95 +  [End distance for countis ="111.5,

96 +  /fThe values of the log and speed are:'//

97 + '# D Dist_veh time_veh Speed'/60(-))

o8 ' -

99 tmin = 1./(30.*3600.)

100 tmin_diff = 5./3600.

101 flag1 =0

102 i=0

103 i1=1

104 i2=1

105 do while(flag1.eq.0)

106 i=i+1

107 flag2=0

108 do while(flag2.eq.0)

109 if(x12_idv(i1).eq.x12_idv(i2+1))then

110 i2=i2+1

111 else

112 flag2= 2

113 . endif

114 end do

115 atr_v_id(i) = x12_idv(i1)
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if(i1.eq.i2) then
casev(i) =1
atr_t_veh(i) = x12_tv(it) +
(x_atr - x12_lgv(J4))/(1000*a_sp_veh)* dir
atr_v_sp(i)= 0.0
elseif(i2.gt.i1) then
flag3=0
do k=i1,i2-1
if((x12_lgv(k).ge.x_atr.and.
x12_lgv(k+1).le.x_atr).or.
(x12_igv(k).le.x_atr.and.
x12_igv(k+1).ge.x_atr))then
spd = a_sp_veh -
atr_t_veh(i) = x12_tv(k) +
(x_atr - x12_Igv(k))/(1000*spd)*dir .
atr_v_sp(i) = x12_spv(k+1) :
flag3 = 1
casev(i) =2

.endif

end do _
if(flag3.eq.0) then
1 i1=x12_lgv(i1)
1 i2 =x12_igv(i2)
if (dir.gt.0) then
if(1_i2.le.x_atr) then
spd = a_sp_veh
atr_t veh(i) = x12_tv(i2) +

(x_atr - x12_Igv(i2))/(1000*spd)*dir
atr_v_sp(i) = x12_spv(i2)
casev(i) =3
elseif(l_i1.ge.x_atr) then
spd = a_sp_veh
atr_t_veh(i) =x12_tv(i1) +

{x_atr - x12_igv(i1))/(1000*spd)*dir
atr_v_sp(i) = x12_spv(i1+1)
casev(i)=4
end if
else if{dir.it.0)then
if(L_i1.le.x_atr) then
spd = a_sp_veh
atr_t_veh(i) =x12_tv(i1) +

(c_atr - x12_Igv(i1))/(1000*spd)*dir
atr_v_sp(i) = x12_spv(i1+1)
casev(i)=5
elseif(l_i2.ge.x_atr) then
spd = a_sp_veh
atr_t_veh(i) =x12_tv(i2) +

{x_atr - x12_Igv(J5)}(1000*spd)*dir

atr_v_sp(i) = x12_spv(i2)
casev(i)=6
end if
end if
end i
else
print*,’
print*,”** SOME THING IS WRONG IN THE CHECK **'

. print*** AT VEHICLE #',i, i

print®,
end if

x1x2.f
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if(atr_t_veh(i).gt tmaxv_x1x2) tmaxv_x1x2 = atr_t_veh(i)
if(atr_t_veh(i).it.tminv_x1x2) tminv_x1x2 = atr_t veh(l)
if(i2.eq.x12_veh) flag1 = 10

it =i2+1

2=

end do

print*,

print*,"* Directionis =°, dir,} **

print*** # of vehicles =',i, ' **

print*,’ )

. print*,'# ID Time Speed Case'

140
+

+
+
130

160
+

150

v b s e s S Ao

T I

dok=1,i
write(6,130)k,atr_v_id(k),atr_t_veh(k),atr_v_sp(k),casev(k)
end do
print140,tminv_x1x2, tmaxv_x1x2
format(60(™-')/For this segment Tmin is =", f11.7/
! & Tmexis='f1.7/
60(-')/'Vehicles that are included in the count are’,
B0(-y # ID SPEED(kmph) '/60(-)) '

format(i5, i7,3x,f12.7,19.3,i4)
isp=0
sum_sp=0
dok=1,i

write(6,130)k,atr_v_id(k),atr_t_veh(k),atr_v_sp(k), casev(k)
iftatr_v_sp(k).gt.0) then
isp=isp+1
sum_sp = sum_sp + atr_v_sp(k)
end if
end do
a_sp_in=sum_sp/i_sp
print160,a_sp_in, i_sp
format(60('-'y'The average speed of these vehicles is:',
9.4, kmph '/ This is for',i4,' Vehicles'/60(-'Y)
format(2(i5),f11.4)
print*,'Cars with Speed =',a_sp_in,' Speed=",i_sp
return
end
NOTES
This Subroutine is based on the fact the same vehilce that
appears more than once is organized in the format that the
the vehicle's first appearance is listed firts.
This subroutine is only for the vehicles that are between
the X1-X2 locations.
This subroutine brings all the vehicles back to the ATR
‘using the individual speeds of vehicles.
s T T T TR LT
subroutine bring_to_atr x1x2(x12_veh x12 _Igv,x12_idyv,
x12_tv,x12_spv,
dir,a_sp_veh,x_atrx1,x2,
tminv_x1x2,tmaxv_x1x2,
atr_v_id,atr_t_veh,atr_v_sp,
i,a_sp_in,i_sp)

implicit none

_ integer dir,x12_veh,k,i,i1,i2,flag1,flag2,flag3,iii,i_sp

integer x12_idv(x12_veh), atr_v_id(400),casev(400)
integer id_in_t(400)
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real sp_in_{(400)-

real x12_lgv(x12_veh)x12_spv(x12_veh),x12_tv(x12_veh)
real atr_t_veh(x12_veh),atr_v_sp(400)
real a_sp_veh,spd

real x_atr,x1,x2 tminv_x1x2 tmaxv_x1x2
real |_i1, _i2

real tmin,tmin_diff,t_diff,t_diff2,tt

real a_sp_in,sum_sp

real log_min log_max

i_sp=0

spd=0

tminv_x1x2 = 9999.9999

tmaxv_x1x2 =0 -
print13,x_atr,x1,x2

13 format{60(’-'),/ATR dist inside the subroutine is:' f9 1.

+

+ 4+ +

I'Start distance for count is =',f11.5,

TEnd distance for countis ='f11.5,

/[The values of the log and speed are:"//

'# ID Dist_veh time_veh Speed/60(-"))

tmin = 1./(30.%3600.)
tmin_diff = 5./3600.
flagt =0
i=0
i1=1
i2=1
do while(flag1.eq.0)
i=i+1
flag2 =0
do while(flag2.eq.0)
if(x12_idv(i1).eq.x12_idv(i2+1))then
2=i2+1
else
flag2=2
end if
end do
atr_v_id(i) = x12_idwv(i1)
if(i1.eq.i2) then
casev(i)=1
atr_t_veh(i) = x12_tw(i1) +
(x_atr - x12_Igv(#REF!))/(1000*a_sp_) veh)‘ dir .
atr_v_sp(i) = 0.0
elsenf(nthn) then
flag3=0
do k =i1,i2-1
if{(x12_lgv(k).ge.x_atr.and.
x12_lgv{k+1).le.x_atr).or.
(x12_igv(k).le.x_atr.and.
x12_lgv(k+1).ge.x_atr))then
spd = x12_spv(k+1)
if(x12_spv(k+1).eq.0) spd = a_sp_veh
atr_t_veh(i) = x12_tv(k) +
(x_atr - x12_Igv(k)¥(1000*spd)*dir

“atr_v_sp(i) = x12_spv(k+1)

flag3 =1

. casev(iy=2

end if
end do
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if(flag3.eq.0) then

Li1=x12_lgv(i1)

Li2 =x12_lgv(i2)
if (dir.gt.0) then

if(Li2.le.x_atr) then
spd = x12_spv(i2)

if(x12_spv(i2).eq.0) spd = a_sp_veh
atr_t_veh(i) = x12_tv(i2) +
+  (x_atr - x12_Igv(i2)y(1000*spd)*dir
atr_v_sp(i) = x12_spv(i2)
casev(i)=3
elseif(l_i1.ge.x_atr) then
spd = x12_spv(i1+1)
if(x12_spv(i1+1).eq.0) spd = a_sp_veh
atr_t_veh(i) = x12_tv(i1) +

(x_atr - x12_lgv(i1))}/(1000*spd)*dir

atr_v_sp(i) = x12_spv(i1+1)
casev(i) = 4
end if
else if(dir.it.0)then

if(L_i1.le.x_atr) then

spd = x12_spw(i1+1)
if(x12_spv(i1+1).eq.0) spd = a_sp_veh

afr_t_veh(i) = x12_twv(i1) +

(x_atr - x12_Igv(i1))/(1000*spd)*dir

atr_v_sp(i) = x12_spv(i1+1)
casev(i)=5
elseif(l_i2.ge.x_atr) then

spd = x12_spv(i2)

if(x12_spv(i2).eq.0) spd = a_sp_veh

atr_t_veh(i) =x12_tv(i2) +

{x_atr - x12_lgv(J216))/(1000*spd)*dir

atr_v_sp(i) = x12_spw(i2)
casev(i) =6
end if

end if
end if
else

print*; )
print*,** SOME THING IS WRONG IN THE CHECK **'
print*,"* AT VEHICLE #',i, i
print®,
end if

if(atr_t_veh(i).gt tmaxv_x1x2) tmaxv_x1x2 = atr_t_veh(i)
if(atr_t_veh(i).lt. tminv_x1x2) tminv_x1x2 = atr_t_veh(i)
if(i2.eq.x12_veh) flag1 = 10
it=i2+1

2=i1
end do

print*,

print*,'** Directionis =" dir **
print*,** # of vehicles=",i, ' **

print*,

print*,'# ID Time Speed Case'
dok=1,i
write(6,130)k,atr_v_id(k),atr_t_veh{k),atr_v_sp(k),casev(k)
end do

130 format(i5, i7,3x,f12.7,19.3,i4)

x1x2.f
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print140,tminv_x1x2, tmaxv_x1x2

format(60(*- ')/'For this segment Tmin is = *,£11.7/
! & Tmaxis="f11.7// )
60(*-')/'Vehicles that are included in the count are’,
;0(-y # 1D SPEED(kmph) '/60('-")

isp=0

sum_sp=0

dok=1,i

write(6,130)k,atr_v |d(k) atr_t_veh(k),atr_v_sp(k), casev(k)

if(atr_v_sp(k). gtO) then

-isp=isp+1
sum_sp = sum sp+ atr_v_sp(k)
end if
end do

a_sp_in=sum_sp/i_sp
print160,a_sp_in, i_sp

160 format(60('-')/'The average speed of these vehlcles is:’,

+

9.4, kmph *,/This is for',i4,' Vehicles'/60(-'Y)

150 format{2(i5),f11.4)

print*,'Cars with Speed ="',a_sp_in ,' Speed=",i_sp
return .
end

......................................................................
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implicit none
integer iof, f_type, ior
iof=0
do while(iof.eq.0)
print 133
format{/66('=")/ '
4x,'You have 2 choices to choose from. These are: '/
4x,'1- Enter (X,Y) of ATR and t1,12 data. '//
4x,'2- Enter (X,Y) of X1, X2 points and t value.”/
4x,' This will compute traffic measures as in 1/
4x," but after eliminating the values outside X1, X2'//
4x,'PLEASE Enter which method youwant 1, or2:'$)
read(5,"*,iostat = ior)f_type
if(ior.eq.0)then
print*,"*
if(f_type.ne.1.and.f_type.ne.2)then
print*,"*
print*,**** Invalid data try again. ****
print*,"*** Hit return to continue  ****
print*,
read*
else
iof=9

~endif

+

else
print*,'** _ e
print®,"*** Invalid data try again. *~*
print*,"**** Hit return to continue  ****
print*,’

read*

end if

end do

return

end

implicit none i :
real t1,£2,tminc, tmaxc, tmint, tmaxt
print 31, t1,£2 tminc,tmaxc,tmint tmaxt
format(/The value of t1 is =',19.5,'and t2 is =" 9.5/
"The times of cars, min = *,f9.5," and max =',f3.5/
The times of trucks, min =',9.5,' and max =',f9.5)
return
end
subroutine check_c!_limits(dir,t1,£2,tminc tmaxc,tmint.tmaxt,
a_sp_cars,a_sp_trks,dis_atr,
cl_1stcl_last,
tc_sttc_end,tt_st tt_end)
implicit none
integer dir
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57 real 1,2 tminc,tmaxc,tmint, tmaxt

58 real a_sp_cars,a_sp_trks,dis_atr, c|_1st,cl_last

59 realtc_sttc_end tt_sttt end )
60 real cl_st_car_sp,cl_end_car_sp,cl_st_trk_sp,cl_end_trk_sp
61 cl_st_car_sp =tc_st+(dis_atr-cl_1st)/(1000*a_sp_cars)*dir
62 cl_end_car_sp=tc_end+(dis_atr-c|_last)/(1000*a_sp_cars)*dir
63 cl_st_trk_sp =tt_st+(dis_atr-cl_1st)/(1000*a_sp_trks)*dir
64 cl_end_trk_sp=tt_end+(dis_atr-cl_tast)/(1000*a_sp_trks)*dir
65 if(tminc.gt.cl_st_car_sp) tminc = cl_st_car_sp

66 if(tmaxc.it.cl_end_car_sp) tmaxc = cl_end_car_sp

67 if{tmint.gt.cl_st_trk_sp) tmint = cl_st_trk_sp

68 if(tmaxt.itcl_end_trk_sp) tmaxt = cl_end_trk_sp

69 return - .

70 end

71 ISR T THBRITTUT UGG

72 subroutine save_x12_t12(dis_x1,dis_x2,11,12,dx1,dx2,tx1,tx2)
73 . I HHTHIHI BUTH MBI U

74 implicit none .

75 real dis_x1,dis_x2,t1,t2,dx1,dx2,tx1,tx2

76 tx1=t1

77 b2 =12

78 dx1 = dis_x1

79 dx2 = dis_x2

80 return

81 end

82 UHSA I IHHBEH LR IHBHBHTRRHEHITULHE

83 subroutine check_t1t2(t1,t2, tminc,tmaxc,tmint,tmaxt fail)
84 BB USRI MU R RHTHH

85 implicit none :

86 integer fail

87 real t1,12,tminc,tmaxc,tmint,tmaxt

88 fail=0 o

89 if(tminc.gt.t1) print 214

90 if(tminc.gt.t1) fail = 1

91 if(tmaxc.It.t2) fail = 1

82 if(tmaxc. It.t2) print 22

93 if(tmint.gt.t1) print 23

94 if(tmint.gt.t1) fail = 1

95 if(tmaxt.it t2) fail = 1

96 if{tmaxt.it £2) print 24

97 21 format(/Time t1 is smaller than the limit of the cars. /)
98 22 format(/Time {2 is greater than the limit of the cars. /)

99 23 format(/Time t1 is smaller than the limit of the trucks. /)
100 24 format(7Time 2 is greater than the limit of the trucks. */)
101 return ' R
102 - end LT e

103 HHA BB GHBHIHRRE R RIUR TR U T

104 subroutine check_t112_x1x2(t1,t2,

105 o+ dir,a_sp _cars,a_sp_trks, -

106 - + dis_atr,t0,dx1,dx2,tx1,6x2)

107 I HBHEBHH T U G B LRI

108 implicit none

109 integer dir

110 real t11,12,tx1c_atr,bx2c_atr,tx1t_atr,tx2t_atr

1M1 real a_sp_cars,a_sp_trks,center_1,center_lst

112 real dis_atr,t0,dx1,dx2,tx1,b2

113 . X1c_atr = tx1 + (dis_atr - dx1)/(1000.*a_sp_cars)*dir
114 b2c_atr = tx2 + (dis_atr - dx2)/(1000.*a_sp_cars)*dir
115 tx1t_atr = tx1 + (dis_atr - dx1)(1000.*a_sp_trks)*dir
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tx2t_atr = tx2 + (dis_atr - dx2)/(1000.*a_sp_trks)*dir
if(c1t_atr.it.t2t_atr)then

t1 = t&x1t_atr

ifitx1c_atr.gttx1t_atr) t1 = tx1c_atr
2=t2t atr

if(bc_atr.lt b2t_atr) £2 = b2t_atr
else

t1=t2t atr

if(b2c_atr.gt b2t _atr) t1 =tx2c_atr
12 = tx1t_atr

if(bcic_atr ittxit_atr) 2 = tx1t_atr
end if

return

end

implicit none

integer dir

real x1,x2,swapx12
if(x1*dir.gt. x2*dir}then
swapx12 = x1
x1=x2

x2 = swapx12

end if

return

end

implicit none

integer numcl, dir

real log_cl(numcl), x1,x2,swapx12

if(x1*dir.gt.x2*dir)then

swapx12 = x1

x1=x2

X2 = swapx12

end if

if(dir.gt.0) then

if(x1*dir.lt. dir*log_cl(2))then

print 16

format(//, The first point, X1, is before the limits of/
‘the center line first point."/)

STOP

end if _

if(x2*dir.gt.dir*log_cl{(numcl-1))then

print 17

‘the center line last point.’)
STOP
end if
else if(dir.it.O)then
if(x1*dir.lt. dirlog_cl(numci-1))then
print 16
STOP
end if

. #p@*dir.gt. dirtlog_cl(2))then

print 17
STOP
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end if

end if

return

end

This subroutine will eleminate all the vehicles that are outside

X1-X2 limits.

Atter this then we will bring the vehicles back to the ATR

locations and find the times.

subroutine veh_in_x1x2(dir,t1,t2,d_x1,d_x2,veh,n_veh_id,
n_log_veh,n_veh_time_id,veh_sp,
x12_veh,x12_idv,x12_Ilgv,x12_tv,x12_spv)

implicit none

integer veh,x12_veh,dir

integer n_veh_id({veh),x12_idv(200)

real t1,82, d_x1.d_x2,swapt

real n_log_veh(veh),n_veh_time_id(veh),veh_sp(veh)

real x12_Igv(200).x12_tv(200),x12_spwv(200)

integer k .

if(t1.gt.2)then

swapt = t1

t1=t2

t2 = swapt

end if

dok=1, veh

if(k.eq.1.and.n_veh_id(k).eq.n_veh_id(k+1)}then

veh_sp(k) = veh_sp(k+1) ' :

elseif(k.It.veh.and.n_veh_id(k).eq.n_veh_id(k+1).

and.n_veh_id(k).ne.n_veh_id(k-1))then

veh_sp(k) = veh_sp(k+1) -

end if

end do

x12_veh =0

do k= 1,veh

if(n_veh_time_id(k).ge.t1.and.n_veh_time_id(k).le.t2.and.
n_log_veh(k)*dir.ge.d_x1*dir.and.
n_log_veh(k)*dir.le.d_x2*dir) then

x12_veh =x12_veh + 1

x12_idv(x12_veh) = n_veh_id(k)

x12_lgv(x12_veh) = n_log_veh(k)

x12_tv(x12_veh) = n_veh_time_id(k)

x12_spv(x12_veh) = veh_sp(k)

end if

end do

return

end

SR HTH UG HHRHB R T

subroutine which_sp(speed_type)

LRI LURHMT T LT BMAI UM U

implicit none

integer ie, speed_type

165 print*, '

print*,'Please indicate which speed you want to use to’
print*,’'bring vehicles to the ATR location: '
print*,'Enter 1 to use average speed of vehicles'
print*,'Enter 2 to use individual speeds of vehicles'
print*
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read(5,",lostat= ie)speed_type

if(ie.ne.0.or.(speed_type.ne.1.and.speed_type.ne.2)) then

print*,'Your response is invalid. '
print*,'Renter response '

go to 165

end if

return

end

implicit none
integer iof, spdyn, ior - -
real a_sp_veh,spdnew
iof=0
do while(iof.eq.0)
print 133,a_sp_veh
133  format(/66('=")/
4x,'What average speed do you want to use:"//
4x,'1- The average speed of the vehicles which is:"f7.2,
/4x,'2- An average speed that you define? /
4x,'PLEASE Enter 1 or 2 to specify your choice :'3$)
read(5,* iostat = ior)spdyn
if(ior.eq.0)then
print®,
if(spdyn.ne.1.and.spdyn.ne.2)then
print*,
print*,*** Invalid data try again. ****
print*,"*** Hit return to continue  ****
print*,
read*
else :
iof=9
end if
else
print*, !
print*,**** Invalid data try again. ****
print*,"*** Hit retumn to continue  ****
print*,
read*
end if
end do
iof=0
if(spdyn.eq.2) then
format( //,4x,'Please enter the speed in Kmph : '.$)
do while(iof.eq.0) '
print134
read(5,*,iostat = ior)spdnew
if(ior.ne.0)then
print*,
print*,**** Invalid data try again. "
print*,"*** Hit return to continue  ****
print*,
read*
else
iof = 10
end if
end do
else
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spdnew =0
end if
return
end

implicit none

print*," !
print*,, CARS'

print*," _ !
return

end :

implicit none

print*,’ !
print*,’ TRUCKS ' :
pﬁnt"' . ’
return

end

Page 6

App_a7



[

Appendix B. Pattern Recognition for Stationary and Dynamic Pixels — Statistical
Description and Program Listings

1 Notations

In chis appendix, we provide the detail description of various components of the statistical pattern
recognition procedure discussed in Chapter 3. We will use the notations of Section 3.1. However
for completeness, we are reproducing some of these notations bere.

Bi;: the gray-level of the pixel of size 1m x 1m in row i and column j in the estimated
background image B.

Yij: the gfay-level in the same pixel of the current image.

Bj;: transformed value of the brightness matching transform ¢(B;;) for the background pixel
(4,7), where ¢(-) is unknown and must be estimated.

Rij =Y — B{,-: differenced current image and the transformed ba.g:kground image. Note that
R;;.€ [—255,255]. . :

pp: distribution of R for pixels that are given to be stationary.
py: distribution of R for pixels that are given to be dynamic.
Xij: (unobservable pixel labels, in general),

X = 1, if pixel (4,7) in the image Y is a stationary pixel, o
i 0, otherwise, (dynamic pixel).

mij = Prob(X;; = 1): the prior probability that the pixel (i,j) in the current imnage is a
stationary pixel.

The conditional distributions of the diferenced gray-levels:

p(Rij| X5 = 1) = pp(R;j), (density of the backg. diff.), (2)

p(Ri;1Xi; = 0) = pv(Ryj), (density of the veh./backg. diff.). v 3) ‘

It is clear that pp(-) should be an unimodal distribution centered at zero, but py(-) depends
on the grey-levels of dynamic pixels in the current image (e.g. vehicle could be both lighter
and darker than the background pixels, and shadows may or may not be present).

e We can also write down the joint density of R and X as

R":"JYI" = pB(Rij)Wijs if Xij = 1, (4)
P(R4j, Xij) {pV(Rij)(l —my), if Xij=0.



e Then the posterior probability of X;; =1 is given by -

pB(Ri)m(X;; = 1)7

PNy = 1Ry) = pB(Rij)m(Xij = 1) + pv(Rij)m(Xy; = 0) ®
_ pB(Rij)mi; ©)
pB(Rij)mij + pv (Rij)(1 — mij)

2 Functional Form of Various Components

2.1 The Background Transformation, ¢(-)

At present, our program alllows for two types of background transformations:

(1) A monotonic increasing transformation. This transformation is defined by

_ P

#(B)=a+el « (Z exp[S(b)'0] — 1) . )
b=0

Where S(b) = (S1(b),...,Sp(b)) and Si,.. ., Sp are the natural-spline base function (evaluated

at b). Various special cases of this monotonic transformation, that have been used by us are
give below: '

(1) fa=0,0 =0and =0, d)(-)'is just the identity transformation, i.e, no transformation
is used. .

