
,

TE
716
. 0 3
A37
2000x

Traffic Monitoring Using Satellite and Ground Data:
Preparation for Feasibility Tests

and an Operational System

Mark R. McCord13
Prem K. Goel13

Carolyn J. Merrylf

1 Center for Mapping
Department of Civil and Environmental Engineering and Geodetic Science

3Department of Statistics
2

The Ohio State University
Columbus, Ohio

Prepared in cooperation with the
Ohio Department of Transportation and the

U. S. Department of Transportation, Federal Highway Administration

ODOT Agreement No. 8494, State Job No. 14658(0)

Final Report

Research Foundation Project 864236/733062
Columbus, Ohio

April, 2000

daimer: The contents of this report reflect the views of the authors who are responsible for
rcts and the accuracy of the data presented herein. The contents ab no necessarily reject the
Gcial views or policies of the Ohio Department of Transportation or the Federal Highwq
Administration. The report does not constitute a standard, specif cation or regulation.

Report No. 2. Government Accession No. 3. Recipient% Catalog No.

'RAFFIC MONITORING USING SATELLITE AND GROUND DATA:
'REPARATION FOR FEASIBILITY TESTS AND AN OPERATIONAL
;YSTEM

Author(s)

dark R. McCord, Carolyn J. Meny

Performing OrganhUon Name and Address

2ooo

6. Performing Organization Code

8. Performing Organ&aCon Report No.

IO . wolk unit No. (TRAIs)

11. Contract or Gmt No.

'he Ohio State University
Iepartment of Civil Engineering
:olumbus, OH 43210 '

2. Sponsoring Agency Name and A d d m

lhio Department of Transportation
1600 West Broad Street .
;olumbus, OH 43223

State Job No. 14658(0)

Final Report

14. Sponsoring Aeencv code

7. Key Words

remote sensing, image processing, mapping
traffic data collection, automatic traffic recorders

20. security classif. (of this page) 19. Security Classif. (of this report)

Jnclassified Unclassified

'repared in cooperation with the U.S. Department of Transportation, Federal Highway Administration

18. Dishbution Statement

No Restrictions. This document is
available to the public through the
National Technical Information Service,
Springfield, Virginia 22161
21. No. of Pages 22 Price

--.

I

i

Traffic Monitoring Using Satellite and Ground Data:
Preparation for Feasibility Tests

and an Operational System

Mark R McCordI2
Prem K. Goel's

Carolyn J. Merry'2

Center for Mapping
'Department of Civil and Environmental Engineering and Geodetic Science

?Department of statistics

1

The Ohio State University
Columbus, Ohio

Prepared in cooperation with the
Ohio Department of Transportation and the

U. S. Department of Transportation, Federal Highway Administration

ODOT Agreement No. 8494, State Job No. 14658(0)

Final Report

Research Foundation Project 864236/733062
Columbus, Ohio

April, 2000

Disclaimer: The contents of this report reflect the views of the authors who are responsible for
the facts and the accuracy of the data presented herein. The contents ab no necessarily reflect the

oficial views or policies of the Ohio Department of Transportation or the Federal Highway
Administration. The report does not constitute a stanhrd, specifcation or regulation.

I

I
\

Topic

TABLE OF CONTENTS

Page

Executive Summary .. iv

1 . Introduction .. 1

2 . Air-Ground Coordinated Field Tests ... 5
0 2.1 Acqulsibon of Data: ... 5

2.2 Analysis of Data .. .- 7.
2.3 Results ... 9

. 6 . . I

.
. . . .

3 . ImageProcessing .. 12
. 3.1 Identifjring Stationary and Dynamic Pixels ... 12

1 3.2 Overview ofthe Iterative Procedure ... 13
3.3 Numerical Study .. 14

3i3.1 Simulated Images .. 14
3.3.2 Scanned Images ... 17

..

I

4 . Use of Image Data .. 26
Methodology ... : .. 26
4. 1.. 1 Generation of Volume Data ... : 26

.- 4.1.1.1 Log-NormalGeneration .. 28
4.1.1.2 Poisson Generation ... 28
4.1.1.3 Output of Data Generation .. 29

4.1.2 Estimation ofTr&c Parameters ... 31
4.1.2.1 Traditional Estimation Method .. 31
4.1.2.2 Model-Based Estimation Method : : 34

4.1

4.2 Numerical Study .. 36

. . 5 . S u a r y and Future Work ..;... .. 53

References Cited 56
. : - !