(i) If @ = 0 and B = 0, ¢(-) is just the one parameter transformation, with just a change in
location.

(iii) If @ = O then ¢(-) is a two parameter, linear transformation with intercept o and slope
B ' :
el.

(iv) With the shift and a slope term and two knots in the natural splines, one has the five
parameter transformation.

(2) A natural-spline transformation. With $(B) as defined above, this transformation is simply
. #(B) = a+ S(B)'6. (8)
In this case, ¢(B) does not have to be monotone.

Of course, one could investigate other suitable transformations, as well as quantize the trans-
formed variables differently. ‘

2.2 The Background Difference Distribution, pp(-)
We have limited ourselves to two probability distributions at this point:

(1) Student’s t-distribution. The difference R, given that X;; = 1, is assumed to follow a stu-
dent’s t distribution with median zero (location parameter), scale parameter o and degrees
of freedom df. Both o and df need to be estimated.

(2) Gaussian (normal) distribution. The difference R, given that X;; = 1, is assumed to follow

a normal distribution with location zero and standard deviation o, which is estimated from
the data. '

Recall that the normal distribution is a limiting case of the t-distribution when df goes to
infinity. In the image processing literature, the folklore is that the residuals R follow the Laplace
distribution. We intend to examine this aspect in the future.




2.3 The Vehicle/Background Differences Distribution, py(-)

Since, one expects a large variety of images, we have limited to ourselves to maximum entropy
distribution on a finite interval (the uniform distribution) and a non-parameteric density function
to allow for a large number of shapes.

(1) Uniform distribution. The difference Y;; — B,fj when X;; = 0, is just assumed to be uniform
in the range [—255, 255].

(2) Smooth density (natural-spline). The difference Y;; — B};, when X;; = 0, is assumed to be

smooth and natural-spline function are used to capture the distribution.

__ explS(RYn]
B =S elS(RY]

(9)

As before, S(R) = (S1(R),...,Sp(R)) is a set of base spline functions evaluated at R. Also,
note that the distribution should be continuous, but is quantized on a discrete grid ({-255,-
254, ... ,255}), with R’ representing the nearest integer value of R.

- 3 Estimation Procedure

First, note that if the Xi;’s (stationary or dynamic) were observables, one could estimate (pg, ¢)
and py by the maximum likelihood method, i.e.,

(pB, $) = argmax loglpp(Yij — ¢(B;j))] (10)
PBd ;) Xe=1
= a-rgma-;fZXij loglpa(Yi; — ¢(By))] (11)
k) i,j
pv = argmax D loglpv(Yis) — ¢(Bij)] (12)
Y (.)X:=0
= argmax > (1 - Xij) loglpv (Yj — $(Bi))]: (13)
1,5

However, the X;;’s are not observables, and we are basically interested in finding their posterior
distribution. Therefore, instead of " ing the log likelihood, we " " e the expected log
likelihood, with respect to the missing data (X;;). Thus we are using the E-M algorithm to estimate
the unknown parameters of these densities, in an iterative manner.

(pB,¢) = arg ngp(xﬁ = 1)log[ps(Y; — $(Bij))l; (14)
Y]

py = argmax Y p(Xy; = 0)loglpv (Vi — $(Biy))]- - (1)
Y

The iterative estimation procedure is as follows:

(1) Initilize ¢ = ¢ (e.g. ¢{O(B) = a + B — just a shift in the identify transformation). Let
Rﬁ-’) =Y;; — ¢(B;;) and initilize pp = p) and py = p{7.



(2) Compute the posterior probability distribution of Xij

(0)  p(0)
P9 (X;; IR(O)) = 0 (Rgg;;)plz B j)p(O) ( R(O)) (16) -
(3) Update Pé and ¢. Let
(b5 8) = arg max 5~ ) (X5 = 1R loglpn (% ~ (Bl (1)
7 | |
(4) Update py. Let
| 7 = a.rgmapr(")(X = 0[R{Y) loglpy ( Y,, ¢V (Bi;))]. (18)

(5) Repeat steps (2) to (4) to get p ¢(’“) and p(k) for k = 2,3,..., until p*) (Xij‘Rij)’ s converge.
according to the following criteria.
(6) The convergence of the posterior probabilities pg-c) = pl¥) (Xij = 1|Ry5), is judged by the sum

of Kullback-Liebler distance between p(k D and pg?), over all the pixels, i.e.,

. p(k) 1—p®
dlk - 1,k) = Z [pfj) log ((Tﬁ) +(1- p,]’) log (——(T"_ﬁ)] . (19)
1,3 Pij 1 bij

Once the value of d(k — 1, k) falls below a certain threshold value, we stop and accept the p( )
as the converged posterior probabililities.



4 S+ Code

In this section, we first list the generic Splus functions for various components of the pixel classi-
fication procedure, which can be called from within S+ session. The we list the S+ code for the
implementation of this procedure on the test and scanned images, as described in Section 3.2. Fi-

nally, we also list S+ code for generic image processing, including plotting of images, edge detection,
and other filters.

4.1 The S+ Motion Detection Code

»
## GJ: 19-APR-98 (25-June-98)

S+ Codes for Variuos Components of Pixel Classification Procedure

gegs

#2842 FIRST, FOR THE BACKGROUND TRANSFORMATION #&s##
## all background transformation are evaluated on the grid 0,1,. ..,255.'

## The natural-spline transformation -- not monotonic increasing.
#% is of the form: f(x) = a + ns(x,knots) -- if 2 param, then ns() is linear
get.back.ns.trans.base.mat <- function(back,n=6,knots=NULL,pixels=0:255) {
#% to get the ns() base-matrix (X matrix) .
#% back: the backg. pixel value
#%2 n: the number of parameters in the transformation
if (n==1)"
#2 only intercept
matrix(1,nrow=length(pixels),ncol=1)
else if(n==2)
## intercept and slope
cbind(rep(1,length(pixels)),pixels)
else {
#* intercept and ns-temm
if (is.null(knots))
knots <- quantile(back, (1:(n-2))/n)
cbind(rep(1,length(pixels)),ns(pixels,knots=knots,intercept=F))
}

init.back.ns.trans <- function(res,base.mat)
## initial estimate of the background trans. parameters.
c(mean(res, trin=0.5),rep(0,ncol(base.mat)-1))

get.back.ns.trans <- function(param,base.mat) {
## param: the parameters in the n-s transformation (beta)
## base.mat: the natural-spline matrix (511 rows)
pred <- as.vector(base.mat %*% param) + 0:255
pred[pred<0] <- 0
pred[pred>265] <- 255
pred

#88##8 A monotonic, increasing, transformation.

8% transform background -- monotonic increasing transformation:
get.back.mono.trans <- function(param,base.mat=NULL) {

## param: the parameters in the transformation (beta)

8% base.mat: the natural-spline (ns) matrix with 511 rows.



pred <- switch(as.character(length(param)),
’1’ = param(i] + 0:255,
»2? = param[1] + exp(param[2])#(0:255),
paran[1] + exp(param(2]) *
as.vector (cumsum(exp(base.mat_%*% param[-c(1,2)]1)) -1}
)

pred[pred<0] <- 0

pred[pred>255] <- 255

names(pred) <- 0:255

g#round(pred)

pred @# not round things

Y

## get the natural-spline matrix
get.back.mono.trans.base.mat <- function(back,n=2,pixels=0:255,knots= NULL) {
jf(n>=4) { # have at least on knot in the ns() function
if (is.null(mots))
knots <- quantile(back,(1:(n-3))/(n-3+1))
ns(pixels,knots=knots, intercept=F)
} else {
NULL
}
}

## initial estimate of the background trams. parameters.
init.back.mono.trans <- function(res,n=2)
c{(mean(res,trim=0.5),rep(0,n-1))

#2 plot the background transformation
plot.back.trans <- function(back.trams,img,back,back.probs,thresh=0.5) {
## back.trans: the value of the backg. transf. at 0,1,...,255

plot(c(0,255),¢c(0,255) ,type="n" ,x1ab="Background image (pixel value)",
ylab="Nevw image (pixel value)")
ind <- back.probs>thresh
points(back[ind], imglind],pch=".",cex=par{)$cex+1.5,col=2)
points(back[!ind],ing[!ind],pch=1,col=3,cex=par()$cex*0.8)
abline(a=0,b=1)
1ines{0:265,back.trans,lwd=3, col=1,1ty=3)
fit <- smooth.spline(back,img,w=back.probs,df=10)
lines(fit,lwd=4,col=3,1ty=2)
key(x=-30,y=310,transparent=T,
lines=list(1ty=c(3,2),1lwd=c(3,3),c0l=c(3,2)),
text=list(c("Transf.”,"s~s (df=10)"))
)
key(x=256/2,y=310,transparent=T,
. points=1list(pch=c(16,1),cex=par()$cex+c(0.6,0.8),col=c(2,3)),
text=1list(c(paste("P(backg.) > ", thresh,sep=""),
paste("P(backg.) <= ",thresh,sep="")))
)

return(invisible (NULL))
b
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#8838 FOR DENSITIES #%38%

#% get the marginal demsity of the residuals:

get.marg.dens <- function(vweights,res.ind,un.res=(-255):255) {
#2 res.ind: points to un.res -- discreate residuals are un. res[res.ind]
n <- length(un.res)
marg.dens <- tapply(c(veights,rep(0,n)),c(res.ind,1:n),sum)
names(marg.dens) <- un.res
marg.dens



## the background difference density -- t-density:
get.back.t.dens <- function(param,res) {

dt(res/exp(param[1]),df=exp(param[2]))/exp(param[1])
}

8% compute initial estimate for the backgr. difference demsity
8% based on residuals only when using t-demsity:
init.back.t.dens <- function(res,df=5,red=0.05) {

82 initial estimates for the t-distribution:

tmp <~ abs(res)

res <- res[tmp <= quantile(tmp,1i-red)]

c(log(sqrt(var(res)/(df/(df-2)))),

log(df))
}
#% the background difference normal density -- don’t need this
get.back.norm.dens <- function(param,res)
dnorm(res,0,param)

#¢ compute the vehicle density for -255,..., 255
get.veh.dens <- function(param,base.mat,un.res=(-255):255) {

## using natural-spline to comstruct density:

#2 param: beta in X+beta

#2 base.mat: the natural b-spline matrix, X

probs <- as.vector(exp(base.mat)+)param))

names(probs) <- un.res

probs/sum(probs)

get.veh.dens.base.mat.and.tot.probs <- function(res.ind,back.probs,
q.probs=(1:5)/6,
un.res=(-265):255) {
#% returns the ns base matrix, the tot. veh. probs for each pixel value.
#% q.probs (quantiles) are used to find the knots to use in ns()

if('missing(res.ind) && !missing(back.probs))
tot.veh.probs <- get.marg.dens(i-back.probs,res.ind)
else
tot.veh.probs <- get.marg.dens(rep(l,length(un.res)),1:length(un.res))
cum.tot.veh.probs <- cumsum(tot.veh.probs/sum(tot.veh.probs))
## find one quantile:
one.quantile <- function(prob,x)
rev(as.numeric(names(x)) [x<=probl) 1]
all.quént <- sapply(q.probs,one.quantile,x=cum.tot.veh.probs)
#2 then, get the base matrix:
##base.mat <- bs((-255) :255,knots=all.quant, 1nt-F)[,-length(q probs)-3]
base.mat <- ns(un.res,knots=all.quant,int=F)
return(base.mat=base.mat,tot.veh.probs=tot.veh.probs)

#% plot back. and veh. dens:
plot.back.dens <- function(res,back.probs,back.dens) {
## back.dens: the density evaluated at (-255):255

use.breaks <- seq(-255.5,255.5,by=7)

res.breaks <- cut(res,breaks=use.breaks)

bg.hist <- tapply(back.probs,res.breaks,sum)

bg.hist[is.na(bg.hist)] <- 0

bg.hist <- bg.hist/(7+sum(bg.hist))

pix <- (-255):255

plot(c(-256,255),c(0,max(back.dens,bg.hist)),type="n",
xlab="Pixel difference (New - Backg.)", ylab—“Density“)

panel .histogram(use.breaks,c(NA,bg.hist) ,border=-1)

lines(pix,back.dens,lwd=3,col=3)



plot.veh.dens <- function(res,back.probs,veh.dens) {
#8 veh.dens: the veh./backg. diff. density evaluated at (-255):255

use.breaks <- seq(-255.5,255.5,by=7)
res.breaks <~ cut(res,breaks=use.breaks)
veh.hist <- tapply(l-back.probs,res.breaks,sum)
veh.hist[is.na(veh.hist)] <~ 0
veh.hist <- veh.hist/(7*sum(veh.hist))
pix <- (-265):255
plot(c(-255,255),c(0,max(veh.dens,veh.hist)),type="n",
xlab="Pixel difference (New - Backg.)", ylab="Density")
panel.histogram(use.breaks,c(NA,veh.hist),border=-1) -
lines(pix,veh.dens,1wd=3, col=3)

#2388 ESTIMATING AND UPDATING ###2#

## estimate both the background difference denstiy and transformation
## when using the t-demsity and monotonic backg. transformation:
est.back.t.dens.and.mono.trans <-
function(img,back,back.probs,param,start,
back.trans.base.mat) {

#8 the negative log-likelihood:

opt.func <- function(param) {
trans.bg <- get.back.mono.trans(param[-c(1,2)],base.mat=back.trans.base.mat)
- sum( back.probs * log(get.back.t.dens(param=param(1:2],

res=img - trans.bglback.ind])))
} -

#8 optimize -- minimize the negative log-likelihood:
assign("img",img,where=0, immediate=T)
assign("back",back,where=0,immediate=T)
assign("back.probs",back.probs,vhere=0, imnediate=T)
assign("back.trans.base.mat",back.trans.base.mat,vhere=0, immediate=T)
assign("back.ind",back+1,vhere=0, irmediate=T)
fit <- nlminb(start=param.start, objective=opt.func,
control=nlminb.control(eval.max=400,iter.max=200) )
remove(c("img","back” ,"back.probs”,"back.trans.base.mat"),where=0)
remove ("back.ind",where=0)

return(fit)

## estimate both the background difference denstiy and transformation
## vhen using the normal density and monotonic backg. transformation:
est.back.norm.dens.and.mono .tyans <-
function(img,back,back.probs,param. start,
back.trans.base.mat) {

#% opt. function: minimizing sum of squares (prop. to neg-loglikelihood)
opt.func <- function(param) {

trans.bg <~ get.back.mono.trans(param,base.mat=back.trans.base.mat)

sum({ back.probs e (img-trans.bglback.ind])"2)
}

## optimize -- minimize the negative log-likelihood:

assign("img", img,vhere=0 , immediate=T)

assign("back",back,where=0, immediate=T)

assign("back.probs",back. probs,vhere=0, immediate=T)
assign("back.trans.base.mat",back.trans.base.mat,vhere=0, immediate=T)
assign("back.ind",back+l,vhere=0,immediate=T)

fit <~ nlminb(start=param.start, objective=opt.func,







run.EM.t.and.mono <-
function(img,back,back.prior.probs=NULL,traffic.dens=0.05,
back.dens.control=list(param=NULL,df=5,trim=0.5),
back.trans.control=list (param=NULL,nr.trans.param=5,
knots=NULL),

veh.dens.control=list(probs=c(0.05,0.2,0.4,0.6,0.9,0.95)),
max.iter=20, ask.iter=F, conv.crit=1/10,
update.veh.dens=T
> {

## img: the image (the pixels in the image)

## back: the current estimate of the background pixels

## back.prior.probs: the prior prob for pixel being a background pixel.

#8 traffic.dens: a prior estimate of traffic density (used it

t 2 back.prior.probs is NULL).

#%# The other parameters are input parameters to other functions -- see use

back.ind <- back+l # index for the background, color O is index 1
res <- img -~ back # current difference (residuals)
n <- length(res)

#% first, initial estimate of transformation:
cat("Getting initial estimate of backg. tramnsf. ...\n")
back.trans.base.mat <- get.back.mono.trans.base.mat(back=back,
n=back.trans.control$nr.trans.param,
knots=back.trans.control$knots)
if (is.null(back.trans.control$param))
back.trans.param <- init.back.mono.trans(res,n=back.trans.control$nr.trans.param)
else
back.trans.param <- back.trans.control$param .
back.trans <- get.back.mono.trans(back.trans.param,back.trans.base. mat)

#% nev residuals
res <~ img - back. trans[back ind]

3% initial backg difference density -- if param. missing
cat("Getting initial estimate of backg. diff. demsity ...\n")
if(is.null(back.dens.control$param))

back.dens.param <- init.back.t.dens(res,df=back.dens.control$df,

red=traffic.dens)

else

back.dens.param <- back.dens.control$param
back.dens <- get.back.t.dens(back.dens.param,res)

#% initial veh./backg. diff. density:

cat("Getting initial estimate of veh./backg. diff. demsity ...\n")

## it is just uniform

veh.stuff <- get.veh.dens.base.mat.and.tot.probs(q.probs=veh.dens.control$probs)
veh.dens.param <- rep(0,ncol(veh.stuff$base.mat))

un.veh.dens <- get.veh.dens(veh.dens.param,veh.stuff$base.mat)

res.ind <- round(res)+256

veh.dens <- un.veh.dens{res.ind]

## initial estimate of back.probs -- if missing
cat("Getting initial posterior estimates of backg. prob’s ...\n")
if(is.null(back.prior.probs))
back.prior.probs <- 1-traffic.dens
back.probs <- update.back.probs(back.prior.probs,
back.dens=back.dens,
veh.dens=veh.dens)
cat(" Have ", round(sum(back.probs)/n*100,4),
"% are backg. pixels.\n",sep="")

## Start EM

iter <- T

nr.iter <- 1

cat("Starting the EM ...\n")
while(iter) {




>

cat(" Iteration",nr.iter,":\n")

## estimate backg. diff. density and backg. transf.:
cat(*® Estimating new backg. transf. and demsity ...\n")
back.trans.and.dens.fit <-
est.back.t.dens.and.mono.trans(img,back,back.probs,
param.start=c(back.dens.param,
back.trans.param),
back.trans.base.mat=
back.trans.base.mat)
back.trans.param <~ back.trans.and.dens.fit$param{-c(1,2)]
cat (" Backg. transf. param. are",
round(back.trans.param,4),“\n")
back.dens.param <- back.trans.and.dens.fit$param[c(1,2)]
cat(" Backg. diff. density param. are",
round(exp(back.dens.param),4),"\n")
back.trans <- get.back.mono.trans(back.trans.param,
' back.trans.base.mat)
res <- img - back.trans[back.ind] # new residuals

## estimate veh./backg, dens. diff.:

if(update.veh.dens) {
cat(” Estimating the veh/backg. demsity ...\n")
res.ind <- round(res) + 256 # gray-value of -255 has index 1
veh.stuff <- get.veh.dens.base.mat.and.tot.probs(res.ind,back.probs,

veh.dens.control$probs)
veh.dens.fit <- est.veh.dens(veh.stuff$tot.veh.probs,veh.dens.paranm,
veh.stuff$base.mat)

veh.dens.param <- veh.dens.fit$param
‘un.veh.dens <- get.veh.dens(veh.dens.param, veh.stuff$base.mat)

. veh.dens <~ un.veh.dens[res.ind]

}

## Update back.probs:
cat(® Update the backg. probabilities ...\n")
nev.back.probs <- update.back.probs(back.prior.probs,back.dens,veh.dens)
cat(" Have ",round(sum(new.back.probs)/n*100,4),
"% are backg. pixels.\n",sep="")

## compute iteration criteria:

back.probs.diff <- sum(log(new.back.probs/back.probs)*new.back.probs,na.rm=T)+

sum(log( (1-new.back.probs)/(1-back.probs))*(1-new.back.probs),na.rm=T)
cat( "The convergence criteria is",back.probs.diff,"\n")
back.probs <- new.back.probs

if(ask.iter) {
ask <- T
vhile(ask) {
ansver <- menu(c("To do another iteration.","To stop at this point*),
title="Shall we continue?")
if(answer==1 || answer==2)
ask <~ F
else
cat("Select 1 or 2 ...\n")
}
if (answer==2)
iter <- F
} else {
if(nr.iter >= max.iter |l back.probs.diff <= conv.crit)
iter <~ F
}

nr.iter <- nr.iter + 1

return(back.probs=back.probs,

back.dens.param=back.dens.param,
back.trans.param=back.trans.param,
. back.trans.base.mat=back.trans.base.mat,



veh.dens.param=veh.dens.param,
veh.dens.base.mat=veh.stuff$base.mat)

## Estimate everything: transformation, densities and weights

#2 using the EM algorithm.

## This is for the case when:

# (1) The backg. diff. density is a normal density

#2  (2) The backg. transformation is monotonic increasing

23  (3) The veh./backg. 4iff. demsity can either by estimated or unif.

#2 VERY slow function:

run.EM.norm.and.mono <-
function( img,back,back.prior.probs=NULL,traffic.dens=0.05,
back.dens.control=list(param=NULL),
back.trans.control=list (param=NULL,nr.trans.param=5,
knots=NULL),

veh.dens. control=list (probs=c(0.05,0.2,0.4,0.6,0.9,0.95)),
max.iter=20, ask.iter=F, conv.crit=1/100,
update.veh.dens=T
) 4 :

#2 img: the image (the pixels in the image)

## back: the current estimate of the background pixels

## back.probs: the prior prob for pixel being a background pixel.

## traffic.dens: a prior estimate of traffic demsity (prop. of pixels

## belonging to vehicles in the nev image.

#2 The other parameters are input parameters to other functions -- see use

back.ind <- back+l # index for the background, color O is index 1
res <- img - back # current difference (residuals)
n <- length(res) :

## first, initial estimate of transformation:
cat("Getting initial estimate of backg. tramsf. ...\n")
back.trans.base.mat <- get.back.mono.trans.base.mat(back=back,

n=back.trans.control$nr.trans.param,

knots=back.trans.control$knots)
if(is.null(back.trans.control$param))

back.trans.param <- init.back.mono.trans(res,n=back.trans.control$nr.trans.param)

else :
back.trans.param <- back.trans.control$param.
back.trans <- get.back.mono.trans(back.trans.param,back.trans.base.mat)

## nev residuals
res <- img - back.trans[back.ind]

#% initial backg. diff density (the SD in the normal)

cat("Getting initial estimate of the SD in the backg. diff. demsity ... \n")
tmp <- abs(res)

tmp <- res[tmp <= quantile(tmp,i-traffic.dens)]

back.dens.param <- sqrt(sum(tmp~2)/length(tmp))

back.dens <- dnorm(res,0,back.dens.param)

## initial veh./backg. diff. demsity:

cat("Getting initial estimate of veh./backg. diff. demsity (unif.) ...\n")

## it is just uniform

veh.stuff <- get.veh.dens.base.mat.and.tot.probs(q.probs=veh.dens.control$probs)
veh.dens.param <- rep(O;ncol(veh.stufbease.mat))

un.veh.dens <~ get.veh.dens(veh.dens.param,veh.stuff$base.mat)

res.ind <- round(res)+256

veh.dens <- un.veh.dens[res.ind]



#8 initial estimate of back.probs -- if missing
cat("Getting initial estimates of backg. prob’s ...\n")
if(is.null(back.probs))
back.prior.probs <- 1-traffic.dens
back.probs <- update.back.probs(back.prior.probs,
back.dens=back.dens,
veh.dens=veh.dens)
cat(" Have ",round(sum(back.probs)/n*100,4),
"% are backg. pixels.\n",sep="")

## Start EM
iter <- T
nr.iter <- 1
cat("Starting the EM ...\n")
while(iter) {
cat(" Iteration",nr.jter,":\n")

## estimate backg. diff. density and backg. transf.:

cat(® Estimating nev backg. transf. and demsity ...\n")

back.trans.and.dens.fit <-

est.back.norm.dens.and.mono.trans(img,back,back.probs,

param.start=back.trans.param,
back.trans.base.mat=back.trans.base.mat)

back.trans.param <- back.trans.and.dens.fit$param

cat(” Backg. transf. param. are",

round(back.trans.param,4),"\n")
back.trans <- get.back.mono.trans(back.trans.param,
back.trans.base.mat)

res <- img - back.trans[back.ind] # new residuals

back.dens.param <- sqrt(sum(back.probs*res~2)/sum(back.probs)) :

cat(" Backg. diff. density SD is",round(back.dens.param,2),"\n")

back.dens <- dnorm(res,0,back.dens.param)

#2 estimate veh./backg. dens. diff.:

if(update.veh.dens) {
cat(" Estimating the veh/backg. demsity ...\n")
res.ind <- round(res) + 256 # gray-value of -255 has index 1
veh.stuff <- get.veh.dens.base.mat.and.tot.probs(res.ind,back.probs,

) veh.dens.control$probs)
veh.dens.fit <- est.veh.dens(veh.stuff$tot.veh.probs,veh.dens.paranm,
' veh.stuff$base.mat)

veh.dens.param <- veh.dens.fit$param
un.veh.dens <~ get.veh.dens(veh.dens.param, veh.stuff$base.mat)
veh.dens <- un.veh.dens[res.ind)

}

#% Update back.probs: .

cat(” Update the backg. probabilities ...\n")

new.back.probs <- update.back.probs(back.prior.probs,back.dens,veh.dens)
cat(" Have *,round(sum(new.back.probs)/n*100,4),

»% are backg. pixels.\n",sep="")

##% compute iteration criteria:

back.probs.diff <-

sum(log(new.back.probs/back.probs)*nev.back.probs,na.rm=T)+
sum(log((1-nev.back.probs)/(1-back.probs))*(1-nev.back.probs),na.rm=T)

cat( "The convergence criteria is",back.probs.diff,"\n")

back.probs <- new.back.probs

if(ask.iter) {
ask <- T
vhile(ask) {
ansver <- menu(c("To do another iteration.","To stop at this point"),
title="Shall we continue?")

if (answer==1 || ansver==2)
ask <- F
else

cat("Select 1 or 2 ...\n")
3 .



if (answer==2)

iter <~ F
} else {
if(nr.iter >= max.iter || back.probs.diff <= conv.crit)
iter <- F

}
nr.iter <- nr.iter + 1
}

return(back.probs=back.probs,
back.dens .param=back.dens.param,
back.trans.param=back.trans.param,
back.trans.base.mat=back.trans.base.mat,
veh.dens.param=veh.dens.param,
veh.degs.base.mat=veh.stufbease.mat)
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#3288 USING NORMALD BACKG. DENSITY AND N-S TRANSFORMATION 3isa2

2
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2

Estimate everything: transformation, densities and weights
using the EM algorithm.
This is for the case when:
(1) The backg. diff. demsity is a normal denmsity
(2) The backg. transformation is natural-spline
(3) The veh./backg. diff. density can either by estimated or unif.

This is the fastest function:

run.EM.norm.and.ns <-
function(img,back,back.prior.probs=NULL,traffic.dens=0.05,

back.dens.control=list(param=NULL),
back.trans.control=1list(param=NULL,nr.trans.param=5,
knots=NULL),

veh.dens.control=list{probs=c(0.05,0.2,0.4,0.6,0.8,0.95)),
max.iter=20, ask.iter=F, conv.crit=1/10, : :
update.veh.dens=T
) {

#% img: the image (the pixels in the image)

#8 back: the current estimate of the background pixels

#% back.prior.probs: the prior prob for pixel being a background pixel.

#2# traffic.dens: a prior estimate of traffic density (used if

2 .back.prior.probs is NULL -- missing).

#2 The other parameters are input parameters to other fumctions -- see use

back.ind <- as.vector(back+l) #index for the background, color 0 is jndex 1 SRR

res.null <- as.vector(img - back) # the rav difference.
n <~ length(res.null)

#8 first, initial estimate of transformation:
cat(“Getting initial estimate of backg. tramsf. ...\n")
back.trans.base.mat <-
get.back.ns.trans.base.mat (back=back,
n=back.trans.control$nr.trans.param,
knots=back.trans.control$knots)
if(is.null(back.trans.control$param))
back.trans.param <- init.back.ns.trans(res.null,back.trans.base.mat)
else
back.trans.param <- back.trans.control$param
back.trans <- get.back.ns.trans(back.trans.param,back.trans.base.mat)
8% create the X matrix for the lsfit() function
back.trans.fit.mat <- back.trans.base.mat[back.ind,]

## new residuals




bey

res <- img - back.trans([back.ind]

## initial backg. diff density (the SD in the normal)
cat("Getting initial estimate of the SD in the
backg. diff. density ... \n" )

tmp <- abs(res)

tmp <- res[tmp <= guantile(tmp,i-traffic.dens)]
back.dens.param <- sqrt(sum(tmp~2)/length(tmp))
back.dens <- dnorm(res,0,back.dens.param)

#% initial veh./backg. diff. density:

cat("Getting initial estimate of veh./backg. diff. density (unif.) ...\n")
#% it is just uniform Co
veh.stuff <-
get.veh.dens.base.mat.and.tot.probs(q.probs=veh.dens.control$probs)
veh.dens.param <~ rep(0,ncol(veh.stuff$base.mat))

un.veh.dens <- get.veh.dens(veh.dens.param,veh.stuff$base.mat)

res.ind <~ round(res)+256

veh.dens <- un.veh.dens[res.ind]

## initial estimate of posterior back.probs:
cat(“"Getting initial estimates of backg. prob’s ...\n")
#3 get the backg. density for residuals:
if(is.null(back.prior.probs))

back.prior.probs <- i-traffic.dens 2# can be 1 number
back.probs <- update.back.probs(back.prior.probs,

back.dens=back.dens,

) veh.dens=veh.dens)

cat(" Have ",round(sum(back.probs)/n*100,4),
"% are backg. pixels.\n",sep="")

#2 Start EM
iter <- T
nr.iter <- 1
cat(“Starting the EM ...\n")
while(iter) {
cat(® Iteration®,nr.itex,":\n")

## estimate backg. diff. density and backg. tramsf.:
cat(® Estimating new backg. transf. and density ...\n"™)
back.trans.and.dens.fit <-
1sfit(x=back.trans.fit.mat,y=res.null,int=F,wt=back.probs) [c("coef","res")]
back.trans.param <- back.trans.and.dens.fit$coef ’
res <~ back.trans.and.dens.fit$res
cat(" Backg. transf. param. are”,

round(back. trans.param,4),"\n")
back.dens.param <- sqrt(sum(back.probs*res~2)/sum(back.probs)) :
cat(" Backg. diff. demsity SD is",round(back.dens.param,2),"\n")’
back.dens <- dnorm(res,0,back.dens.param) :

#% estimate veh./backg. dens. diff.:

if (update.veh.dens) {
cat(® Estimating the veh/backg. demsity ...\n")
res.ind <- round(res) + 256 # gray-value of -255 has index 1
veh.stuff <- get.veh.dens.base.mat.and.tot.probs(res.ind,back.probs,

veh.dens.control$probs)
veh.dens.fit <- est.veh.dens(veh.stuff$tot.veh.probs,veh.dens.paran,
veh.stuff$base.mat)

veh.dens.param <- veh.dens.fit$param
un.veh.dens <- get.veh.dens(veh.dens.param, veh.stuff$base.mat)
veh.dens <~ un.veh.dens({res.ind]

}

## Update back.probs:

cat(" Update the backg. probabilities ...\n")

new.back.probs <- update.back.probs(back.prior.probs,back.dens,veh. dens)
cat(" Have “,round(sum(new.back.probs)/n*100,4),

"% are backg. pixels.\n",sep="")



## compute iteration criteria:

back.probs.diff <-

sum(log(new.back.probs/back.probs)*nev.back.probs,na.rn=T)+
sum(log((1-nevw.back.probs)/(1-back.probs))*(i-new.back.probs),pa.rm=T)

cat( "The convergence criteria is",back.probs.diff,"\n")

back.probs <- new.back.probs

if (ask.iter) {
ask <~ T
while(ask) {
answer <- menu(c("To do another iteration.","To stop at this point"),
title="Shall we continue?"
if(ansver==1 || answer==2) i
ask <~ F
else
cat(“Select 1 or 2 ...\n")
}
if (answer==2)
iter <~ F
} else {
if(nr.iter >= max.iter || back.probs.diff <= comv.crit
iter <- F :

}
nr.iter <- nr.iter + 1
}

return(back.probs=back.probs,
back.dens.param=back.dens.param,
back.trans.param=back.trans.paranm,
back.trans.base.mat=back.trans.base.mat,
veh.dens.paran=veh.dens.param,
veh.dens.base.mat=veh.stuff$base.nat)

4.2 The S+ Code for Implementation on Test and Scanned Images

®
## Gardar Johannesson: 23-June-98
## file: detecting motion_comands.s
i
#2 5 comands using the functions in the file detecting_motion.s

3% and plotting figures for the file detecting motion.tex .
#

k2]
## Revised June 1999- By Parag Goel
## attaching sample images to use:
attach("/home/pxg/SATELLITE/ Image_analysis/Sample_images/.Data")
## attaching functions to plot images:
attach(”/home/pxg/SATELLITE/Image_analysis/.Data")

n 2 $1ER88828010808 $H2 s
#3282 FIRST, PLOT THE SAMPLE IMAGES ##8#%

## plot I70b photo nr. 56

tmp <~ i70b.56

tmp[!i70b.56.cut.ind] <- NA

image.device("postscript”,file="detecting_motion_img_56.ps",
height=8,data.dim=dim(tmp))

plot.image(tmp)

dev.off()

## plot only vehicles:

f



tmp[!i70b.56.veh.ind] <- NA

image.device("postscript”,file="detecting motion_img_S6_veh.ps",
height=8,data.dim=dim(tmp))

plot. image (tmp)

dev.off()

## plot the background -~ estimated

tmp <- i70b.56.bg

tmp{!i70b.56.cut.ind] <- NA

image.device("postscript”,file="detecting_motion_img_56_bg.ps",
height=8,data.dim=dim(tmp))

plot.image (tmp)

dev.of£()

## plot I70b photo nr. 57 ~- which was resampled wrt nr.56

tmp <- i70b.57.bi

tmp[!i70b.56.cut.ind] <~ NA

image.device("postscript”,file="detecting_motion_img_S7.ps",
height=8,data.dim=dim(tmp))

plot.image(tmp)

dev.off()

## plot only vehicles:

tmp[!i70b.57.veh.ind] <~ KA

image.device("postscript”,file="detecting motion_img 57_veh.ps",
height=8,data.dim=dim(tmp))

plot.image(tmp)

dev.of£()

## plot the background -- estimated

tmp <- i70b.57.bg.bi

tmp[!i70b.56.cut.ind] <- NA

image.device("postscript",file="detecting motion_img_57_bg.ps",
height=8,data.dim=dim(tmp))

plot.image(tmp)

dev.of£()

#% plot histogram of pixelvalues in sample images:
#2 for Image A:
tmp <- i70b.56[i70b.56.cut.ind]
trellis.device(postscript,file="detecting motion_hist_A.ps*",
width=8,height=5,horizontal=F)
histogram(~tmp,breaks=seq(-0.5,265.5,by=2),
xlab="Pixel reflective value”,
ylab="Density")
dev.off()
#2 for Image B:
tmp <- i70b.57.bi[i70b.56.cut.ind]
trellis.device(postscript,file="detecting _motion_hist_B. ps",
vidth=8,height=5,horizontal=F)
histogram(~tmp,breaks=seq(-0.5,255.5,by=2),
xlab="Pixel reflective value”,
ylab="Density")
dev.off()
$#% for Image A, vehicles only:
tmp <- i70b.56[i70b.56.cut.ind & i70b.56.veh.ind]
trellis.device(postscript,file="detecting_motion_hist_A_veh.ps",
width=8,height=5,horizontal=F)
histogram(~tmp,breaks=seq(-0.5,255.5,by=2),
xlab="Pixel reflective value",
ylab="Density")
dev.off()
$¢ for Image B, vehicles only:
tmp <- i70b.57.bi[i70b.56.cut.ind & i70b.57.veh.ind]
trellis.device(postscript,file="detecting_motion_hist_B_veh.ps",
vidth=8,height=5,horizontal=F)
histogram(“tmp,breaks=seq(-0.5,255.5,by=2),
xlab="Pixel reflective value",
ylab="Density")
dev.off()

#3838 ESTIMATING THE BACKGROND DIFFERENCE DISTRIBUTION



26288 AND THE TRANSFORMATION

#8428 First, show the difference in the images as ’images’
tmp <~ i70b.56 - ’
tmp[!i70b.56.cut.ind] <- NA ¢
tmp <- abs{tmp - i70b.57.bg.bi)
image.device("postscript”,file="detecting_motion_img _56m57.ps",
height=8,data.dim=dim(tmp))
plot.image(255-tmp)
dev.off()
tmp <- i70b.57.bi
tmp[!i70b.66.cut.ind} <- NA
tmp <~ abs(tmp - i70b.56.bg) :
image.device("postscript”,file="detecting motion_img_57mS6.ps*, : . :
height=8,data.dim=dim(tmp)) :
plot. image (255-tmp)
dev.off()

#% Using image A as new image and B as background:

tmp.ind <- i70b.56.cut.ind

tmp.img <~ i70b.56[tmp.ind]

tmp.bg <- i70b.57.bg.bi[tmp.ind]

tmp.back.probs <- rep(1,length(tmp.img)) : ) )
tmp.back.probs[i70b.56.veh.ind[tmp.ind]] <- 0 # 0 weights to vehicle : |
tmp.res <- tmp.img - tmp.bg

#% Use the t-distribution and monotonic transformation:

#% only using intercept in the transformation:

tmp.base.mat <~ NULL ;
tmp.start <- c(init.back.t.dens(tmp.res),init.back.mono.trans(tmp.res,n=1)) : ' ‘

fit.t.mono.int <- est.back.t.dens.and. mono. trans(tmp.img,tmp.bg,tmp.back.probs,tmp.start, tmp.base. mat)
## and plot:

#2 (1) the histogram:
tmp <- tmp.img - get.back.mono.trans(fit.t.mono. int$param[-c(1,2)],
tmp.base.mat) [tmp.bg+1]
tmp <- tmp[tmp.back.probs==1] # vhere we have background
trellis.device(postscript,file="detecting motion_hist_t_mono_1.ps", .
width=8,height=5,horizontal=F) I
histogram(~“tmp,breaks=seq(-255.5,265.5,by=7),
xlab="Pixel reflective value",
ylab="Density (%)",
panel=function(x,y,...) {
panel.histogram(x,y,border=1,...)
pix <- (~256):255
param <~ fit.t.momno.int$param
tmp <- dt(pix/exp(param{1]), exp(param[2]))/exp(param[1])
lines(pix,7*100%tmp,1lvd=3, col=3)
} .
)
dev.off()
# (2) the transformation:
tmp <- get.back.mono.trans(fit.t.mono. mtsparam[-c(l 2)] ,tmp.base.nat)
trellis.device(postscript,file="detecting motion_trams_t_mono_1.ps",
vidth=8,height=8,horizontal=F)
plot.back.trans(tmp,tmp.img,tmp.bg, tmp.back.probs)
dev.off()

#2 using 5 parameters in the transformation:
tmp.base.mat <~ get.back.mono.trans.base.mat(tmp.bg,n=5) ‘
top.start <- c(init.back.t.dens(tmp.res),init.back.mono.trans(tmp.res,n=5))

fit.t.mono.ns <- est.back.t.dens.and.mono.trans(tmp.img,tmp.bg,tmp.back.probs,tmp.start,tmp.base.mat)
#% and plot:

#2 (1) the histogram:
tmp <- tmp.img - get.back.mono.trans(fit.t.mono.ns$param{-c(1,2)],
tmp.base.mat) [tmp.bg+i]
tmp <- tmpltmp.back.probs==1] # vhere we have background
trellis.device(postscript,file="detecting motion_hist_t_mono_2.ps",
width=8,height=5,horizontal=F)
histogram(~tmp,breaks=seq(-255.5,265.5,by=7),



xlab="Pixel reflective value",
ylab="Density (%)*,
panel=function(x,y,...) {
' panel.histogram(x,y,border=1,...)
pix <- (-255):255
param <- fit.t.mono.ns$param
tmp <- dt(pix/exp(param[1]),exp(param[2]))/exp(param[1])
lines(pix,7*100*tmp,1wd=3,col=3)
}
)
dev off()
## (2) the transformation:
tmp <- get.back.mono.trans(fit.t.mono.ns$param[-c(1,2)],tmp.base.mat)
trellis.device(postscript,file="detecting_motion_trans_t_mono_2.ps",
width=8,height=8 ,horizontal=F)

plot.back.trans(tmp, tmp.img, tmp.bg,tmp.back.probs)
dev.off()

#2 Use the normal distribution and ns() transformation
#2 only using intercept in the transformation:
tmp.base.mat <- get.back.ns.trans.base.mat(tmp. bg,n—l)

fit.t.mono.int <- est.back.t.dens.and.mono.trans(tmp.img,tmp.bg,tmp.back.probs,tmp.start,tmp.base.mat)

#% and plot:
#% (1) the histogram:
tmp <- tmp.img - get.back.mono.trans(fit.t.mono.int$param[-¢(1,2)],
tmp.base.mat) [tmp.bg+1]
tmp <- tmp{tmp.back.probs==1] # vhere ve have background
trellis.device(postscript,file="detecting _motion_hist_t_mono_1.ps",
width=8,height=5,horizontal=F)
histogram(~tmp,breaks=seq(~255.5,265.5,by=7),
xlab="Pixel reflective value”,
ylab="Density (%)",
panel=function(x,y,...) {
Panel.histogram(x,y,border=1,...)
pix <- (-255):255
param <- fit.t.mono.int$param
tmp <- dt(pix/exp(param[1]),exp(param[2]))/exp(param[1])
lines(pix,7+#100*tmp,1lvd=3,col=3)
}
)
dev.off()
#2 (2) the transformation:
tmp <- get.back.mono.trans(fit.t.mono.int$param{-c(1,2)],tmp.base.mat)
trellis.device(postscript,file="detecting motion_trans_t_mono_i.ps",
width=8,height=8,horizontal=F)
plot.back.trans(tmp,tmp.img, tmp.bg,tmp.back.probs)
dev.off()

m .
## create table for the sigma and df of background distribution:
tmp.tab <- data.frame(’Scale’=exp(c(fit.t.mono.int$paramf1},\\
fit.t.mono.ns$param[1])), Dt ’=exp(c(fit.t.mono.int$param{1],\\
fit.t.mono.ns$param[1))))
tmp <- tmp.img ~ cbind(get.back.mono.trans(fit.t.mono.int$\\
param{-c(1,2)],tmp.base.mat), get.back.mono.trans(\\
fit.t.mono.ns$param[-c(1,2)],tmp.base.mat)) [tmp.bg+1,)
tmp.tab$’SD’ <- sqrt(apply(tmp([tmp.back.probs==1,],2,var))
tmp.tab$’25% quantile’ <- apply(tmp{tmp.back.probs==1,],2,quantile,probs=0.25)
tmp.tab$’75% quantile’ <- apply(tmp[tmp.back.probs==1,],2,quantile,probs=0.75)
tmp.tab$’IQR’ <- tmp.tab$’75% quantile’ - tmp.tab$’25% quantile’
dimnames (tmp.tab) [[1]] <- c(’1 param.’,’5 param.’)
round(tmp.tab,3)

f2c i 2d
#% create table of log-likelihoods and test for better transformation:
tmp.tab <- cbind(’nr. of param.’=c(1,5),

’log-likelihood’=-c(fit.t.mono.int$obj,fit.t.mono.ns$obj))
tmp.tab <- as.data.frame(tmp.tab)

dimnames(tmp.tab) ([1]] <- c(’1 param.’,’S param.’)



tup.tab$’log-1ik. diff’ <- c(NA,tmp.tab[2,’log-likelihood’]-

tmp.tab(1,’log-1likelihood?])
tmp.tab$’p-value’ <- round(c(NA,1-pchisq(tmp.tab$’log-lik. diff’[2],4)))
tmp . tab

## Use the normal distribution and ns() transformation
$# only using intercept in the transformation:
tmp.base.mat <- get.back.ns.trans.base.mat(tmp.bg,n=1)
tmp.fit.mat <- tmp.base.mat[tmp.bg+l,]
fit.norm.ns.1p <- lsfit(x=tmp.fit.mat,y=tmp.res,int=F,
wt=tmp.back.probs) [c("coet","res")]
# and plot:
## (1) the histogram: o
tmp <~ -tmp.img - get.back.ns.trans(fit.norm.ns.ip$coef,
tmp.base.mat) [tmp.bg+1)
top <- tmp{tmp.back.probs==1] # where we have background
trellis.device(postscript,file="detecting motion_hist_norm_ns_1i.ps",
width=8,height=5,horizontal=F)
histogram(~tmp,breaks=seq(-256.5,266.5,by=7),
xlab="Pixel reflective value”,
ylab="Density (%)",
panel=function(x,y,...) {
panel .histogram(x,y,border=1,...)
pix <- (-255):255
param <- sqrt(sum(tmp.back.probs*fit.norm.ns. 1p$res"2) /
» sum(tmp.back.probs))
tmp <~ dnorm(pix,0,param)
lines(pix,7*100*tmp,1wd=3,c0l=3)
}
)
dev.off()
## (2) the transformation:
tmp <- get.back.ns.trans(fit.norm.ns.lp$coef,tmp.base.mat)
trellis.device(postscript,file="detecting_motion_trans_norm ns_1.ps",
width=8,height=8,horizontal=F)
plot.back.trans(tmp,tmp.img,tmp.bg, tmp.back. probs)
dev.off()

## use 5 parameters in the ns transformation:

tmp.base.mat <~ get.back.ns.trans.base.mat(tmp.bg,n=5)

tmp.fit.mat <- tmp.base.mat[tmp.bg+l,]

fit.norm.ns.5p <- lsfit(x=tmp.fit.mat,y=tmp.res,int=F,
vt=tmp.back.probs) [c("coet”,"res")]

#8 and plot: '

#2 (1) the histogram:
tmp <- tmp.img - get.back.ns.trans(fit.norm.ns.Sp$coef,
tmp.base.mat) {tmp.bg+1]
tmp <- tmp(tmp.back.probs==1] # vhere we have background
trellis.device(postscript,file="detecting_motion_ hut_nom ns_2. ps
width=8,height=5,horizontal=F)
histogram(“tmp,breaks=seq(-256.5,255.5,by=7),
xlab="Pixel reflective value”,
ylab="Density (%)",
panel=function(x,y,...) {
panel.histogram(x,y,border=1,...)
pix <- (-255):255
param <- sqrt(sum(tmp.back.probs*fit.norm.ns.5p$res~2) /
sum(tmp.back.probs))
tmp <~ dnorm(pix,0,param)
lines(pix,7*100*tmp,1lwd=3,col=3)
}
)
dev.off()
#2 (2) the transformation:
tmp <- get.back.ns.trans(fit.norm.ns.5p$coef,tmp.base.mat)
trellis.device(postscript,file="detecting_motion_trans_norm_ns_2.ps",
width=8,height=8 ,horizontal=F)
plot.back.trans (tmp, tmp.img, tmp.bg,tmp.back.probs)
dev.off()
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#88 ESTIMATING THE VEHICLE MINUS BACKGROUND DISTRIBUTION

## Using image A as nev image and B as background:

tmp.ind <~ i70b.56.cut.ind

tmp.ing <- i70b.56[tmp.ind)

tmp.bg <- i70b.57.bg.biltmp.ind]

tmp.back.probs <- rep(1,length(tmp.img))
tmp.back.probs[i70b.56.veh.ind{tmp.ind)] <- O # 0 veights to vehicles
#% use the ns transformation with 5 parameters

s2288 TESTING ITERATIVE EM PROCEDURE #####

b2 2
3% Use a test images:
tmp.true.bg <- matrix(150+20%rnorm(30%20),30,20) # the true background
tmp.true.bgl,4:7] <- tmp.true.bgl,4:7] - 40
tmp.true.bgl[,12:16] <- tmp.true.bgl,12:16] - 30
tmp.true.bg(,19:20] <- tmp.true.bgi,19:20] ~ 70
tmp.true.bgltmp.true.bg<0] <~ 0
tmp.true.bg[tmp.true.bg>255] <- 255
~#8 the brighness change:
tup.fit <- smooth.spline(x=c(0,50,100,150,200,255),
. y=¢(0,40,85,120,155,180) ,df=5)
tmp.trans <- predict(tmp.fit,x=0:255)
## the new image: .
tmp.img <- matrix(approx(tmp.trans$x,tmp.trans$y,xout=tmp.true.bg)$y +
7*rnorm(30+20), 30,20)
tmp.img(6:12,4:8) <- S»rnorm(7+5) # moving object nr. i (shadow)
tmp.ing[6:11,4:7] <- 40+5*rnorm(6*4) # the object nr.1
tmp.img[18:25,12:17] <- 5%*rnorm(8*6) # moving object nr. 2 (shadow)
tmp. img[18:24,12:16] <- 170+5*rnorm(7+5) # the object nr 2
tmp. img[tmp. img<0] <- 0
tmp. img [tmp. img>255] <~ 255
## number of vehicle pixels
(7+5+8+6)/(30%20) & approx 14% or 83 pixels
#2 the observed background '
tmp.bg <- tmp.true.bg + T*rnorm(30*20)

#plot test images

image.device("postscript”,file="detecting motion_test_img.ps",
height=6,data.dim=dim(tmp))

plot.image(tmp.img)

dev.off()

image.device("postscript”,file="detecting_motion_test_bg.ps",
height=6,data.dim=dim(tmp))

plot.image(tmp.bg)

dev.off()
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#% use unif. veh. dens. with the same prior (traffic.dems), but different

#3 transformation

#% Use 1 param:

tmp.fit.1 <~ run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.14,
back.trans.control=list(nr.trans.param=1))



## plot weights:

tmp <- tmp.img

##top[] <- round(255%tmp.fit.i$back.probs)

top(] <~ ifelse(tmp.fit.1$back.probs>=0.5,255,0)

image .device(’postscript’,file="detecting_motion_test_pp_1.ps",

data.dim=dim(tmp),height=6)

plot.image(tmp)

dev.off()

## plot background transformation

tmp.back.trans <- get.back.ns.trans(tmp.fit.1$back.trans.param,
tmp.fit.1$back.trans.base.mat)

trellis.device(postscript,file="detecting motion_test_bt_1.ps",

width=6,height=6,horizontal=F)
plot.back.trans(tmp.back.trans,tmp.img,tmp.bg,tmp.£it.1$back.probs)
dev.off()

#¢ Use 5 param:

tmp.£it.2 <- run.EM.norm.and.ns(tmp. img,tmp.bg,update.veh.dens=F,
traffic.dens=0.14,
back.trans.control=list (nr.trans.param=5))

## plot weights:

top <- tmp.img

##tmp(] <~ ‘round (265*tmp.fit.2¢back.probs)

top(J <- ifelse(tmp.fit.2$back.probs>=0.5,265,0)

mage device(’postscript’,file="detecting motion_test_pp_2.ps",

data.dim=dim(tmp) ,height=6)

plot. image (tmp)

dev.off£()

#2 plot background transformation

tmp.back.trans <- get.back.ns.trans(tmp.fit.2$back.trans.paranm,
tmp.fit.2$back.trans.base.mat)

trellis.device(postscript,file="detecting motion_test_bt_2.ps",

width=6 ,height=6,horizontal=F)
plot.back.trans(tmp.back.trans,tmp.img,tmp.bg,tnp.fit.28back.probs)
dev.off()

$38388
#% plot histogram of new image:
trellis.device(postscript,file="detecting _motion_test_hist.ps"”,
width=8,height=5,horizontal=F)
histogram(“tmp. img,breaks=seq(-0.5,255.5,by=7),
xlab="Pixel reflective value”,
ylab="Density")
dev.off ()

## veh. only:

tmp.veh.ind <- matrix(F,30,20)

tmp.veh.ind[6:12,4:8] <- T

tmp.veh.ind[18:26,12:17] <- T

trelhs device(postscript,file="detecting_motion_ test hist_veh. ps

width=8,height=5,horizontal=F)

histogram(~tmp. img[tmp.veh.ind] ,breaks=seq(-0.5,255.5,by=7),
xlab="Pixel reflective value",
ylab="Density")

dev.off()
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#% create classification table for three methods:

## thresholding (use 5% vehicles, 70% in lower tail)
tmp <- order(tmp.img) -
n <- length(tmp.img)
n.veh <- n*0.05
thresh.ind <- c(tmp[1:round(n.veh*0.7)]},tmp[round(n-n.veh*0.3):n])
tmp <- table(tmp.veh.ind[{thresh.ind])
tmp
c(’total’=sum(tmp), ’correcr’=tmp{’TRUE’]/sum(tmp)*100,
*wrong’=tmp ['FALSE’]/sum(tmp)*100)




## thresholding (use 15% vehicles, 70% in lower tail)

tmp <- order{(tmp.img)

n <- length(tmp.img)

n.veh <- n*0.15

thresh.ind <- c(tmp{1:round(n.veh*0.7)],tmp[round(n-n.veh*0.3):n))

tmp <- table(tmp.veh.ind[thresh.ind])

tmp

c(’total >=sum(tmp), ’correcr’=tmp[’ TRUE’ ]/sum(tmp)*loo
wrong’=tmp[’FALSE’]/sum(tmp)*100)

#2 thresholding (use 25% vehicles, 70% in lower tail)
tmp <~ order(tmp.img)
D <~ length(tmp.img)
n.veh <- n*0.25
thresh.ind <- c¢(tmp[1:round(n.veh+*0.7)] tmp[round(n-n veh#0.3) :n])
tmp <- table(tmp.veh.ind[thresh.ind])
tmp
c(’total *=sum(tmp), ’correcr’=tmp[’ TRUE’]/sun(tmp)*100,
'wrong ’=tmp[’FALSE’}/sum(tmp)*100)

3

3% 1 parameter transformation:

## 6/ traffic density at prior:

tmp.fit <~ run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.05,
back.trans.control=list(nr.trans.param=1))

tup <~ tmp veh.ind[tmp.fit$back.probs<0.5]

tmp <- table(tmp)

top »

c(’total’=sum(tmp), ’correcr’=tmp[’TRUE’]/sum(tmp)*100,

’wrong’=tmp{’FALSE’]/sun(tnp)*100)

#8 15}, traffic demsity at prior:

top.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.15,
back.trans.control=list(nr.trans.param=1))

tmp <- tmp.veh.ind[tmp.fit$back.probs<0.5] -

tmp <~ table(tmp)

cat("15% at prior\n")

tmp

c(’total’=sum(tmp), ’correcr’=tmp[*TRUE’]/sum(tmp)*100,

‘wrong’=tmp[’FALSE’]/sun(tmp)*100)

## 25), traffic density at prior:

tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.25,
back.trans.control=list(nr.trans.param=1))

tmp <- tmp.veh.ind[tmp.fit$back.probs<0.5]

tmp <- table(tmp)

cat("25% at prior\n")

“tmp

c(’total ’=sum(tmp) , ’correcr’=tmp [’ TRUE’] /sum(tmp)*100,

'wrong’=tmp [’FALSE’]/sum(tmp)*100)
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## 5 parameter transformation:

## 5% traffic density at prior:

tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.05,
back.trans.control=list(nr.trans.param=56))

tmp <- tmp.veh.ind[tmp.fit$back.probs<0.5]

tmp <- table(tmp)

cat("5 param, and 5% at prior\n")

tmp

c(’total’=sum(tmp),’correcr’=tmp(’TRUE’]/sum(tmp)*100,

’wrong’=tmp[’FALSE’]/sum(tmp)*100)

## 18} traffic density at prior:



tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.15,
back.trans.control=list(nr.trans.param=5))

tmp <~ tmp.veh.ind[tmp.fit$back.probs<0.5]

tmp <~ table(tmp)

cat("6 param, amd 15% at prior\n")

tmp

c(’total’=sum(tmp), ’correcr’=tmp[’ TRUE’]/sum(tmp)*100,

>wrong’=tmp [’FALSE’] /sum(tmp)*100)

## 25/ traffic density at prior:

tmp.£fit <~ run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.25,
back.trans.control=list(nr.trans.param=5))

tmp <- tmp.veh.ind[tmp.fit$back.probs<0.5)

tmp <- table(tmp)

cat("5 param, and 25% at prior\n")

tmp .

c(’total *=sum(tmp) , ’correcr’=tmp [’ TRUE’] /sum(tmp)*100,

*wrong’=tmp [’FALSE’]/sum(tmp)*100)
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## use images A and B:(B image and A background)
## use 3} traffic demsity as prior

tmp.ind <- i70b.56.cut.ind

tmp.img <- i70b.57.bi[tmp.ind]

tmp.bg <~ i70b.56.bg[tmp.ind]

## use 1 parameter model
tmp.fit <~ run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.03,

.back.trans.control=list(nr.trans.param=1))
## plot weights: :

-tmp <~ i70b.57.bi

tomp(!tmp.ind] <- NA

tmpl <- tmp

tmpl [tmp.ind) <- round(255#tmp. f1t$back probs)

image.device(? postscr:l.pt’ file="detecting motion_img _3pc._cc_1_2.ps*,
data.dim=dim(tmpl) ,height=6)

plot.image(tmpl)

dev.of2()

top{tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)

image.device(’postscript’,file="detecting motion_img 3pc_pp_1_2.ps",
data.dim=dim(tmp) ,height=6)

plot.image(tmp)

dev.off()

tmp <~ (i70b.57.veh.ind{tmp.ind}) (tmp.fit$back.probs<0. 5]

tmp <- table(tmp)

cat(”1 param, and 3% at prior\n")

. tmp

c(’total ’=sum(tmp), ’ correcr’=tmp {* TRUE’]/sum(tmp)*100,
'wrong’=tmp [’FALSE’]/sum(tmp)*100,
'omission’=(sum(i70b.57.veh.ind[tmp.ind]))~tmp(’TRUE’] ) /sum(i70b.57.veh.ind [tmp.ind})*100)

£ use 2 parameter model _ shift & slbpe
tmp.fit <~ run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.03,

back.trans.control=1ist(nr.trans.param=2))
## plot weights:

tmp <- i70b.57.bi

tmp[ftmp.ind) <~ NA

tmpl <- tmp

topl{tmp.ind] <- round(255+¢tmp.fit$back.probs)

image.device( ‘postscript’,file="detecting motion_img _3pc_cc_2_2.ps",
data.dim=dim(tmpl) ,height=6)

plot.image(tmp1)

dev.off()

top[tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)




[

image.device(’postscript’,file="detecting motion_img_3pc_pp_2_2.ps",
data.dim=dim(tmp) ,height=6)

plot.image(tmp)

dev.off()

tmp <~ (i70b.57.veh.ind[tmp.ind]) [tmp.fit$back.probs<0.5]

tmp <- table(tmp)

cat("2 param, and 3% at prior\n")

tmp

c(’total ’=sum(tmp), ’correcr’=tmp[’TRUE’]/sum(tmp)*100,
*vrong’=tmp{’FALSE’}/sum(tmp)*100,
*omission’=(sum(i70b.57.veh.ind[tmp.ind])-tmp[’TRUE’])/sum(i70b.57.veh. ind [tmp.ind])*100)

## use 5 parameter model

tomp.fit <~ run.EM.norm.and.ns(tmp.inmg,tmp. bg,update veh.dens=F,
traffic.dens=0.03,
back.trans.control=list(nr.trans.param=5))

## plot veightsi

tmp <- i70b.57.bi

top[itmp.ind] <- NA

tmpl <- tmp

tmpl(tmp.ind] <- round(255+tmp.fit$back.probs)

image.device(’postscript’,file="detecting_motion_img_3pc_cc_5_2.ps",

data.dim=dim(tmp1) he1ght-'6)
plot.image(tmpl)
dev.off()

top{tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)

, image. dev1ce( postscript’,file="detecting_motion_img_3pc_pp_5_2.ps",

data.dim=dim(tmp) ,height=6)
plot.image(tmp)
dev.off()

tmp <- (i70b.57.veh.ind[tmp.ind]) [tmp.fit$back.probs<0.5)

tmp <- table(tmp)

cat("5 param, and 3% at prior\n")

tmp . .

c(’total’=sum(tmp), ’correcr’=tmp{’TRUE’]/sum(tmp)+*100,
*wrong’=tmp[’FALSE’]/sum(tmp)*100,
’omission’=(sum(i70b.57.veh.ind[tmp.ind]))-tmp[’TRUE’])/sum(i70b.57.veh.ind [tmp.ind])*100)

#2 thresholding:

tmp <- order(tmp.img)

n <- length(tmp.img)

n.veh <- n*0.03

thresh.ind <~ c(tmp(1:round(n.veh*0.7)],tmp{round(n-n.veh+0.3):n})

tmp <- table((i70b.57.veh.ind{tmp.ind]) (thresh.ind])

tmp

c(’total’=sum(tmp) , ’ correcr’=tmp [’ TRUE’}/sum(tmp)*100,
*wrong’=tmp[’FALSE’]/sum(tmp)*100,
>omission’=(sum(i70b.57.veh. ind[tmp. ind])-tmp[’TRUE’])/sum(i70b.57 .veh. ind [tmp. ind])*100)

tmp <~ i70b.57.bi

tmp[] <~ 255

tump[tmp.ind] [thresh.ind] <~ 0

image.device(’postscript’ ,file="detecting _motion_img_3pc_thres_1_2.ps",
data.dim=dim(tmp),height=6)

plot.image (tmp)

dev.off()
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#% use images A and B:(B image and A background)
#2 use 1) traffic demsity as prior

tmp.ind <~ i70b.56.cut.ind

tmp.img <- i70b.57.biltmp.ind]

tmp.bg <- i70b.56.bgltmp.ind]

#8 use 1 parameter model




tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.01,
back.trans.control=list(nr.trans.param=1))
## plot weights:
tmp <- i70b.57.bi
top[itmp.ind] <- NA
tmpl <- tmp
tmpl[tmp.ind] <- round(255+tmp.fit$back.probs)
image.device(’postscript’ ,file="detecting_motion_img ipc_cc_1_2.ps",
data.dim=dim(tmpl) ,height=6)
plot.image (tmp1)
dev.off()
top[tmp.ind]) <- ifelse(tmp. fn:sback probs>=0 5 255, 0)
image.device(’postscript’,file="detecting_motion_ img_ipc_pp_1_2.ps",
data.dim=dim(tmp) ,height=6)
plot.image (tmp)
dev.off ()

tmp <- (i70b.57.veh.ind[tmp.ind]}) [tmp.fit$back.probs<0.5]
tmp <~ table(tmp)
cat("1 param, and 1% at prior\n")
tmp
c(’total’=sum(tmp), ’correcy’=tmp[’ TRUE’] /sum(tmp) *100,
*wrong’=tmp[’FALSE’]/sum(tmp)*100,
omission’=(sum(i70b.57.veh.ind[tmp.ind])-tmp [’ TRUE’])/sum(i70b.57.veh.ind [tmp.ind])*100)

#% use 2 parameter model _ shift & slope
tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.01,
back.trans.control=list(nr.trans.param=2))
#% plot weights:
tmp <~ i70b.57.bi
tmp[!tmp.ind] <- NA
tmpl <~ tmp
tmpl [tmp.ind] <- round(255+tmp.fit$back.probs)
image.device(’postscript’,file="detecting motion_img_ipc_cc_2_2.ps",
data.dim=dim(tmp1),height=6) ’
plot.image(tmpl)
dev.off()
tmp[tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)
image.device(’postscript’,file="detecting motion_img_ipc_pp_2_2.ps",
data.dim=dim(tmp) ,height=6)
plot. image (tmp)
dev.off()

tmp <- (i70b.57.veh.ind[tmp.ind]) [tmp.fit$back.probs<0.5]
tmp <- table(tmp)
cat ("2 param, and 1% at prior\n")
tmp . ' '
c(’total >=sum(tmp), ’correcr’=tmp[’TRUE’] /smn(tmp)*ioo
’wrong’=tmp [’FALSE’]/sum(tmp)+100,
’omigsion’=(sum(i70b.57.veh.ind[tmp. md])-tmp[’mUE’])/sum(ﬂOb 57.veh.ind [tmp. md])*iOO)

#3 use 5 parameter model
top.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.01,

back.trans.control=list(nr.trans.param=5))
#% plot weights:

tmp <- i70b.57.bi

tmp{!tmp.ind] <- NA

tmpl <- tmp

tmpl{tmp.ind] <- round(255+tmp.fit$back.probs)

image.device(’postscript’,file="detecting_motion_img_ipc_cc_5_2.ps",
data.dim=dim(tmp1),height=6)

plot.image (tmpl) '

dev.off()

tmp[tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)
image.device(’postscript’,file="detecting _motion_img_ipc_pp_5_2.ps",
data.dim=dim(tmp),height=6)




plot.image(tmp)
dev.off()

tmp <~ (i70b.57.veh.ind[tmp.ind]) [tmp.fit$back.probs<0.5] -
tmp <- table(tmp)
cat("5 param, and 1% at prior\n")
tmp
c(’total’=sum(tmp), ’correcr’=tmp[’ TRUE’] /sum{tmp)*100,
*wrong’=tmp [ *FALSE’]/sum(tmp)*100,
‘omission’=(sum(i70b.57.veh. ind[tmp.ind])-tmp[’TRUE’])/sum(i70b.57.veh. ind [tmp.ind])*100)

## thresholding:
tmp <- order(tmp.img)
n <- length(tmp.img)
n.veh <- nx0.01
thresh.ind <- c(tmp[1:round(n.veh+0.7)],tmp[round(n-n.veh+0.3):n])
tmp <- table((i70b.57.veh.ind[tmp.ind])[thresh.ind])
tmp
c(’total’=sum(tmp), ’correcr’=tmp[’TRUE’)/sum(tmp)*100,
’wrong’=tmp[’FALSE’]/sum(tmp)*100,
’omission’=(sum(i70b.57.veh.ind [tmp.ind])-tmp [*TRUE’])/sum(i70b.57.veh.ind [tmp.ind])*100)

tmp <- i70b.57.bi

tmp[l <- 255

tmp[tmp.ind] [thresh.ind] <- O :

image.device(’postscript’,file="detecting _motion_img_ipc_thres_1_2.ps",
data.dim=dim(tmp),height=6)

plot.image (tmp)

dev.off()
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#% use images A and B:(B image and A background)
## use 7) traffic demsity as prior

tmp.ind <- i70b.56.cut.ind

tmp.img <- i70b.57.bi[tmp.ind]

tmp.bg <- i70b.56.bgltmp.ind]}

#2 use 1 parameter model

tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.07,
back.trans.control=list(ar.trans.param=1))

#2 plot weights:

tmp <- i70b.57.bi

tmp[!tmp.ind] <- NA

tmpl <~ tmp

tmpi [tmp.ind] <- round(255*tmp.fit$back.probs)

image.device(’postscript’,file="detecting _motion_img 7pc_cc_1_2.ps",

. data.dim=dim(tmpl),height=6) 5 - '
plot.image(tmpl)
dev.off() ’
tmp[tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)
image.device(’postscript’,file="detecting _motion_img Tpc_pp.1_2.ps",

data.dim=dim(tmp) ,height=6)
plot.image(tmp)
dev.off()

tmp <- (i70b.57.veh.ind[tmp.ind]) [tmp.fit$back.probs<0.5]

tmp <- table(tmp)

cat("1 param, and 7% at prior\n")

tmp

c(’total’=sum(tmp), ’correcr’=tmp[’TRUE’]/sum(tmp)*100,
'wrong’=tmp [*FALSE’]/sum(tmp)*100,
‘omission’=(sum(i70b.57.veh.ind[tmp.ind])-tmp[’TRUE’]))/sum(i70b.57.veh. ind [tmp.ind])*100)

22 use 2 parameter model _ shift & slope

tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.07,
back.trans.control=list(nr.trans.param=2))

8% plot weights:



tmp <- i70b.57.bi

topl!tmp.ind]l <- NA

tmpl <- tmp

tompl[tmp. ind] <- round(255*tmp.fit$back.probs)

image.device(’postscript’,file="detecting motion_img_7pc_cc_2_2.ps",
data.dim=dim(tmp1) ,height=6)

plot. image(tmpl)

dev.off()

top[tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)

image .device(’postscript’,file="detecting _motion_img 7pc_pp.2.2.ps",
data.dim=dim(tmp),height=6)

plot.image (tmp)

dev.off()

tmp <- (i70b.57.veh.ind[tmp.ind]) [tmp.fit$back.probs<0.5]

tmp <- table(tmp)

cat("2 param, and 7% at prior\n")

top

c(’total’= snm(tmp) ’correcr’=tmp [’ TRUE’] /sum(tmp)*100,
*wrong>=tmp{’FALSE’)/sum(tmp) *100, )
somission’=(sum(i70b.57.veh.ind [tmp.ind])-tmp[’TRUE’])/sum(i70b.57.veh.ird [tmp.ind])*100)

## use 5 parameter model
tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=F,
traffic.dens=0.07,

back.trans.control=list(nr.trans.param=5))
2 plot weights:
twp <- i70b.57.bi
tomp[!tmp.ind] <- NA
tmpl <- tmp
tmpl[tmp.ind] <- round(255%tmp.fit$back.probs)
image.device(’postscript’,file="detecting motion_img 7pc_cc_5_2.ps",
data.dim=dim(tmpl) ,height=6)
plot.image(tmpl)
dev.off()

tmp[tmp. ind] <- ifelse(tmp.fit$back.probs>=0.5,265,0)

image.device(’postscript’,file="detecting _motion_img 7pc_pp_5_2.ps",
data.dim=dim(tmp) ,height=6)

plot.image (tmp)

dev.off()

tmp <~ (i70b.57.veh.ind[tmp.ind]) [tmp.fit$back.probs<0.5]

tmp <- table(tmp)

cat("5 param, and 74 at prior\a")

tmp

c(’total =sum(tmp) , ’ correcr’=tmp [’ TRUE’] /sum(tmp)*100,

" ’wrong’stmp([’FALSE’]/sum(tmp)+100,
’omission’=(sum(i70b.57.veh.ind[tmp.ind])~tmp{’TRUE’])/5um(i70b.57.veh.ind [tmp. md])#loo)

## thresholding:

nmp < order(tmp.img) . i R ' Fooas

n <~ length(tmp.inmg)

n.veh <- n»*0.07 _

thresh.ind <- c(tmp[1:round(n.veh+0.7)],tmplround(n-n.veh*0.3):nl)

tmp <- table((i70b.57.veh.ind[tmp.ind]) [thresh.ind]})

tmp

c¢(’total ’=sum(tmp), ’correcy ’=tmp [’ TRUE’] /sum(tmp)*100,
*wrong’=tmp[’FALSE’] /sum(tmp)*100,
*omission’=(sum(i70b.57.veh.ind[tmp.ind])-tmp[’TRUE’])/sum(i70b.57.veh. ind [tmp. ind])*100)

tmp <- i70b.57.bi

tmp[] <- 255

tmp [tmp. ind] [thresh.ind] <- 0

image.device(’postscript’ ', file="detecting _motion_img 7pc_thres_1_2.ps",
data.dim=dim(tmp),height=6)

pPlot. image (tmp)

dev.off ()
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4.3 The S+ Image Processing Code
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# GJ: 5-NOV-97

#

# Collection of functions to deal with gray-scale images.
@

#

f2 2224 E2 4 £ 2 22 # 2 22

# function to read in Images in ASCII format.
# Returns a matrix

imagine.2.s <~ function(file,compresed=T) {
if(compresed) {
tmp.file <- tempfile()
unix(paste("uncompress -c “,file," > ",tmp.file,sep=""))
on.exit(unix(paste("rm -f*,tmp.file)))
file <~ tmp.file
}
data <- matrix(scan(file,skip=4),byrow=T,ncol=3) # (x,y,z) data
ux <- sort(unique(data(,1]))
uy <- sort(unique(datal[,2]))
data <~ matrixz(datal,3],byrow=T,nrow=length(uy),ncol=length(ux),
dimnames=1ist(uy,ux))
attr(data,"”header”) <- scan(file,n=3,wbat="")[3]
return(data)

# edge detection -- gradiant method on 3x3 mask
detect.edge <- function(data) {

dd <- dim(data)
n.na <~ 0
search.na <- T
vhile(search.na) {
search.na <- all(is. na(data[ n.na+1]))
n.na <- n.na + search.na
}
print(n.na)
x.r <= (n.na+2):(dd[2]-n.na-1)
y.r <~ (n.na*2):(dd[1)-n.na-1)
# in the x-direction:
data.x <- 2#data[y.r,] + dataly.r-1,]) + data[y.r+1,)
x.grad <- data.x[,x.r+1} - data.x[,x.r-1]
data.y <- 2*datal,x.r] + datal,x.r-1] + datal,x.r+1]
y-grad <- data.yfy.r-1,] - data.y[y.r+1,]

size <- angle <- matrix(NA,nrow=dd{1],ncel=dd[2])
angle[y.r,x.xr] <- atan(y.grad/x.grad)
sizely.r,x.r] <- sqrt(y.grad~2+x.grad~2)

return(size=size,angle=angle)

apply.filter <- function(data,weights=rbind(c(1,2,1),c(2,4,2),c(1,2,1)),

n.na=0) {

# the weights are given row by row.
# by defanlt it is a ’binomial’ mask.

veights <- veights/sum(weights)
n <- length(veights)
dd <- dim(data)



dw <- dim(weights)
no.na.s <- !is.na(data)
data[!no.na.s) <- 0

x.r <= 1:(dd[2)-2*(n.na+1))
y.r <- 1:(dd[1]1-2*(n.na+1))
result <- total.weights <- matrix(0,nrow=ddf1),ncol=dda{2])
for(i in 1:nrow(weights))
for(j in 1:ncol(weights)) {
result{y.r+n.na+l,x.r+n.na+1] <- result[y.r+n.na+1,x.r+n.na+1] +
weights[i,jlsdataly.r-1+i,x.r-14j]
total.vweights[y.r+n.na+1,x.r+n.na+l] «<-
total.weights([y.r+n.na+l,x.r+n.na+1] + no.na.s[y.r-1+i,x.r-1+jl
} ..
result <- result*(length(weights)/total.veights)
return(result)

}
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image.device <- function(device=c("motif","postscript"),file="image.ps","
height=10.5,wvidth=8,dpi,n.colors=256,data. dim=NULL,
horizontal=F,...) {

device <- match.arg(device)
assign("greylevels.256colors”,seq(0,1,le=n.colors),where=0)
ps.options (colors=greylevels.256colors,background=-1)

if (device=="motif") {
add.to.sgraphrc <~ "-xrm ’sgraphMotif.colorSchemes: name: \"256
greylevels\ "; background: white; lines: black hb white; text:
black h5 white; polygons: black h254 white; images: black h254
white’"
motif (options=add.to.sgraphrc,...)
} else {

# a postscript file is created just to suround the image.
#figure out the size of the postscript file:
if(!is.null(data.dim)) {

d.ratio <- data.dim{1]/data.dim(2]

p.ratio <- height/width

if(d.ratio>=p.ratio)

width <- height*(1/d.ratio)
else
height <- width*d.ratio
}
postscript(file=file,wvidth=width, height=height horizontal=horizontal,
onefile=F,print.it=F, .
colors=greylevels.256colors,image.colors=greylevels.256colors)

}

par(xaxs="i",yaxs="i")
par (mar=c(0,0,0,0))

return(invisible())

scale.image <- function(data,n.colors=256,reverse=F) {

ind <- is.na(data) #background
d.r <- range(data[!ind])
data <- round((data-d.r[1]})/(d.r[2]-d.r[1]) * (n.colors-1))
if(reverse)
data <~ (n.colors-1)-data
data[ind] <- NA
return(data)
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plot.image <~ function(data,add=F,n.colors=256,add.grid=F,add.frame=T,

method=c("image” ,"polygon")) {
# data is a matrix with gray-scale values.

dd <~ dim(data)
n.row <- dd[1); n.col <- dd[2]
d.ratio <~ n.row/n.col

if(tadd)
- par(pin=par()$din)

p.par <- par()$pin

p.ratio <~ p.par[2}/p.par[1)

if(d.ratio >= p.ratio) {
par(pin=c(p;par[2]/d.ratio,p.par[23))

}

if(d.ratio < p.ratio) {
par(pin=c(p.par[1],p.par(t]*d.ratio))

if(ladd)
plot(c(0,n.c01)+0.5,c(0,n.xrow)+0.5,type="p",
xlab="", ylab="",axes=F,xaxs="i",yaxs="i",col=0)

par(err=-1)

ux <= seq(0.5,n.co0l+0.5,by=1)
uy <~ seq(n.row+0.5,0.5,by=-1)
method <- match.arg(method)
if (method=="polygon") {
data[is.na(data)] <- -1 # the background
.C("polygon_matrix", '
as.single(ux),
as.integer(length(ux)),
as.single(uy),
as.integer(length(uy)),
as.single(c(0,1:n.colors) [data+2])
)
} else {
image (x=ux,y=uy,z=t(data)+1,add=add)
}

if(add.grid) {
abline(v=ux,1wd=0.5,1ty=1)
abline(h=uy,1wd=0.5,1ty=1)

}

if(add.frame) {
abline(v=range(ux),lwd=0.5,1ty=1)
abline(bh=range(uy),lwd=0.5,1ty=1)

}

return(invisible())

}




Appendix C. Log-Normal and Poisson Traffic Count Data Simulation Programs

Documentation for Traffic Count Snmulatlon Log-Normal Errors: v2. 0A
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This program simulates a network of road links that are sampled by satelhtc photos and ATRs.
The data are generated according to a log-linear model with normal errors. The segment lengths
must be supplied in the file length. Expansmn factors are now read from the file 'expfactor.in’
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MAXLINK = maximum number of links possible ~ *** It's the dimension of linkMean()***
idum = random number seed used by ranl() and gasdev() ***Using the same idum gives the same output***
nlink = actual number of links used
nsat = number of sats
natr = number of perm ATR
nportatr = number of moveable ATR
link_mean(i) = AADT of link i j
link_length(i) = length of link i f
mini = minimum AADT e.g. 10,000
maxi = maximum AADT eg 90,000 E
hef(24) = hourly expansion factor. Not currently used. !
def(7) = day of week expansion factor

- mef(12) = monthly expansion factor .
dt = #days from one satellite overpass to another ’
coverage = proportion of links seen by satellite for one overpass ***e.g., coverage = 0.01 = 1% of links seen*** ¢
timeint = effective length of time (in hours) of traffic "seen" by satellite. ***¢.g., timeint = 0.0167 => satellite

will count a minutes worth of traffic. Not currently used. ***
sigma = variability of counts. *** e.g., sigma =0.10 => 10% variability in recorded count***
**+*There are two sigmas used: sigmasat, sigmaground***

LIST OF MODULES IN PROGRAM:
/* Read expansion factors from file 'expfactor.in’ */
I* Read random seed from file 'idum.in' */
/* Read input file and write to some parameter files */
/* Get and prepare link lengths, write to file */
r _Generate EF and write to files */
I* Generate link parameters and write to files */
/* Generate satellite data and write to files */

/* Generate cts ATRs. The links are 0,...,natr-1, so the link lengths for
the cts ATRs are always the same. Write data to a file. */

I* generate short term ATRs and write data to a file */




e

SUBRO USED:

/* readseed: return the random seed from file idum.in. The random seed is a
negative integer. */

/* read_EF: read the seasonal adjustment factors */

/* read_input: read file ‘input’ for parameters */
* Read number of links, nlink */
/* Read UB and LB on link AADT */
/* Read sat parameters */
* Read cts ATR parameters */
/* Enter portable ATR parameters */

/* get_lengths: read and prepare the link lengths as follows:
Lengths are read from file length.in
The first natr are always assigned to the PATR, so that the PATR
always have the same link lengths.
Finally the remaining nlink - natr lengths are assigned randomly
to the links w/o PATR, so the MATR are assigned to random links.
Lengths are written to length.out */
/* Read the lengths from 'length.in"*/
/* Scramble the last nlink - natr links */
/% Write the results to file */

/* gen_EFO: generate expansion factors and write to file ‘truth.out’. */

/* gen_link_par : Generate linkMean, linkLength, total traffic, AADT,
VMT. Write above to files. */ .

/* Generate true mean of daily traffic count for each link */

/* Write out total volume of traffic for the year to 'truth.out’. */

/* Write link_mean (AADT of links) to files 'truth.out' and "aadt.out' */

/* Compute VMT and write to file 'vmt.out' */

/* gen_sat: write simulated sat counts to file 'sate.out’ and write sampling
design to file ‘design.out’. Write link and number of times each link
is sampled by sat to file "sat_samp.out' */
/* Initialize satsamp */

_/* Sample from sat ¥/

/* gen_ATR: generate ATR counts */

/* ranl: generate arealization of a uniform(0,1) rv */

/* gasdev: return a realization of a std normal rv */

/* get_sample: put sample of size n into first n slots of linkID 0 to n-1.

These links are sampled by the sat on a given pass, or used by the MATR.
The first excl links are excluded. Excl = npatr for MATR, or O for sat */



PROGRAM:

#inclnde <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <limits.h>
#include <time.h>

#define MAXLINK 5000 /* Maximum number of links allowed */

/* Function prototypes. */

int readseed(void);
void read_EF(double hef[}], double def[], double meff}]);
void get_lengths(double link_length], int nlink, int natr, int maxlink,
int *idum); .
double rani(int *idum);
double gasdev(int *idum);
void gen_EFOQ(double hef]}, double def[], double mef[l);
void gen_link_parameters(double link_mean[], double link_length[],
int maxlink, int nlink, double mini, double maxi,
int *idum);
void gen_sat(double link_mean[], int maxlink, int nlink, double dt,
double def[], double mef], double coverage, double sigma,
int *idum); '
void gen_ATR(double link_mean(}, int maxlink, int nlink, int link,
int yeardayl, int yearday2, double hef[], double def]],
double mef[], double sigmaground, int *idum);
void read_input(int *nlink, int *nsat, double *dt, double *coverage,
double *timeint, double *sigmasat, int *natr,
double *sigmaground, int *nportatr, double *mini,
double *maxi);
void get_sample(int linkID(}, int b, int maxlink, int nlink, int *idum,
int excl);
void convertDayNumber(double time, double *hh, int *dd, int *mm,
' int *weekday); B
double max(double a, double b);
double min(double a, double b);
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~main()
{
/* Declare variables: */

int i, idum, natr, link, yearday1, yearday2, length, start, nportatr,
nlink, nsat = 0, excl;

double link_mean[MAXLINK], link_length{MAXI.INK];

double dt, coverage, timeint, sigmasat, sigmaground, mini, maxi;

double hef(24], def[7], mef[12];




=

/* Read expansion factors from file ‘expfactor.in’ */
read_EF(hef, def, mef);

/* Read random seed from file 'idum.in’' */
idum = readseed();

/* Read input file and write to some parameter files */
read_input(&nlink, &nsat, &dt, &coverage, &timeint, &sigmasat, &natr,
&sigmaground, &nportatr, &mini, &maxi);

/* Get and prepare link lengths, write to file */ .
get_lengths(link_length, nlink, natr, MAXLINK, &1dum),

/* Generate EF and write to files */
gen_EFO(hef, def, mef);

/* Generate link parameters and write to files */
gen_link_parameters(link_mean, link_length, MAXLINK, nlink, maxi, mini,
&idum);

f* Generate satellite data and write to files */
for (i =1;i <= nsat; i++) {
gen_sat(link_mean, MAXLINK, nlink, dt, def, mef, coverage, sigmasat,
; &idum);
}

/* Generate cts ATRs. The links are 0,...,natr-1, so the link lengths for
the cts ATRs are always the same. */

yeardayl = 1;

yearday? = 365;

for (i = 0; i < natr; i++) {
link =1;

gen_ATR(link_mean, MAXILINK, nlink, link, yearday1, yearday2, hef, def, mef,

sigmaground, &idumy);
}

/* generate short term ATRs */
for (i = natr; i < natr + nportatr; i++) {
length = 2; /* Number of days of observations at any MATR link. */
start = floor( ran1(&idum) * (365-length+1) ) + 1;
gen_ATR(link_mean, MAXILINK, nlink, i, start, start+length-1, hcf def,
mef, sigmaground, &idum);
}

return 0;
} /* End of main */

/* Function definitions: */



I* readseed: return the random seed from file idum.in. The random seed is a
negative integer. */
int readseed(void)
{
intc=0;
FILE *idump; '
idump = fopen("idum.in", "r");
fscanf(idump, "%d", &c);
fclose(idump);
if (Mc < 0)
printf("\nreadseed: error, random seed must be a negative integer.\n");
returnc; | '

)

/* read_EF: read the seasonal adjustnient factors */
void read_EF(double hef[], double def]], double mef[])
{

int i;
FILE *EFp;
EFp = fopen("expfactor.in”, "r");

for(i=0;i<7;i+¥)
fscanf(EFp, "%If", &defli]);
for(i=0;i<12;i+4)
- fscanf(EFp, "%If", &mefli]);

fclose(EFp);

return,

)

/* read_input: read file 'input’' for parameters */

void read_input(int *nlink, int *nsat, double *dt, double *coverage,
double *timeint, double *sigmasat, int *natr,
double *sigmaground, int *nportatr, double *mini,

double *maxi)
{
inti;
FILE *parametersp;
FILE *truthp;
FILE *patrp;
FILE *matrp;

matrp = fopen("matr.out", "w");
patrp = fopen("patr.out”, "w");
truthp = fopen("truth.out”, "w");



parametersp = fopen("parameters.out”, "w");

/* Read number of links, nlink */

*nlink = 0;

do {
/* printf("Enter number of links for this run.\n"); */
scanf("%d", nlink);

} while (*nlink < 1);

fprintf(truthp, "\nThere are %d links for this ran.\n", *nlink);

fprintf(parametersp, "There are %d links.\n\n", *nlink);

/* Read UB and LB on link AADT */
*mini = 0; :
do {
/* printf("Input lower bound for link AADT (min 1.0): \n"); */
scanf("%If", mini);
} while (*mini < 1);

*maxi = *mini;

do {
/* printf("Input upper bound for link AADT: \n"); */
scanf("%If", maxi);

} while (*maxi <= *mini);

fprintf(truthp, "Lower bound of AADT = %f. Upper bound = %f\n", *mini,*maxi);
fprintf(parametersp, "Bounds are from %f to %f.\n", *mini, *maxi);

/* read sat data */
*nsat = -1, *dt =0, *coverage =-1;

do {
/* printf("Enter number of satellites: \n"); */
scanf("%d", nsat);
} while (*nsat < 0);
*nsat = ( *nsat > *nlink) ? *nlink : *nsat; /* Truncate nsat at nlink */
fprintf(parametersp, "There are %d satellites.\n", *nsat);

do {
/* printf("Input time between sat passes, in days.\n"); */
scanf("%If", dt);

} while (*dt < .01);

fprintf(parametersp, "Time between sat passes = %f days.\n", *dt);

do {
/* printf("Input fraction of links seen by satellite.\n"); */
scanf("%If", coverage);

} while (*coverage < 0 ll *coverage > 1);

fprintf(parametersp, "Coverage = %f percent.\n", *coverage * 100);

/* printf("Input fraction of hour equivalent the sat sees.\n");



printf("Be sure to make the value between .001 and 24.0\n"); */
scanf("%lf", timeint);
fprintf(parametersp, "Equivalent time = %f.\n", *timeint);

Fprintf("Input s > 0, where the error has exp( Normal[0, s*2] ) dist\n");
- printf("and s < 1 say. s is sigma_sat.\n"); */
*sigmasat = -1;
do {
scanf("%If", sigmasat);
} while (*sigmasat < 0);
fprintf(parametersp, "Sigmasat = %f.\n", *sigmasat);

/* Enter cts ATR parameters */

/* printf("Enter number of continuous ATRs, not greater than #links.\n");*/
scanf("%d", natr);

fprintf(parametersp, "There are %d continuous ATR links.\n", *natr);
fprintf(patrp, "%5d\n", *natr);

for (i = 0; i < *natr; i++)
fprintf(patrp, "%8d\n", i+1);

_ /* printf("Enter nonnegative sigma value for ground counts.\n"); */
scanf("%If", sigmaground);

fprintf(parametersp, "sigmaground = %f\n", *sigmaground);

/* Enter portable ATR parameters */

scanf("%d", nportatr);
fprintf(parametersp, "There are %d ponable ATRs used.\n", *nportatr);
fprintf(matrp, " %d\n", *nportatr);

for (i = *natr; i < *natr + *nportatr; i++)
fprintf(matrp, "%5d\n", i+1);

fclose(matrp);
fclose(truthp);
fclose(parametersp);
fclose(patrp);

return;

I* get_lengths: read and prepare the link lengths as follows:
Lengths are read from file length.in
The first natr are always assigned to the PATR, so that the PATR °
always have the same link lengths.
Finally the remaining nlink - natr lengths are assigned randomly
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to the links w/o PATR, so the MATR are assigned to random links.
Lengths are written to length.out */
void get_lengths(double link_length[], int nlink, int natr, int maxlink,
int *idum)
{

int i;
int linkID[MAXLINK];
double garb_dbl[MAXLINK];

FILE *length_inp;
FILE *lengthp;

length_inp = fopen("length.in", "r");
lengthp = fopen("length.out", "w");

~ if (length_inp == NULL)
printf( "read_lengths: file length.in not found");

/* Read the lengths from 'length.in"*/
for (i = 0; i < nlink; i++)
fscanf(length_inp, "%If", &link_length[i]);

/* Scramble the last nlink - natr links */
get_sample(linkID, nlink - natr, MAXLINK, nlink, idum, natr);

for (i = 0; i < nlink; i++)
garb_dbl[i) = link_length(i];

for (i = natr; i < nlink; i++)
link_length[i] = garb_dbl{ linkID[i] J;

/* Write the results to file */
for (i = 0; i < nlink; i++)
fprintf(lengthp, "%5d %7.4f\n", i+1, link_length[il); .

fclose(length_inp);
-fclose(lengthp);

return,

}

* gen_EFQ: generate expansion factors and write to file ‘truth.out’. */
void gen_EFO(double hef[], double defl], double mef[})
{

int i;

double sum = 0.0;

FILE *truthp;



truthp = fopen("truth.out", "a");

for (i=0;i<=22;i++)
sum += 1.0/ hefli];
hef[23]1= 1.0/ (24.0 - sum);

sum = 0.0;

for(i=0;i<=35;i++)
sum += 1.0 / defTi];

def[6] = 1.0/ (7.0 - sum);

sum = 0.0;
fori=0;i<=10;i++)

sum += 1.0/ meffil;
mef{11] = 1.0/ (12.0 - sum);

fprintf(truthp, "Hourly expansion factors\n");
for (i = 0; i < 24; i++)
fprintf(truthp, "From %d to %d, E.F. = %f\n", i, i+1, hef[i]);

fprintf(truthp, "\nWeekday expansion factors\n");
for(i=0;i<7;i++) _
fprintf(truthp, "From %d to %d, EF. = %f\n", i, i+1, deflil);

fprintf(truthp, "\nMonthly expansion factors\n");
for(i=0;i<12;i++)
fprintf(truthp, "From %d to %d, EF. = %f\n", i, i+1, mef[n])

fclose(truthp);
return;

}

/* gen_link_parameters: Generate linkMean, linkLength, total traffic, AADT,
VMT. Write above to files. */
void gen_link_parameters(double link_mean(], double link_length(],
int maxlink, int nlink, double mini, double maxi,
int *idum)
{
double sum = 0, adjust, proposed, mean_length, sd_length, min_length, temp,
timeint;
int i, count;

FILE *truthp;
FILE *aadtp;
FILE *vmtp;

truthp = fopen("truth.out"”, "a");
aadtp fopen(naadt ou"' " ")
vmtp = fopen("vmt out”, "w");



e

I* Generate true mean of daily traffic count for each link, then adjust to
ensure that the total traffic is (min+max)/2.0 */
sum = 0.0;
for (i = 0; i < nlink; i++) {
temp = ranl(idum);
link_mean[i] = temp * (maxi - mini) + mini;
sum += link_mean(i};

}

adjust = (float)sum / nlink - (mini + maxi) / 2.0;
for (i = 0; i < nlink; i++)
link_mean(i] -= adjust;

7* Write out total volume of traffic for the year to ‘truth.out’. */
sum = 0.0;
for (i =0; i < nlink; i++)
sum += link_mean(i);
fprintf(truthp, "Total volume of traffic for year, all links = %.0f\n\n",
365*sum);

/* Write link_mean (AADT of links) to files 'truth.out’ and 'aadt.out’ */

sum = 0.0;

for (i = 0; i < nlink; i++) {
sum += link_mean(i);

-fprintf(truthp, "Link %d has true AADT = %12.4f\n", i+1 , link_meanli]);
fprintf(aadtp, "%12.4f %d\n", link_mean(i], i+1);

}

fprintf(truthp, "\nAverage AADT over all %d links = %12.4f\n", nlink,

sum/(nlink));

/* Compute VMT and write to file 'vmt.out’ */
sum = 0;
for (i = 0; i < nlink; i++)

sum += link_meanl[i] * link_lengthf{i];
fprintf(vmtp, " %.0f.", sum);

fclose(vmtp);
fclose(aadtp);
fclose(truthp);

return;

/* gen_sat: write sitnulated sat counts to file 'sate.out’ and write sampling
design to file 'design.out’. Write link and number of times each link
is sampled by sat to file 'sat_samp.out' */
void gen_sat(double link_mean(}, int maxlink, int nlink, double dt,
double def{], double mef[], double coverage, double sigma,
int *idum)
{
int n, i, mm, dd, count, weekday, excl;




int linkID[MA XLINK], satsamp[MAXLINK};
double time, AADT, rcount, hh;

FILE *parametersp;
FILE *satep;

FILE *designp;
FILE *satsampp;

parametersp = fopen("parameters.out”, "a");
satep = fopen("sate.ont”, " "),

designp = fopen("dcsxgnﬁlt ™)
satsampp = fopen("sat_samp.out”, "w");

n = ceil(coverage * nlink); /* Number of links sampled. */
fprintf(parametersp, "Number of links seen by sat is %d\n", n);

/* Initialize satsamp */
for (i = 0; i <nlink; i++)
satsampli] = 0;

/* Sample from sat */

time =ranl{idom) *dt + 1;
excl =0; '
while (time < 366) {
get_sample(linkID, n, MAXLINK, nlink, idum, excl);
for(1=0;i<n;i++) |
AADT = link_mean[ linkID[i] ];
convertDayNumber(time, &hh, &dd, &mm, &weekday);
if (hh >= -1 && hh <=25) { /* daytime: always for now */
rcount = AADT / (deffweekday-1] * meffmm-1]);
rcount = rcount * exp( gasdev(idum) * sigma );
rcount = rcount / exp( sigma * sigma /2 ); /* bias correction */
count = floor(rcount);
fprintf(satep, "%S5d %10d %3d %3d %2d\n", linkID[i}+1, count, mm, dd,

weckday);
fprintf(designp, "%10d %5d %2d %3d\n", count, linkID[i]+1,
weckday, mm);
(satsamp] linkID[i] })++;
}
}
time = time + d;
}

for (i = 0; i < nlink; i++)
fprintf(satsampp, "%d %d\n", i+1, satsampli]);

fclose(designp);
fclose(parametersp);
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fclose(satep);
fclose(satsampp);

return;

}

/* gen_ATR: generate ATR counts */

void gen_ATR(double link_mean(], int maxlink, int nlink, int link,
int yearday1, int yearday2, double hef[], double defl},
double mef[], double sigmaground, int *idum)

int dd, mm, weekday, i, count, isum = 0;
double AADT, rcount, suml, sumt, adjust, hh;
double temp{365});

FILE *patrp;
FILE *matrp;
FILE *designp;

matrp = fopen("matr.out", "a");
designp = fopen("design.out”, "a");
patrp = fopen("patr.out”, "a");

/* Sample from ATRs */

if (yeardayl != 1 ll yearday?2 != 365) { /* movable atr */

for (i = yeardayl; i <= yearday2; i++) {
AADT =link_mean[link};
convertDayNumber((double)i, &hh, &dd, &mm, &weekday);
rcount = AADT / (def[weekday-1] * mef[mm-1]);

. rcount = rcount * exp( gasdev(idum) * sigmaground );
rcount = rcount / exp( sigmaground * sigmaground /2 );
count = floor(rcount);
isum = isum + count;
fprintf(designp, "%10d %5d %2d %3d\n", count, link+1, weekday, mm);
fprintf(matrp, "%5d %10d %3d %3d %2d\n", link+1, count, mm, dd,

weekday);

} else { /* permanent atr */

suml =0;

sumt = 0;

for (i = yeardayl; i <= yearday2; i++) {
AADT = link_mean(link];
suml += AADT;
convertDayNumber((double)i, &hh, &dd, &mm, &weekday);
rcount =AADT / (def[weekday-1] * mef{mm-1]);
rcount = rcount * exp( gasdev(idum) * sigmaground );
rcount = rcount / exp( sigmaground * sigmaground / 2 );
tempfi-1] = floor(rcount); )
sumt += tempfi-1];



adjust = (sum! - sumt) / (yearday? - yearday1 + 1);

sumt = 0;

for (i = yeardayl; i <= yearday2; i++) {

temp(i-1] += adjust;

sumt += tempfi-1];

count = floor(temp(i-1]);

isum += count; -

convertDayNumber((double)i, &hh, &dd, &mm, &weekday);

fprintf(patrp, "%5d %10d %3d %3d %2d\n", link+1, count, mm, dd,
weekday);

fprintf(designp, "%10d %5d %2d %3d\n", count, link+1, weekday, mm);

}

fclose(patrp);
fclose(designp);
fclose(matrp);
return,

}

/* ranl: generate a realization of a uniform(0,1) rv */
double ranl(int *idum)

{
int ia=16807, im=2147483647, iq=127773, ir=2836, ntab=32, ndiv, j, k;
double r1, am, eps, rnmx;
/* next two should be static or something */
static int iy ;
static int iv[32]; /* dim is NTAB */
/* statics are initialized to zero */

am = 1 / (double)im;

ndiv = 1 + (im - 1) / (double)ntab;
€ps =. 12;

mmx = 1 - eps;

if (*idum<=0 Il iy=0) {
*jdum = (int)max((double)(-(*idum)), 1.0);
for (j = ntab+8; j >=1; j--) {
k = *idum / (double)iq;
*idum = ia * (*idum - k*iq) - ir*k;
if (*idum < 0)
*idum += im;
if (j <= ntab)
iv[j]l = *idum;

iy =iv[1};
}
k = *idum / (double)iq;

*idum = ia * (*idum - k*iq) - ir*k;
if (*idum < Q)




*idum += im;
j=14+1iy/ndiv;
iy = iv[jl;

iv[j] = *idum;

rl = min(am*iy, mmx);
return rl;

I* gasdev: return a realization of a std normal rv */
double gasdev(int *idum)

static int iset;
double fac, rsq, v1, v2, gdev;
static double gset;

if (iset =0) {

one:
vl =2 *ranl(idum) - 1;
v2 =2 * ranl(idum) - 1;
rsq = vi*vl + v2#*v2;
if (rsq>= 1 llrsq ==0)

goto one;

fac = sqrt(-2 * log(rsq)/rsq);
gset= vl * fac;
gdev =v2 * fac;
iset=1;

}

else {
gdev = gset;
iset=0;

}

return gdev;

}

/* get_sample: put sample of size n into first n slots of linkID O to n-1,
These links are sampled by the sat on a given pass, or used by the MATR.
The first excl links are excluded. Excl = npatr for MATR, or O for sat */

void get_sample(int linkID{]}, int n, int maxlink, int nlink, int *idum,

int excl)

{

int i, k, num, temp;
double rtemp;

/* Initialize link IDs */
for (i = 0; i <nlink; i++)
linkID[i] = i;

for (i = excl; i < n+excl; i++) {



rtemp = ranl(idum) * (nlink-i) + i; /* a number in i to nlink */
num = floor(rtemp); /* truncate so in i to nlink - 1 */

temp = linkID[num];
linkID[num] = linkID{i};
linkID([i] = temp;

return;

}

/* convertDayNumber: */

void convertDayNumber(double time, double *hh int *dd, int *mm,
int *weckday)

{

int yearday;
double fraction;

fraction = time - floor(time);
yearday = floor(time - fraction);
*weckday = yearday % 7 + 1;

*hh = floor{(time - yearday)*24) + 1;

if (yearday <= 31 && yearday >=1) {
*mm=1;
*dd = yearday;

if (yearday <= 59 && yearday >= 32) {
*mm=2;
*dd = yearday - 31;

}

if (yearday <= 90 && yearday >= 60) {
*mm = 3;
*dd = yearday - 59;

}

if (yearday <= 120 && yearday >= 91) {
*mm = 4;
*dd = yearday - 90;

if (yearday <= 151 && yearday >= 121) {
*mm = 5;
*dd = yearday - 120;

}

if (yearday <= 181 && yearday >= 152) {
*mm = 6;
*dd = yearday - 151;




}

if (yearday <= 212 && yearday >= 182) {
*mm =7,
*dd = yearday - 181;

}

if (yearday <= 243 && yearday >=213) {
*mm = §;
*dd = yearday - 212;

}

if (yearday <= 273 && yearday >= 244) {
*mm=9;
*dd = yearday - 243;

}

if (yearday <= 304 && yearday >=274) {
*mm = 10;
*dd = yearday - 273; }

if (yearday <= 334 && yearday >= 305) {
*mm=11;
*dd = yearday - 304; }

if (yearday <= 365 && yearday >=335) {
*mm=12;
*dd = yearday - 334;

}

return,

}

/* max */
double max(double a, double b)

{
double temp;

temp= (a>b)?a:b;
return temp;
)

/* min */
double min(double a, double b)

double temp;
temp=(a<b)?a:b;

return temp;
}




B2: LISTING OF POISSON SIMULATION PROGRAM:
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*
function(seed, obs.params)

{
set.seed(seed)  #DF and MF contain the appropriate daily and monthly
# factors for each of the 365 days of the year
DF <- rep(DEF, 53)[1:365] . .
MF <- c(rep(MEF([1), 31), rep(MEF[2], 28), rep(MEF{[3], 31), rep(MEF[4],
30), rep(MEF([5], 31), rep(MEF([6]}, 30), rep(MEF{7], 31), rep(MEF[
8], 31), rep(MEF[9), 30), rep(MEF([10], 31), rep(MEF[11}, 30),
rep(MEF{12], 31))
EF <- DF * MF #fread link parameters from link.params:
#n. of links; alpha and beta for the gamma prior;
nlink <- obs.params|[1]
alpha <- obs.params(2]
beta <- obs.params[3]
nsat <- obs.paramsf4]
repeatcycle <- obs.params{5]
satcovg <- obs.params[6)
npatr <- obs.params([7]
nmatr <- obs.params][8]
capacity <- obs.params[9]
nsatdays <- (365 %/% repeatcycle) * nsat
nsatobsday <- satcovg * nlink #misc objects
days <-seq(1, 365)
evendays <- seq(2, 364, 2)
links <- seq(npatr + 1, nlink)
monthofday <- c(rep(1, 31), rep(2, 28), rep(3, 31), rep(4, 30), rep(5,
31), rep(6, 30), rep(7, 31), rep(8, 31), rep(9, 30), rep(10, 31
), rep(11, 30), rep(12, 31))
dateofday <- c(1:31, 1:28, 1:31, 1:30, 1:31, 1:30, 1:31, 1:31, 1:30, 1:
31, 1:30, 1:31)  #generate link means
theta <- beta * rgamma(nlink, alpha) + 10000 #generate PATR counts
adjpatr <- matrix(nrow = 365 * npatr, ncol = 5)
for(j in 1:npatr) {
for(i in 1:365) {
: adjpatr[i+ (j- 1) * 365, 1] <- j
adjpatr[i + (3 - 1) * 365, 2] <- rpois(n = 1, theta[j}/
EF(i])
adjpatrfi + (j - 1) * 365, 3] <- monthofday[i]
adjpatr[i + (j - 1) * 368, 4] <- dateofdayli]
adjpatr{i+ (G- 1) * 365, 5] <-i %% 7 + 1
}
) #choose links for moveables.
mvblelinks <- (npatr + 1):(npatr + nmatr)  #choose days for moveables
mvbledays <- sample(evendays, size = nmatr, replace = F)
#generate MATR counts



adjmatr <- matrix(nrow = 2 * nmatr, ncol = 5)
for(i in 1:nmatr) {
adjmatr[2 *i - 1, 2] <- rpois(n = 1, thetafmvblelinks[i]JVEF[ .
mvbledays[i]})
adjmatr[2 *i - 1, 1] <- mvblelinks[i]
adjmatr[2 * i - 1, 3] <- monthofday[mvbledays[i]]
adjmatr[2 *i - 1, 5] <- (mvbledays[i] %% 7) + 1
adjmatr[2 * i - 1, 4] <- dateofday[mvbledays[il]
adjmatr{2 * i, 2] <- rpois(n = 1, theta[mvblelinks[i]}/EF[
- mvbledaysli] + 1])
adjmatr[2 * i, 1] <- mvblelinks]i]
adjmatr{2 * i, 3] <- monthofday[mvbledaysfi] + 1]
adjmatr{2 * i, 5] <- ((mvbledays[i] + 1) %% 7) + 1
adjmatr{2 * i, 4] <- dateofday[mvbledaysl[i] + 1]
} #choose days for sat.
firstday <- sample(c(1:7), size = 1)
satdays <- seq(firstday, by = repeatcycle %/% nsat, length = nsatdays)
#for each sat obs in each day choose an hour and set of links
sathours <- matrix(nrow = nsatobsday, ncol = nsatdays)
satlinks <- matrix(nrow = nsatobsday, ncol = nsatdays)
for(j in 1:nsatdays) {
sathours[, j] <- sample(c(1:24), size = 1)
for(i in 1:nsatobsday) {
satlinks[i, j} <- sample{c(1:nlink), size = 1)
}
} #generate satobs.
adjsat <- matrix(nrow = nsatdays * nsatobsday, ncol = 5)
for(j in 1:nsatdays) {
for(i in 1:nsatobsday) {
linkvec <- rep(satlinksl[i, j], 2 * nmatr)
dayvec <- rep(satdays{j], 2 * nmatr)
if(all((dayvec != mvbledays) | (linkvec != mvblelinks))
)
adjsat[nsatobsday * (j - 1) + i, 2] <- min(288 *
HEF{sathours{i, j]} * EF{satdays[j]} * rpois(
n = 1, theta[satlinks[i, j]1/(288 * HEF[
sathours|i, j]] * EF{satdaysl[j1])), capacity)
adjsat[nsatobsday * (j - 1) + i, 1] <- satlinks][
ijl
adjsat[nsatobsday * (j - 1) + i, 3] <-
monthofday[satdays[j1]
adjsat[nsatobsday * (j - 1) +i, 4] <-
dateofday{satdays(j]]
adjsat[nsatobsday * (j - 1) + i, 5] <- (satdays(
j1%% T +1

}
} #remove missing sat rows
adjsat <- adjsat{adjsat|, 1] = "NA", ] #calc true VMT
lengths <- scan("length.out”)
VMT.t <- sum(lengths{1:nlink] * theta)
#output data for traditional method




write.table(npatr, file = "patr.ont”, dimnames.write = F)

write.table(as.vector(c(1:npatr)), file = "patr.out”, dimnames.write =
F, append =T)

write.table(adjpatr, file = "patr.out”, dimnames.write=F, sep=" ",
append =T)

write.table(nmatr, file = "matr.out”, dimnames.write = F)

write.table(as.vector(c((npatr + 1):(nmatr + npatr))), file =
"matr.out”, dimnames.write = F, append = T)

write.table(adjmatr, file = "matr.out", dimnames.write=F, sep =" ",
append =T)

write.table(adjsat, file = "sate.out”, dimnames.writc =F,sep=" ")

write.table(as.vector(theta), file = "aadt.out”, dimnames.write = F)

write.table(VMT.t, file = "vmt.out”, dimnames.write = F)



Appendix D. Traditional Method AADT and VMT Estimation Code

/****************************/

*Program of VMT Estimations*/
/* Carolyn Kan 07/21/98 */

!/ *hk¥%/

#include <stdio.h
#include <string.h
#include <stdlib.h
#include <sys/types.h
#include <sys/stat.h
#include <fcntl.h

#define January 1
#define Febuary 2
#define March 3
#define April 4
#define May 5
#define June 6
#define July 7
#define August 8
#define September 9
#define October 10
#define November 11
#define December 12

#define Monday 1
#define Tuesday 2
#define Wednesday 3
#define Thursday 4
#define Friday 5
#idefine Saturday 6
#define Sunday 7

#define no_link 100

#idefine day_of_year 365

#define max_rd 36500

/* max_rd = no_link * day_of_year
suppose it is not a leap year
maximum records allowed */

[*file pointer*/
FILE *file_in;
FILE *file_out;
FILE *aadtp;

I*file names*/
char *outfilel;
char *outfile2;
char *outfile3;
char *infilel;
char *infile2;



char *infile3;
char *infiled;
char *infile5;

/*no of permenent & moving ATR and Satellite data generated */
int p_ATR; /*# of permanent ATR*/
int m_ATR; /*# of movable ATR*/
int sate; /*# of satellite images*/
" int p_link[no_link]; /*list of link id for P ATR*/
int m_link[no_link]}; /*list of link id for m ATR*/
“int sate_link[no_link]; /*list of link id for satellite image*/
int no_mATR_rd; /*# of records for P ATR*/
int no_pATR _rd; /*# of records for m ATR*/
int no_sate_rd; /*# of records for satellite image*/

int sate_not_ATR; /*# of links without ground data only with satellite data*/
int sate_only[no_link]; /*list of link id without ground data only with
satellite data*/

struct ATR_data

{

int linkID; /*link identification */
float ADT;

/*ADT value for simulated ATR and satellite data */
int month;

int day;

int week;

}; *end of struct*/

struct sat_data

{

int linkID; /*link identification */
float flow;

/*ADT value for simulated ATR and satellite data */
int month;

int day;

int week;
* float start_time; */
/* float end_time; */

}; *engd of struct*/

struct ATR_data p_ADT[max_rd};
struct ATR_data m_ADT[max_rd];
struct sat_data sat_vol[max_rd];

float Jan_sum[no_link];
float Feb_sum[no_link];
float Mar_sum[no_link};
float Apr_sum{no_link];
float May_sum{no_link];
float Jun_sum[no_link]};
float Jul_sumino_link];
float Aug_sumfno_link];
float Sep_sum[no_link];




{ae

float Oct_sum[no_link];
float Nov_sum[no_link];
float Dec_sum[no_link];

float Mon_sum[no_link];
float Tue_sum[no_link];
float Wed_sum[no_link];
float Thu_sum[no_link];
float Fri_sum[no_link];
float Sat_sum[no_link];
float Sun_sum(no_link];

float Jan_AADT[no_link};
float Feb_AADT{[no_link];
float Mar_AADT[no_link];
float Apr_AADT[no_link];
float May_AADT[no_link];
float Jun_AADT[no_link];
float Jul_AADT[no_link];
float Aug_AADT[no_link];
float Sep_AADT[no_link];
float Oct_AADT[no_link];
float Nov_AADT{no_link];
float Dec_AADT[no_link];

float Mon_AADT[no_link];
float Tue_AADT([no_link];
float Wed_AADT([no_link};
float Thu_AADT[no_link];
float Fri_AADT[no_link];
float Sat_ AADT[no_link];
float Sun_AADT[no_link];

float yr_AADT[no_link];
/*365-day avg AADT */
float wk_AADT[no_link];
*week avg AADT */
float checking[no_link];

/* declare the monthly and daily factors for each link */
float MEF_Jan[no_link];
float MEF_Feb[no_link];
float MEF_Mar|no_link};
float MEF_Apr(no_link];
float MEF_May[no_link];
float MEF_Jun([no_link];
float MEF _Jul[no_link];
float MEF_Aug[no_link];
float MEF_Sep[no_link]);
float MEF_Oct{no_link];
float MEF_Nov[no_link};
float MEF_Dec[no_link];

float DEF_Mon{no_link];
float DEF_Tue[no_link];
float DEF_Wed{no_link];




float DEF_Thu{no_link];
float DEF_Fri[no_link];
float DEF_Sat[no_link];
float DEF_Sun[no_link]);

/* 1/factors for calculating harmonic mean of factors*/
float tml; float tm2;
float tm3; float tm4;
float tm$5; float tm6;
float tm7; float tm8;
float tm9; float tm10;
float tml11; float tm12;
float twl; float tw2;
float tw3; float tw4;
float tw$; float tw6;
float tw7;

/* declare the final averaged monthly and daily factors */
float MEF1; float MEF2; float MEF3;

float MEF4; float MEFS5; float MEF6;

float MEF7; float MEFS; float MEF9;

float MEF10; float MEF11;

float MEF12; float DEF1;

float DEF2; float DEF3;

float DEF4; float DEFS;

float DEF6; float DEF7;

float est_AADT(no_link}[5];/*declare output array [link id}{true
AADT][flag}{est AADT Ground only][est AADT ground+satellite]*/
* Definitions of Flag */

* 0 -- link without data */

* 1 -- link with permanent ATR only */

* 2 -- link with portable ATR only */

/* 3 -- link with satellite data only */

f* 4 -- link with permanent ATR & Satellite */

* 5 -- link with portable ATR & Satellite */

/* 6 -- link with permanent & portable ATR */

/* 7 -- link with permanent, portable ATR & satellite */

float true[no_link]; /*temp. storage for true AADT*/

float link_vmt[no_link][5]; /*declare array for link length {link
id][length]{vmt-ground only][vmt-ground+satellite][true vmt]*/

double total_t_vmt; /* the true VMT */

double total_G_vmt; /* estimated VMT — ground only */

double total_GS_vmt; /* estimated VMT - ground + satellite */

double vint_G_err; /* Absolute value of the % error of estimated VMT --
ground only */

double vmt_GS_err; /* Absolute value of the % error of estimated VMT --
ground + satellite */

int index; /* counter for number of records read in*/

int count;
int link_order;
int p_rds;
int m_rds;



int s_rds;
int all_link;
int temp_count; /* all are counters in "for" loop*/

int dl;

int d2;

int d3;

int d4; /*temporal storage for struct */
float f1;

float £2;

float £3; /*temporal storage for struct*/

int1_id;
int p_id;
int m_id; /* temp storage for link ID*/

int mm;
int wk;

float mon_factor;
float week_factor;
float est;

f* estimate AADT for each data and save it into a array for further
calculation.*/

float mATR_est[50000][2]}; /* array [link ID]{est. for mATR data] */
float sat_est[SO000){2]; /* array [link ID][est. for sat. data] */

float avg ADTT50000][5]); /* llink ID)[# of mATR est.][sum of est. for
mATR][# of sat est.}{sum of est. for sat] */

float avg; float sat_avg; float mATR _avg;

/* Adding up the total monthly volumes and total daily volumes */
int no_Mon;

int no_Tue;

int no_Wed;

int no_Thu;

int no_Fri;

int no_Sat;

int no_Sun;

int ground_also; /*flag for checking if satellite covers the ground data also*/
int diff; /* # of links without any data= # of links - # of P ATR - # of M
ATR - # of satellite*/

I*storage for averaging est. AADT for no-data link*/
float temp_total;

float est_G_mean; /* avg aadt for ground only */
float est_GS_mean; /* avg aadt for ground + sat */
float est_G_err;

float est_GS_err;

float temp_G_err;

float temp_GS_err;

int low_G_aadt;
int low_GS_aadt;
int low_G_vmt;




int low_GS_vmt; /* all counter to count if estimation < true value */
void main()

{ /*start of main*/

int fd;

outfilel = "result.out”;
outfile2 = "adt_err.out";
outfile3 = "vmt_err.out";
infilel = "patr.out";
infile2 = "matr.out";
infile3 = "sate.out";
infile4 = "length.out";
infile5 = "aadt.out";

aadtp = fopen("AADTest.out", "w");
file_out = fopen(outfilel, "w");
if (file_out = NULL)
{
printf("Cannot open output file %s \n",outfilel);
fprintf (stderr,"Cannot open output file %s \n", outfilel);
} *open file for output*/

for ( link_order=0; link_order<no_link; link_order++)
{
est_AADT[link_order][0}=0; /* linkID*/
est_AADT{link_orderj[1]=-1; /*true AADT*/
est_AADT[link_order][2]=0;/* flag*/
est_AADT(link_order][3]=-1;/* estimations Ground. only*l
est_AADT{link_order][4}=-1;/* estimations ground + Satellite*/
} /*initialize the output array */

fd = open(infilel, O_RDONLY);
file_in = fdopen(fd, "r");
/* read in simulated data for links with permenent ATR */
if (file_in == NULL)
{
printf("Cannot open pATR file %s \n",infilel);
fprintf (stderr,"Cannot open pATR file %s \n", infilel);
} /*end if */
else
{
index =0; /*index of records*/
d1=d2=d3=d4=0;
f1=2=f3=0.0;
fscanf (file_in, "%d\n", &p_ATR); /*read in number of permenent ATR */
printf("# of permenent ATR is %d \n", p_ATR);
/* fprintf(file_out, "# of permenent ATR is %d \n", p_ATR);*/
for ( count = 0; count < p_ATR; count++) /*read in link IDs for p_ATR */
{
fscanf (file_in, "%d\n", &p_link[count]);
/* printf("link %d\n", p_link[count]);*/
} /*end for */

while (1)
{
int eof = fscanf (file_in, "%d %f %d %d %d\n", &d1,&f1,&d2,&d3,&d4);



if (eof == EOF) break;
P_ADT[index].linkID = d1;
P_ADTl[index].ADT = f1;
p_ADT(index].month = d2;
p_ADT({index].day = d3;
P_ADT[index).week = d4;
index=index+1;
} *end while */
fclose(file_in);
no_pATR_rd = index;
.} 7* end else for reading p_ATR */
printf("\n# of P ATR records = %d\n", no_pATR_rd);
Mfprintf(file_out, "\n# of P ATR records = %d\n", no_pATR_rd); */

/* Adding up the total monthly volumes and total daily volumes */
no_Mon = no_Tue = no_Wed = no_Thu = no_Fri = no_Sat=no_Sun=0;

for ( p_rds=0; p_rds<no_pATR_rd; p_rds++)
{
_id = p_ADT[p_rds].linkID;
mm = p_ADT([p_rds].month;
wk = p_ADTIp_rds).week;
* printf("linkID, month, week = %d, %d, %d\n", 1_id, mm, wk); */
switch (mm)
-
case January:
Jan_sum(l_id] = Jan_sum([l_id] + p_ADTIp_rds].ADT;
break;
case Febuary:
-+ Feb_sum[l_id] = Feb_sum{l_id] + p_ADT[p_rds).ADT;
break;
case March:
Mar_sumil_id) = Mar_sum{l_id] + p_ADT[p_rds].ADT;
break;
case April:
Apr_sum[l_id] = Apr_sum(l_id} + p_ADTI[p_rds].ADT;
break;
case May:
May_sum[l_id] = May_sum[l_id] + p_ADT[p_rds].ADT;
break;
. case June:
Jun_sum(l_id] = Jun_sum(l_id] + p_ADTIp_rds].ADT;
break;
case July:
Jul_sum[l_id] = Jul_sum(l_id] + p_ADT[p_rds).ADT;
break;
case August:
Aug sum([l_id} = Aug_sum[l_id] + p_ADT[p_rds].ADT;
break;
case September:
Sep_sum[l_id] = Sep_sum[l_id] + p_ADT[p_rds].ADT;
break;
case October:
Oct_sum(l_id] = Oct_sum([l_id] + p_ADT[p_rds].ADT;
break;
case November:




Nov_sum([l_id] = Nov_sum][l_id] + p_ADT{p_rds].ADT;
break;
case December:
Dec_sum{l_id] = Dec_sum[1_id] + p_ADT[p_rds].ADT;
break; :
default:
printf(" %d this is not a month?"\n", mm);
} /*end of switch (mm) */
switch (wk)
{ ;
case Monday:
Mon_sum(l_id] = Mon_sum[!_id] + p_ADT[p_rds]. ADT
no_Mon =no_Mon + 1;
break;
case Tuesday:
Tue_sum[l_id} = Tue_sum[l_id] + p_ADT[p_ rds].ADT
no_Tue =no_Tue + 1;
break;
case Wednesday:
Wed_sum[]_id] = Wed_sum{l_id] + p_ADT[p_rds].ADT;
no_Wed = no_Wed + 1;
break;
case Thursday:
Thu_sum[l_id] = Thu_sum{l_id] + p_ AD'I‘[p rds] ADT
no_Thu=no_Thu+1;
break;
case Friday: :
Fri_sum[l_id] = Fri_sum{l_id] + p_ADTI[p_rds].ADT;
"no_Fri=no_Fri+ 1;
break;
case Saturday:
Sat_sum(l_id] = Sat_sum(i_id] + p_ADT[p_rds).ADT;
no_Sat =no_Sat + 1;
break;
case Sunday:
Sun_sum(l_jd] = Sun_sum]l_id] + p_ADT{p_rds].ADT;
no_Sun =no_Sun + 1;
break;
default;
printf(" % this is not a day of the week?'\n",wk);
} /*end of switch (wk)*/
} 7* end of for(p_rds)*/

/* Calculation of expansion factors */

for (link_order=0; link_order<p_ATR; link_order++)
{
1_id = p_link{link_order};
Jan_AADTI1_id}=Jan_sum([l_id)/31;
Feb_AADTIL_id]}= Feb_sum[)_id}/28;
Mar_AADT(L_id)= Mar_sum{}_id])/31;
Apr_AADTI(I_id]= Apr_sum[l_id}/30;
May_AADTI[l_id]= May_sum(l_id)/31;
Jun_AADTII_id)= Jun_sum[l_id}/30;
Jul_AADT{1l_id}= Jul_sum(l_id}/31;
Aug _AADTI(l_id}= Aug_sum[l_id)/31;
Sep_AADTIL_id)= Sep_sum[l_id}/30;



Oct_AADT]{1_id]= Oct_sum(l_id}/31;
Nov_AADT](l_id]= Nov_sum(l_id]/30;
Dec_AADTI[L_id]= Dec_sum([l_id)/31;

_AADT[ id}=
(Jan_sum[l_id}+Feb_sum[l_id]+Mar_sum[l_id}+Apr_sum(l_id}+May_sum[l_id}+Jun_s
um(l_id}+Jul_sum{l_id+Aug_sumf{l_id]+Sep_sum[l_idJ+Oct_sum[l_id]+Nov_sum[l_i
d]+Dec_sumll_id])/365;

/* putting the true AADT into the output.array for permenent ATR */-
est_AADT[link_order]}{0] =1_id;
est_AADT[link_order][3] = yr_AADTIL_id};
est_AADT{link_order}[4] = yr_AADTI[l_id};
est_AADTI[link_order}[2]=1;
/*  printf("\nFor P ATR link %f, the type is %f, the estimate is
%f\n", est_AADT{link_order][0], est_AADT[link_order]{2],
est_AADTIlink_order][1]); */

/* checking the calculation */
checking[l_id]=
(Mon_sum{}_id}+Tue_sum(l_id]+Wed_sum[l_id}+Thu_sum[l_id}+Fri_sum][l_id}+Sat_s
um{l_id]+Sun_sum(l_id])/365;
if (yr_AADTIL_id] != checking[l_id])
{
fprintf(stderr,"the calclation might be wrong?\n ");
printf("the calclation might be wrong?/\n ");
)
/*end if*/

Mon_AADT][L_id}= Mon_sum[l_id)/no_Mon;
Tue_AADT(l_id]= Tue_sum{l_idl/mo_Tue;
Wed_AADT(l_id]}= Wed_sum[]l_id)/no_Wed;
Thu_AADT]L_id]= Thu_sum{l_id}/no_Thu;
Fri_ AADT(1_id}= Fri_sum([!_id}/no_Fri;
Sat_AADTII_id)}= Sat_sum(l_id)/no_Sat;
Sun_AADTI1_id]= Sun_sum{l_id}/no_Sun;

wk_AADTI[L id] =
(Mon_AADTI{1_id]+Tue_AADT[l_id]l+Wed_AADT{l_id]+Thu_AADT(_id+Fri_AADTIl_id}+
Sat_ AADT[_idJ+Sun_AADTTL_id])/7;

MEF_Jan(l_id] =yr_AADT[l_id)Jan_AADT{_id];
MEF_Feb{l_id] =yr_AADTI1_id)/Feb_AADTI[L id};
MEF_Mar(l_id] =yr_AADT[_id)/Mar_AADT{L_id];
MEF_Apr|l_id] =yr_AADT[l_idJ/Apr_AADT[Lid];
MEF_Mayll_id] =yr_AADT[l_idlMay_AADTIL_id];
MEF_Jun{l_id) =yr_AADTII_id}Jun_AADT(_id};
MEF_Jul{l_id] =yr_AADT{l_id}/Jul_AADT[_id};
MEF_Aug]l_id] =yr_AADTIL id)/Aug_AADT{Lid};
MEF_Sepl(l_id] =yr_AADT{l_id}/Sep_AADT(L_id};
MEF_Oct[l_id] =yr_AADT{_id)/Oct_AADT[_id);
MEF_Nov]l_id] =yr_AADTIl_id)/Nov_AADTI[L_id};
MEF_Decfl_id] =yr_AADT{l_id/Dec_AADT[L id};

DEF_Mon[l_id] =wk_A ADTIl_idl/Mon_AADT[L_id};
DEF_Tue[l_id] =wk_AADTI[1_id)/Tue_AADT][1_id];



DEF_Wed[l_id] =wk_AADTI[l_id}/Wed _AADT[l_id];
DEF_Thu[l_id] =wk_AADTIl_id}/Thu_AADT{1_id];
DEF_Fri[l_id] =wk_AADTJ_id}/Fri_AADTI[l_id});
DEF_Sat{l_id} =wk_AADTI[1_id}/Sat_AADT]1_id];
DEF_Sun{l_id] =wk_AADTI[1_id)/Sun_AADTIL_id];

} /*end for (link_order) */

* Averaging the MEF's and DEF's for this group of links */

* TAKING ONIC MEAN */

MEF1= MEF2= MEF3= MEF4= MEF5= MEF6= MEF7= MEF8= MEF9= MEF10= MEF11= MEF12=O
DEF1= DEF2= DEF3= DEF4= DEF5= DEF6= DEF7=0;

tm1= tm2= tm3= tmd= tmS5= tm6= tm7=tm8= tm9= tm10= tm] 1= tm12=0;
twl= tw2= tw3= twd= tw5= tw6= tw7=0;

for (link_order =0; link_order<p_ATR,; link_order++)

{
1_id = p_link{link_order];

= tml+ (1/MEF_Jan{l_id]);
tm2 = tm2+ (1/MEF_Febl[l_id]);
tm3 = tm3+ (1/MEF_Mar{l_id]);
tmd = tm4+ (1/MEF_Apr[l_id]);
tm5 = tm5+ (1/MEF_May(1_id});
tm6 = tm6+ (1/MEF_Jun[l_id});
tm7 = tm7+ (1/MEF_Jul{l_id]);
tm8 = tm8+ (1/MEF_Aug{l_id]);
tm9 = tm%+ (1/MEF_Sepll_id]);
tm10 = tm10+ (I/MEF_Oct[l_id]);
tml1 = ml1+ (1/MEF_Nov{l_id});
tm12 = tm12+ (1/MEF_Dec(l_id]);

twl = twl+ (1/DEF_Mon(l_id]);
tw2 = tw2+ (1/DEF_Tuefl_id]);
tw3 = tw3+ (1/DEF_Wed[l_id]);
tw4 = tw4+ (1/DEF_Thu[l_id});
tw5 = twS+ (1/DEF_Fri[l_id]);
tw6 = tw6+ (1/DEF_Sat[l_id]);
tw7 = tw7+ (1/DEF_Sun{l_id1);

} /* end of for*/

tml =tml/p_ATR; , . o
tm3 = tm3/p_ATR; ' ' -
tm4 = tm4/p_ATR;

tmS = tmS/p_ATR;

tm6 = tm6/p_ATR;

tm7 = tm7/p_ATR;

tm8 = tm8/p_ATR;

tm9 = tm9/p_ATR;

tm10 = tm10/p_ATR;

tmll =tmll/p_ATR;

tm12 = tm12/p_ATR;

twl =twl/p_ATR;
tw2 =tw2/p_ATR;




tw3 = tw3/p_ATR;
twd = twd/p_ATR;
twS = twS/p_ATR;
tw6 = tw6/p_ATR;
w7 =tw7/p_ATR;

MEFI1 = 1Am1;
MEF2 = 1/tm2;
MER3 = 14tm3;
MEK = 1/im4;
MEFS = 1/im5;
MEF6 = 1/m6;
MEF7 = 1/im7;
MEFS8 = 1/um8;
MEP9 = 14im9;
MEF10 = 1/tm10;
MEF11 = 1/tm11;
MEF12 = 1/tm12;

DEFI = 1/twl;
DER2 = 1/tw2;
DEF3 = 1/tw3;
DEF4 = 1/tw4;
DEFS = 1/tws;
DEF6 = 1/tw6;
DEF7 = 1itwT7;

/* MEF's and DEF's are ready! */
f*printf("MEF1 = %f\n", MEF1);
printf("MEF2 = %f\n", MEF2);
printf("MEF3 = %f\n", MEF3);
printf("MEF4 = %f\n", MEF4);
printf("MEFS = %f\n", MEFS);
printf("MEF6 = %f\n", MEFG6);
printf("MEF7 = %f\n", MEFT);
printf("MEF8 = %f\n", MEF8);
printf("MEF9 = %f\n", MEF9);
printf("MEF10 = %f\n", MEF10);
printf("MEF11 = %f\n", MEF11);
printf("MEF12 = %f\n", MEF12);
printf("DEF1 = %f\n", DEF1);
printf("DEF2 = %f\n", DEF2);
printf("DEF3 = %f\n", DEF3);
printf("DEF4 = %f\n", DEF4);
printf("DEFS5 = %f\n", DEF5);
printf("DEF6 = %f\n", DEF6);
printf("DEF7 = %f\n", DEF7);*/

*fprintf(file_out, "MEF1 = %f\n", MEF1);
fprintf(file_out, "MEF2 = %f\n", MEF2);
fprintf(file_out, "MEF3 = %f\n", MEF3);
fprintf(file_out, "MEF4 = %f\n", MEF4);
fprintf(file_out, "MEF5 = %f\n", MEFS);
fprintf(file_out, "MEF6 = %f\n", MEF6);
fprintf(file_out, "MEF7 = %f\n", MEF7);
fprintf(file_out, "MEF8 = %f\n", MEF8);



fprintf(file_out, "MEF9 = %f\n", MEF9);
fprintf(file_out, "MEF10 = %f\n", MEF10);
fprintf(file_out, "MEF11 = %f\n", MEF11);
fprintf(file_out, "MEF12 = %f\n", MEF12);
fprintf(file_out,"DEF! = %f\n", DEF1);
fprintf(file_out,"DEF2 = %f\n", DEF2);
fprintf(file_out,"DEF3 = %f\n", DEF3);
fprintf(file_out,"DEF4 = %f\n", DEF4);
fprintf(file_out,"DEFS5 = %f\n", DEFS);
fprintf(file_out,"DEF6 = %f\n", DEFG6);
fprintf(file_out,"DEF7 = %f\n", DEF7);*/

fd = open(infile2, O_RDONLY);
printf("open %s as fd %d\n",infile2, fd); */
file_in = fdopen(fd, "r");
/* read in simulated data for links with portable ATR */
if (file_in == NULL))
{
printf("Cannot open mATR file %s\n", infile2);
fprintf (stderr,"Cannot open mATR file %s\n", infile2);
} /*end if */
else
{
index =0;
d1=d2=d43=d4=0;
f1=2=f3=0.0;
fscanf (file_in, "%d", &m_ATR); /*read in number of portable ATR*/
printf("# of movable ATR is %d \n", m_ATR);
/* fprintf(file_out, "# of movable ATR is %d \n", m_ATR);*/
for ( count = 0; count < m_ATR; count++) /*read in link IDs for m_ATR*/

{

fscanf (file_in, "%d", &m_link[count]);
/* printf("link %d \n", m_link[count]); */

} /*end for */

while (1)
{ - :
int eof = fscanf (file_in, "%d %f %d %d %d".&d1,&f1,&d2,&d3,&d4);
if (eof == EOF) break;
m_ADT{index}linkID = d1;
m_ADT[index]. ADT = f1;
m_ADT{index].month = d2;
m_ADT(index].day = d3;
m_ADT{index]).week = d4;
index=index+1;
} /*end while */ :
} 7* end else for reading m_ATR */
fclose(file_in);
no_mATR_rd = index;
printf("# of mATR records = %d\n", no_mATR_rd);
/*fprintf(file_out, "# of mATR records = %d\n", no_mATR_rd); */

/* save m_ATR flag into output array*/
for (count=0; count < m_ATR; count++)

{




for (link_order=0; link_order < no_link; link_order ++)
{
if (est_AADT[link_order][0] == m_link[count] )
{
est_AADT(link_order][2]=6;
/*  printf("\nfor MATR link %f, it is also PATR. The type is %f\n",
est_AADTTIlink_order]{0], est_A ADTIlink_order][2]); */
break; .
} else if (est_AADT(link_order][0}==0)
{
est_AADTT(link_order}{0}= m_link[count];
est_AADTIlink_order][2] = 2;
break;
} /* end else if*/
} /*end link_order*/
} /*end count*/

I* estimate the AADT for links with movable ATR */
for (m_rds=0; m_rds<no_mATR _rd; m_rds++)
{
Lid = m_ADT[m_rds]linkID;
mm =m_ADT[m_rds].month;
wk = m_ADT[m_rds].week; :
/* printf("lid = %d, month = %d, week = %d\n",l_id, nm,wk); */
switch (mm)
{
case January:
mon_factor = MEF1;
break;
case Febuary:
mon_factor = MEF2;
break;
case March:
mon_factor = MEF3;
break;
case April:
mon_factor = MEF4;
break;
case May:
mon_factor = MEFS5;
break; :
case June:
mon_factor = MEF6;
break;
case July:
mon_factor = MEF7;
break;
case August:
mon_factor = MEFS;
break;
case September:
mon_factor = MEF9;
break;
case October:
mon_factor = MEF10;
break;



case November:
mon_factor = MEF11;
break;
case December:
mon_factor = MEF12;
break;
default:
printf("%d this is not a month?!\n",mm);
} /*end of switch (mm) */
switch (wk)
{
case Monday:
week_factor = DEF];
break;
case Tuesday: -
week_factor = DEF2;
break;
case Wednesday: .
week_factor = DEF3;
break;
case Thursday:
week_factor = DEF4;
break;
case Friday:
week_factor = DEFS;
break;
case Saturday:
week_factor = DEF6;
break;
case Sunday:
week_factor = DEF7;
break;
default:
printf("%d this is not a day of the week?!\n", wk);
} /*end of switch (wk) */
/* printf("mon_factor = %f, week_factor = %f, data = %f\n", mon_factor,
week_factor, m_ADT{m_rds}.ADT); */

/*temporal storage for eatimeated AADT for one daily data */
est =m_ADT[m_rds].ADT * mon_factor * week_factor;
mATR_est[m_rds}[1] = est;
mATR _est[m_rds]{0] = 1_id;

* printf("for link %f, estimated aadt is %f\n",mATR_est{m_rds][0],
mATR_estfm_rds}[1]); */

} /* end of for(m_rds)*/

/* Calculate ground-only Average AADT for each link.*/

/*initialize the array of estimates*/

for (link_order=0; link_order<m_ATR; link_order++)
{
avg_ADT[link_order}{0}=0; /*link id */
avg_ADT{link_order][1]= 0; /*# of mATR estimates*/
avg_ADT[link_order][2]= 0; /*sum of mATR estimates*/
avg_ADT[link_order][3]= 0; /*# of sat estimates*/
avg_ADTI{link_order][4]= 0; /*sum of sat estimates*/
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}

/* for movable ATR */
for (count =0; count < no_mATR_rd; count ++)

{
for (link_order=0; link_order<m_ATR; link_order++)

{ _
if (m_link{link_order]== mATR_est[count][0])

{ _
avg_ADT(link_order](0] = mATR _est[count][0]; /*link id*/ A
avg_ADT{link_order])[1)= avg_ADT[link_order][1]+1; /*# of estimates */
avg_ADT[link_order}(2] = avg_ADT{link_order}[2] +
mATR_est[count]{1]; /* sum of estimates */
} *end if*/
} /*end for link_order */
} *end for count */

/* testing
for (link_order=0; link_order<no_link; link_order++)

{
- printf("\nlink ID = %f, # of est. = %f, sum of est. = %f",
avg_ADTIlink_order][0],avg_ADT([link_order}{1],avg_ADT{link_order}[2]);

} end for*/

/* averaging ground-only estimates of AADT */
for (link_order=0; link_order<no_link; link_order++)

{
if (avg_ADT{link_order][0}==0)

break;
} else
{

for (count = (; count< no_link; count ++)

{
mATR _avg= avg_ADT]link_order]{2)/avg_ADT][link_order][1];

if (est_AADT{count][0] == avg_ADT][link_order][0]) /* link

ID match*/

{
est_AADT[count]{3] = mATR_avg;

} *end if*/
} /* end for count*/
} /* end else*/
} /*end for link_order*/

* check if there are links without ground-only data */
if (m_ATR + p_ATR no_link)

{
printf("ALERT! SOMETHING IS WRONG! m_ATR + p_ATR no_link\n");
printf("m_ATR =%d, p_ATR = %d \n", m_ATR, p_ATR);
fprintf(file_out, "ALERT! SOMETHING IS WRONG! m_ATR + p_ATR no_link\n");
fprintf(file_out, "m_ATR = %d, p_ATR = %d\n", m_ATR, p_ATR);
} /* end if */ :
else if (m_ATR + p_ATR < no_link)

{ _

diff = no_link - m_ATR - p_ATR;

printf("There are %d links without any ground data.\n", diff);



/* fprintf(file_out, "There are %d links without any ground data.\n",
diff);*/
} /*end else if*/

/* Use ARITHMETIC MEAN of estimated AADT as the estimations for the links
without ground-only data */
temp_total =0,
for (count=0; count <no_] hnk count++)
{
if (est_AADTicount][0]'=0)
{ .
temp_total = temp_total+ est_ AADT{count}{3};
} /* end if*/
} /* end for*/
est_G_mean = temp_total/(no_link - diff);

/* Read in Length of the links*/
fd = open(infile4, O_RDONLYY);
file_in = fdopen(fd, "r");

if (file_in == NULL)

printf("Cannot open length file %s \n",infile4);

fprintf (stderr,"Cannot open length file %s \n", infile4);
} /*end if ¥/

else

{

index =0; /*index of records*/
f1=2=£3=0.0;

for (count=0; count <no_link; count ++)

{
fscanf (file_in, "%f %f\n", &f1, &f2);
link_vmt[count]{0] = f1; /* link Id*/
link_vmt[count][1] = £2; /* link length*/
link_vmt{count]{2] = 0; /* initialize vmt ground -only*/ _
link_vmt[count][3] = 0; /* initialize vt ground + satellite*/
index=index+1;
} /*end for count*/
fclose(file_in);
} /* end else for reading length */

if (index != no_link) /* checking if having exact # of length*/
{
printf("™\n# of link length is not equal to # of links?!");
fprintf(file_out,"\n# of link length is not equal to # of links?!™);
} 7* end if*/

* Calculate ground-onty VMT */

for (count =0; count <no_liﬁk; count -++)
{
for (link_order =0; link_order< no_link; link_order++)
{
if (link_vmt[count][0] == est_AADT([link_order][O0])
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{
link_vmt[count}{2] = link_vmt[count}{1] * est_AADTlink_order][3];
break;
} /* end if*/
} /* end for link_order*/
}/* end for count*/

index =0;
for (count =0; count <no_link; count ++)

{

if (est_AADT[count]{2]==0) index = index+1;

} /*end for count*/ .
/* check if the # of links without ground-only data is correct*/
if (index != diff)

{ o
printf("\nproblem about # of links without data?!");

fprintf(file_out, "\nproblem about # of links without data?!");
} else

{
for (count=0; count <no_link; count ++)
{
if (link_vmt[count}[2] ==0)
{
link_vmt{count}{2] = link_vmt{count}f1] * est_G_mean; /* use
average est. AADT for links without data*/
} /* end if*/
}/* end for count*/
} /*end else*/

total_G_vmt =0;
for (count =0; count <no_link; count ++)
{
if (link_vmt[count][2]==0)
{
printf("We got problem for vmt array?!");
fprintf(file_out, "We got problem for vint array?!");
break;
} else
{
total_G_vmt = total_G_vmt + link_vmt[count][2];
} /*end else*/
} /* end for*/

printf("wThe total ground-onty VMT for %d links in this class is %f.\n" ,
no_link, total_G_vmt);
Mprintf(file_out, "%f " ,total_G_vmt); */

/* end printing ground-only VMT */

fd = open(infile3, O_RDONLY);
Mprintf("\n open %s as fd %d\n", infile3, fd);*/
file_in = fdopen(fd,"r");
/* read in simulated data for links having satellite data */
if (file_in == NULL)
{



printf("\n Cannot open satellite file %s", infile3);
fprintf (stderr,™\n Cannot open satellite file %s", infile3);
} /*end if*/
else
{
index = 0;
d1=d2=d3=d4=0;
f1=2=3=0.0;
while (1)
/* there is no input for number of satellite data and no link
information */
{ .
int eof = fscanf (file_in, "%d %f %d %d %d",&d1,&f1,&d2,&d3,&d44);
if ( eof == EOF ) break;
sat_vol[index].linkID = d1;
sat_vol[index].flow = f1; /*the input is 24-hr volume from Roger's
program*/ :
sat_vol[index].month = d2;
sat_vollindex].day = d3;
sat_vol[index].week = d4;
/* sat_vol[index].start_time = f2; */
/* sat_vollindex).end_time =f3; */
index=index+1;
} F*end while*/
} /* end else for reading sate */
no_sate_rd = index; .
printf("\n# of sate records is %d\n", no_sate_rd);
I fprintf(file_out, "\n# of sate records is %d\n", no_sate_rd);*/

/* search for the # of links and list of link id*/
for (link_order =0; link_order <no_link; link_order++)

{

sate_link{link_order]=0;

} /*initialize the array*/
sate =0;

f*sort the list of link ID*/
for (count=0; count< no_sate_rd; count++)
{
for (link_order =0; link_order<no_link; link_order++)
{
if (sat_vol[count].linkID == sate_link[link_order])
{
break;
} else if (sate_link[link_order}==0)
|
sate_link[link_order]}= sat_vol[count].linkID;
sate = sate +1;
break;
} 7* end else if*/
} /* end for link_order*/
} 7* end for count*/

fclose(file_in);




ES

I* print # of satellite and the list of link ID*/
printf("# of satellite = %d\n", sate);
r+fprinf(file_out, "# of satellite = %d\n", sate);*/
I*for (link_order=0; link_order<sate; link_order++)
{
printf("the sate link is %d\n", sate_link[link_order]);
} end for print*/ :

/* estimate the AADT for links with satellite data */
for ( s_rds=0; s_rds<no_sate_rd; s_rds++)
{
L_id = sat_vol[s_rds].linkID;
mm = sat_vol[s_rdsl.month;
wk = sat_vol[s_rds].week;
switch (mm)
{ :
case January:
mon_factor = MEF1;
break;
case Febuary:
mon_factor = MEF2;
break;
case March:
mon_factor = MEF3;
break;
case April:
mon_factor = MEF4;
break; '
case May:
mon_factor = MEFS;
break;
case June:
mon_factor = MEF6;
break;
case July:
mon_factor = MEF7;
break;
case August:
mon_factor = MEFS;
break;
case September:
mon_factor = MEF9;
. break;
case October:
mon_factor = MEF10;
break;
case November:
mon_factor = MEF11;
break;
case December:
mon_factor = MEF12;
break;
default:
printf("%d this is ot 2 month?\n",mm);
} /*end of switch (mm) */
switch (wk)



{
case Monday:
week_factor = DEF1;
break;
case Tuesday:
week_factor = DEF2;
break;
case Wednesday:
week_factor = DEF3;
break;
case Thursday:
week_factor = DEF4;
break;
case Friday:
week_factor = DEFS;
break;
case Saturday:
week_factor = DEFG6;
break;
case Sunday:
week_factor = DEFT;
break;
default:
printf("%d this is not a day of the week?!\n", wk);
} /*end of switch (wk) */
/* printf("mon_factor = %f, week_factor = %f, data = %f\n", mon_factor,
week_factor, sat_vol[s_rds].flow);*/
f*temporal storage for eatimeated AADT for one daily data */
est = sat_vol{s_rds].flow * mon_factor * week_factor;
sat_est[s_rds]{1] = est;
sat_est{s_rds1{0] = 1_id;
/* printf("\nFor link %f, estimated aadt is %f\n",sat_est[s_rds][0],
sat_estis_rds][1]); */

} 7* end of for(s_rds)*/

* Calculate ground+satellite Average AADT for each link.*/
/* for Satellite */
/* First to search for links with only satellite data*/
/* also save flags for links w/ p_ATR and Satellite and for links w/ m_ATR
and Sate*/
I* already KNOWN flag type 1,2, & 6 */
for (count=0; count < sate; count ++)
{
for (link_order =0; link_order<no_link; link_order++)
{
if
((sate_link{count}==est_AADT[link_order][0])&&(est_AADT[link_order)[2]==1))
{
est_AADT(link_order])[2}=4;
break;
} /* end if the link is pATR */
if
((sate_link[count}==est_AADTIlink_order}[0])&&(est_AADT[link_order][2]==2))




{
est_AADT{link_order][2]=5;
break;
} * end if the link is mATR */

if

((sate_link[count]==est_ AADT[link_order}{0])&&(est_AADT[link_order}[2]=6))

{
est_AADT{link_order][2]}=7;
break;
} 7* end if the link is pATR + mATR */

if ((sate_link[count]==est_AADTT]link_order]{0])&&(

est_AADT](link_order][2}=3))

{
break;
} /* end if the link is sate */

if (est_AADTIlink_order][0]==0)
{
est_AADT(link_order}{0] = sate_link[count];
est_AADT{link_order][2] = 3;
break;
} /* end if the link is new */

} /* end for link_order*/

} 7* end for count*/

* add satellite estimates into averaging array for sate-only links and for
links w/ m ATR and Sate */
. for (count =0; count < no_sate_rd; count ++)

S .
~ for (link_order=0; link_order<no_link; link_order++)

{ _
if (avg_ADT{link_order}[0]== sat_est{count][0]) /* link ID match*/

avg_ADT][link_order][3)= avg_ADT[link_order][3)+1; /*# of estimates */
avg_ADT][link_order}[4] = avg_ADT(link_order][4] +
sat_est[count][1]; /* sum of estimates */
break;
} else if (avg_ ADT{link_order][0]==0)
{
avg_ADT]link_order][3]= avg_ADT{link_order][3]+1; /*# of
estimates */
avg_ADTT(link_order}{4] = avg_ADT]link_order]{4] +
sat_est[count][1]; /* sum of estimates */
avg_ADTT{link_order][0] = sat_est[count][0]; /* link ID*/
break;
} /*end else if*/
} /*end for link_order */
} /*end for count */

/* testing
for (link_order=0; link_order<no_link; link_order++)

{
printf("\nlink ID = %f, # of est. = %f, sum of est. = %fin",

avg ADTTlink_order][0},avg_ADT]link_order][3],avg_ADT][link_order][4]);
} end for*/



/* averaging ground+satellite estimates of AADT */
for (link_order=0; link_order<no_link; link_order++)

{
if (avg_ADT{link_order]{0}]=—=0)
{
break;
} else
{
for (count = 0; count< no_link; count ++)
{
sat_avg = avg ADT([link_order][4)/avg_ADT({link_order]{3};
avg =((avg_ADTTlink_order][2] + avg_ADT{link_order]{4]) /
(avg_ADT{link_order]{1} + avg_ADTT{link_order][3]));
if ((est_AADT([count][0] =
avg_ADTIlink_order}[0])&&(est_AADT{count)[2)!=1)& &(est_AADT[count][2]!=4))
/* link ID match and it is not pATR link*/
{
est_AADT][count][4] = avg;
} /*end if*/
} /* end for count*/
} /* end else*/
} /*end for link_order*/

sate_not_ATR=0;
for (count =0; count <no_link; count ++)
{
if (est_AADT[count][2]==3)
{ .
sate_not_ATR = sate_not_ATR +1;
} /* end if¥/
}/* end for count®/

I* check if there are links without data */
diff =0; /*initialize*/

if (m_ATR + sate_not_ATR + p_ATR no_link)
{
printf("ALERT! SO G IS WRONG! m_ATR +p_ATR + sate_not_ATR <
no_link\n"); o
printf("m_ATR = %d, p_ATR = %d, sate_not_ATR = %d\n", m_ATR, p_ATR,
sate_not_ATR);
fprintf(file_out, "ALERT! SO G IS WRONG! m_ATR +p_ATR +
sate._not_ATR < no_link\n"); :
fprintf(file_out, "m_ATR = %d, p_ATR = %d, sate_not_ATR = %d\n",
m_ATR, p_ATR, sate_not_ATR);
} /* end if */
else if (m_ATR + sate_not_ATR + p_ATR < no_link)
{
diff = no_link - m_ATR - p_ATR - sate_not_ATR;
printf("There are %d links without any ground data or satellite
data.\n", diff);
/* fprintf(file_out, "There are %d links without any ground data or
satellite data.\n", diff);*/
} /*end else if*/

/* Use ARITHMETIC MEAN of estimated AADT as the estimations for the links




without ground+ sat data */
temp_total =0;
for (count=0; count <no_link; count++)
{
if (est_AADT{count]{0})!=0)
{
temp_fotal = temp_total+ est_AADT[count][4];
} 7* end if*/
} /* end for*/
est_GS_mean = temp_total/(no_link - diff);

/¥ Calculate ground+satellite VMT */
for (count =0; count <no_link; count ++)
{ » .
for (link_order =0; link_order< no_link; link_order++)
{ .
if (link_vmt[count}[0] == est_AADT{link_order]{0])
{ .
link_vmt{count}{3] = link_vmt[count}{1} * est._ AADT[link_order}[4];
break;
} /* end if*/
} /* end for link_order*/
}/* end for count*/

index =0;
for (count =0; count <no_link; count ++)
{
if (est_AADTI[count][2]}==0) index = index+1;
} /*end for count*/ .
/* check if the # of links without data is correct*/
if (index != diff)
{
printf("\nproblem about # of links without data?!");

fprintf(file_out, "\nproblem about # of links without data?!™);
} else
{
for (count=0; count <no_link; count ++)
{
if (link_vmt[count][3] ==0)
{
link_vmt[count][3] = link_vmt{count][1] * est_GS_mean; /* use
average est. AADT for links without data*/
} /* end if*/
}/* end for count*/
) *end else*/

total_GS_vmt =0;
for (count =0; count <no_link; count ++)
{
if (link_vmt{count][3]==0)
{
printf("We got problem for vmt array?!");
fprintf(file_out, "We got problem for vmt array?!");
break;




} else
{
total_GS_vmt = total_GS_vmt + link_vmt[count][3};
} /*end else*/
} /* end for*/

/* print out the estimated AADT for the links with data */
printf("\n 0 -- link without data\n");

printf("\n 1 -- link with permanent ATR only\n");

printf("\n 2 -- link with portable ATR only\n");

printf("\n 3 -- link with satellite data only\n");

printf("\n 4 -- link with permanent ATR & Satellite\n");
printf("\n 5 -- link with portable ATR & Satellite\n");

printf("\n 6 -- link with permanent & portable ATR\n");
printf("\n 7 -- link with permanent, portable ATR & satellite\n");

/*fprintf(file_out, "\n O -- link without data\n");

fprintf(file_out, "\n 1 -- link with permanent ATR only\n");
fprintf(file_out, "\n 2 -- link with portable ATR only\n");
fprintf(file_out, "\n 3 -- link with satellite data only\n"™);
fprintf(file_out, "\n 4 -- link with permanent ATR & Satellite\n");
fprintf(file_out, "\n 5 -- link with portable ATR & Satellite\n");
fprintf(file_out, "\n 6 -- link with permanent & portable ATR\n");
fprintf(file_out, "\n 7 -- link with permanent, portable ATR &
satellite\n"); */

F*for (link_order=0; link_order<no_link; link_order++)

{

printf("\nFor link %f, the type is %f, estimated AADT = %f\n",
est_AADT][link_order][0], est_AADT[link_order}{2], est AADT[lmk order][4]),

fprintf(file_out,"\nFor link %f, the type is %f, estimated AADT =

%f\n",est_ AADTlink_order}[0],est_AADT(link_order]{2],
est_AADT[link_order}f4]);

} end for */

printf("\nThe total ground+satellite VMT for %d links in this class is
%f\n" , no_link, total_GS_vmt);

l* */ )

* end of printing results*/

/* testing */
for (count =0; count < no_link; count ++)
( .
printf("\nFor link %f, the type is %f, the true AADT is %f, the G_AADT
is %f, the GS_AADT is %f.\n",
est_AADTI[count][0],est_ AADT[count]{2),est_. AADT[count][l],cst AADT{count]{3],
est_AADT][count][4]);
} /* end for count*/

/* Read True AADT for all links */
fd = open(infile5, O_RDONLY);
file_in = fdopen(fd, "r");
if (file_in = NULL)

{



printf("Cannot open length file %s \n",infile4);
fprintf (stderr,"Cannot open length file %s \n", infile4);
} /*end if */
else
{
index =0;
f1 =0.0;
for (count=1; count <=no_link; count ++)
{
fscanf (file_in, "%f \n", &f1);
true[count]=f1;
index=index+1;
} /*end for count*/
fclose(file_in);
} /* end else for reading true AADT */

{* check if # of true AADT =# of links*/

if (index !=no_link)
{
printf("# of true AADT is not # of links!!!™);

/* fprintf(file_out, "# of true AADT is not # of links!!1");*/
} /* end if */

/* testing*/ :
printf("G-mean = %f, GS-mean = %f\n", est_G_mean, est_GS_mean);
for (count =1; count <=no_link; count++)

{

printf("\nTrue AADT =%f" true[count]);

}

I* put true AADT into array est_AADT */
for (count =1; count <= no_link; count ++)
{
for (link_order=0; link_order < no_link; link_order ++)

{

if ((est_AADTI[link_order}[2] ==3) &&(est_AADT[link_order]{0] == count))
{
est_AADT(link_order}[1] = true[count];
est_AADTTlink_order][3] = est_G_mean;

. break;

}

if ((est_AADTIlink_order}{0] == count) && (est_AADT[link_order){2]

1=0)& &(est_AADT(link_order][2]!=3))

{

est_AADTI(link_order][1] = true[count];
break;
}
if ((est_AADT(link_order][2] =0) && (est_AADT[link_order}[0]}==count))
{
break;
}
if ((est_AADT(link_order][0)==0)&&(est_A ADT][link_order][2]==0))
{ .
est_AADT(link_order]{0] = count;
est_AADTlink_order}{1] = truefcount};



est_AADT{link_order][3] = est_G_mean;
est_AADT][link_order]{4] = est_GS_mean;
break;
)
} /* end for link_order*/
} /* end for count */

1* testing */
for (count =0; count < no_link; count 4++)

{

printf("\nFor link %f, the type is %f, the true AADT is %f, the G_AADT
is %f, the GS_AADT is %f.\n", .
est_AADT[count}[0],est_AADT[count}[2],est_AADT[count]{1],est_AADT[count]{3],
est_AADT(count]{4]);

} /* end for count*/

/* Calculate True VMT */
for (count =0; count <no_link; count ++)
{
for (link_order =0; link_order< no_link; link_order++)
{
if (link_vmt{count][0] == est_ AADT[link_order][0])
{ .
link_vmt[count](4] = link_vmt[count}[1] * est_AADT(link_order](1};
. break;
} /* end if¥/
} /* end for link_order*/
}/* end for count*/ -

total_t_vmt =0;

for (count =0; count <no_link; count ++)
{
total_t_vmt = total_t_vmt + link_vmt{count]}[4];
} /* end for*/

fprintf(file_out, "%f ", total_t_vmt);
fprintf(file_out, "%f " ,total_G_vmt);
fprintf(file_out, "%f\n", total_GS_vmt);
fclose(file_out);

I* open for % error of VMT file and calculate %error of VMT*/
file_out = fopen(outfile3, "w");
if (file_out = NULL)

{

printf("Cannot open output file %s \n",outfile3);

fprintf (stderr,"Cannot open output file %s \n", outfile3);

} *open output file for % error file*/

low_G_vmt = low_GS_vmt =0;
vmt_G_err = (total_G_vmt - total_t_vmt)/total_t_vmt;
if (vint_G_err <0)
{
vmt_G_err = - vint_G_err;
low_G_vmt =low_G_vmt +1;
}
vmt_GS_err = (total_GS_vmt - total_t_vmt)/total_t_vmt;




b

if (vmt_GS_err <0)
{
vmt_GS_err = - vint_GS_err;
low_GS_vmt = low_GS_vmt +1;

}

fprintf(file_out, "%f %f\n", vint_G_err, vint_GS_err);

-

fclose(file_out);

* open for % error of AADT file¥/
file_out = fopen(outfile2, "w");
if (file_out ==NULL)
{
printf("Cannot open output file %s \n",outfile2);
fprintf (stderr,"Cannot open output file %s \n", outfile2);
} /*open output file for % error of AADT file*/

* Calculate the square perccnt Error of estimated AADT and print them into
another file*/
est_G_err=0.0;
est_GS_err=00;
temp_G_emr =0.0;
temp_GS_err =0.0;
low_G_aadt =low_GS_aadt = 0;
for (count =0; count < no_link; count ++)
{
temp_G_err = (est_AADT{[count]{3]-est_AADT{count][1])/est_AADT[count][1];
if (temp_G_err < 0)
{
low_G_aadt = low_G_aadt +1;
}/* end if */
est_G_err = est_G_err + (temp_G_err* temp_G_err);
temp_GS_err = (est_. AADT[count][4]-est AADT][count][1])/est_AADT([count][1];
if (temp_GS_err <0)
{
low_GS_aadt = low_GS _aadt +1;
}/* end if */
est_GS_err = est_GS_exr + (temp_GS_err*temp_GS_err);
} /* end for */

fprintf(file_out, "%f %f\n", est_G_err, est_GS_err);
fclose(file_out);

printf("\n %d out of 100 est. AADT(G) are lower than true AADT.", low_G_aadt);
printf("\n %d out of 100 est. AADT(GS) are lower than true AADT.",
low_GS_aadt);

printf("\n %d out of 100 est. VMT(G) are lower than true VMT.", low_G_vmt);
printf("\n %d out of 100 est. VMT(GS) are lower than true VMT.", low_GS_vmt);

for (count = 0; count<no_link; count++)
fprintf(aadtp, "%f %f %f %f\n", est_AADT[count][0],
est_AADT][count][1], est_AADT{count}{3], est_AADT[count})[{4]);

fclose(aadtp);



} /¥end of main*/




Appendix E. Model-Based Estimation Code

L T T T T Y Y A rrTTo ety

THIS PROGRAM IS WRITTEN IN S-PLUS

function(seed, param, reps)
{
#
# This function generates the model based AADT and VMT estimates for a fixed
# set of input parameters.
#
# The output is true VMT, ground VMT estimate, ground & sat VMT estimate,
# ground residual, and ground & sat residual.
#
# 'seed’ must be a negative integer
# _ .
# 'param’ is the input parameters for run.traffic
#
# The simulation is run 'reps’ times (the seed is incremented each time).
#
AADT.G <- numeric(100)
AADT.GS <- numeric(100)
var.G <- numeric(100)
var.GS <- numeric(100)
MGE <- numeric(100)
MGSE <- numeric(100) _
nsatobs <- (param[1] * param[6] * 365)/param([5]
print(nsatobs)
vmt <- matrix(nrow = reps, ncol = 5)
write.table(param, file = "input”, append =F)
for(j in l:reps) {
write(seed - j + 1, file = "idum.in", append = F)
unix("cat input | run.traffic")
input.mat <- matrix(scan("design.out"), byrow = T, ncol = 4)
lengths <- matrix(scan("length.out"), byrow = 2, ncol = 2)], 2]
AADT.T <- scan("aadt.out")
nrow <- length(input.mat{, 1J)
wts <- as.vector(c(rep(param{8]/-2, nsatobs), rep(param[lO]"-2
nrow - nsatobs))) - .
logCounts <- log(input.mat[, 1]) + 1/(2 * wts)
links.G <- unique(input.mat{(nsatobs + 1):nrow, 2])
links.GS <- unique(input.matf, 2J)
dow.factor <- as.character(input.mat{, 3])
month.factor <- as.character(input.matf, 4])
link factor <- as.character(input.mat(, 2])

Im.GS <- Im(logCounts ~ link factor + dow.factor + month factor,

weights = wts)
Im.G <- Im(logCounts ~ link.factor + dow.factor + month.factor,



#

——r

subset = as.vector((nsatobs + 1):nrow))
coef.G <- dummy.coef(Im.G)$link.factor
mean.G <- dummy.coef(1m.G)$" (Intercept)"
coef.GS <- dummy.coef(lm.GS)$link.factor
mean.GS <- dummy.coef(Im.GS)$"(Intercept)”
summary.G <- summary(lm.G)
summary.GS <- summary(lm.GS)
sigma.G <- summary.G$sigma
sigma.GS <- summary.GS$sigma
par.cov.G <- (sigma.G*2) * (summary.G$cov.unscaled)
par.cov.GS <- (sigma.GS*2) * (summary.GS$cov.unscaled)
for(k in I:max(links.G)) { -
¢.k <- as.matrix(c(1, rep(0, k - 1), 1, rep(0, ncol(
par.cov.G) -k - 1)))
var.G[k] <- crossprod(c .k, par.cov.G %*% ck)
AADT.G[k] <- exp(mean.G + coef.G[as.character(k)] - .
var.G[k]/2)
}
for(k in (max(links.G) + 1):100) {
var.G[k] <- par.cov.G[1, 1]
AADT.G[k] <- exp(mean.G - var.G[k]/2)
}
for(k in links.GS) {
1 <- as.numeric(row.names(as.data.frame(links.GS))[
links.GS ==Kk])
c.k <- as.matrix(c(1, rep(0, 1 - 1), 1, rep(0, ncol{
par.cov.GS) -1-1)))
var.GS[k] <- crossprod(c.k, par.cov.GS %*% c k)
AADT.GS[k] <- exp(mean.GS + coef.GS[as.character(k)] -
var.GS[k]/2) ’ T
}
links <- seq(1:100)
links.no.GS <- links[ - links.GS]
for(k in links.no.GS) {
var.GS[k] <- par.cov.GS{1, 1]
AADT.GS[k] <- exp(mean.GS - var.GS[k]/2)
} R
VMT.T <- sum(lengths * AADT.T)
VMT.G <- sum(lengths * AADT.G)
VMT.GS <- sum(lengths * AADT.GS)
MGE]j] <- sqrt(mean(((AADT.T - AADT.G)/AADT.T)*2))
MGSE(j] <- sqri{mean(((AADT.T - AADT.GS)Y/AADT.T)*2))
vmt[j, 1<-c(VMI.T, VMT.G, VMT.GS, MGE[j], MGSE'[i])’ '

)
vt #This is the real one, next line is temporary
cbind(MGE, MGSE)




Appendix F. Scatterplots of the Traditional Estimation Method vs. the Model-Based
Estimation Method (100 replications; M =....)
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