............. _ _ _ _ _

Appendix
APPENDICES

Page

A. Description of the Software Code for Computing Traffic Measures A1

C. Log-Normal and Poisson Traffic Count Data Simulation Programs C1

B. Pattern Recognition for Stationq and Dynamic Pixels - Statistical
Description and Program Listings ... B1

D. Traditional Method AADT and VMT Estimation Code D1
E. Model-Based Estimation Code ... El
F. Scatterplots of the Traditional Estimation Method vs. the Model-Based

Estimation Method (100 replications; A4 =) ... F 1

ILLUSTRATIONS
Figure Page I

1.1

2.1

3.1

3.2
3.3

3.4

3.5

4.1

4.2

Velocity profde along 1-70 E in Central Ohio, estimated from overlapping

Site location map showing the I-270,I-70 and 1-71 field sites used in the
1996 field test. .. 6
Simulated background and the incoming image used in the simulated image study
.. 15
Images obtained by scanning air photos to represent 1-m resolution 18
Percent errors of omission vs. percent errors of commission in identieing
dynamic pixels for the thresholding and transformation (1-, 2-, and 5-parameter)
procedures using the images of Figure 3.2, for varying prior estimates of dynamic
pixel probabilities (3% dynamic pixels in image)20
Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for
the thresholding procedure and 1-, 2-, and 5-parmeter transformations (image A
used as incoming image; modified imageB used as background image; prior
estimate of dynamic pixel probability was 1%) 22
Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for
thresholding procedure and 1 -, 2-, and 5-parameter transformations (image B
used as incoming image; modified image A used as background image; prior
estimate of dynamic pixel probability was 1%) 24
Average root-mean-squared relative errors in AADT - ARMSREaadt - as a
hnction of proportion of movable ground sensors and variance in satellite-based
estimates $(’) when using only ground-based data and when combining satellite-
based and ground-based data (log-normal generation; traditional estimation
method).40
Average relative errors in VMT AREvmi as a function of proportion of movable
ground sensors and variance in satellite-based estimates $(’) when using only

aerial photographs .. .4 .

<.+-

I

..
11

.-

ground-based data and when combining satellite-based and ground-based data

Average root mean squared relative errors in AADTAZ&MSREimdt as a function
of proportion of movable ground sensors when using only ground-based data and
when combining satellite-based and ground-based data (Poisson generation;
traditional estimation method; equivalent satellite coverage ESC = 1 .O) ..46
Average root mean squared relative errors in AADT A R M S m t as a fundon
of number of proportion of ground sensors and variance in satellite-based
estimates dfS) when using only ground-based data and when combining satellite-
based and ground-based data (log-normal generation; model-based estimation
method).49

(linear model generation; traditional estimation method)44
4.3

4.4

Table
TABLES

Page

2.1

3.1

Volumes passing ground sensors estimated from air photos, video and recorded

Errors of omission and commission in determining dynamic pixels for three
methods on a simulated pair of images, by prior estimate of the percentage of

Values of input parameters used in simulation-estimation runs38

by ground sensors during estimated concurrent time intervals 10

dynamic pixels (true number (%) of dynamic pixels = 83 (14%)) 16
4.1

iii

Executive Summary

Satellite imagery could conceivably be added to data traditionally collected in traffic
monitoring programs to allow wide spatial coverage unobtainable from ground-based
sensors in a safe, off-the-road environment. Previously, we estimated that 1-m resolution
panchromatic imagery should allow accurate vehicle counts and rough vehicle
classifications, while large vehicles might be accurately detected with only 4-m
resolution. At least three private groups are planning to market such high-resolution
satellite data in the near future, but several issues must be addressed before these data
could be used to complement traffic monitoring programs. This report addresses the
following issues:

,

demonstrating that vehicles can be identified and classified accurately from
satellite imagery;

developing efficient image processing methods; and

determining methods to integrate the imagery with ground-based data and
assessing the value of this integration.

Previously, we designed a process to compare image data with data obtained from
ground-based sensors to investigate the accuracy in identieing and classifj.ing vehicles
from imagery. We also tested the process using aerial photographs to simulate satellite
imagery. In our new work, we replicate these field tests and develop software that
automates many of the analytical components involved with these tests. The software
could eventually be used in tests conducted with real satellite data. The empirical results
of our new field tests show that our approach and software work well. However, we
notice discrepancies between image- and ground-based data that lead us to propose that
there are inevitable differences between image- and ground-based data sets that cannot be
attributed to misidentification of vehicles in the images. Therefore, data collected from
ground-based sensors should not be considered as absolute ground truth against which
image-based data should be evaluated. Further work is warranted to reduce the magnitude
of these inevitable differences and to determine how to work with such differences when
determining the accuracy of vehicle identification and classification from image-based
data. Additional consideration should also be given to operational differences in the tests
we have conducted using simulated satellite imagery (scanned aerial photographs) and
the ultimate tests of interest -those using real satellite data. For example, consideration
should be given to anticipated data formats and the ease with which highway segments of
interest can be identified and delimited in the images.

Based on our experience with simulated high-resolution imagery, we are optimistic that
an individual could visually detect and develop vehicle classifications from 1-m satellite
imagery. However, to be useful in practice, automated image processing must be used to
perform the detection and classification. We had previously developed rules that could be
coupled with thresholding methods to count and classify vehicles using panchromatic
imagery. This approach worked well under conditions where vehicle shadows were

' ,'

I

pronounced, but it did not perform well under different lighting conditions. We are now
developing a more robust methodology that first identifies dynamic (moving) pixels by
subtracting an image of a highway segment under current conditions from a steady-state
background image intended to represent the Same segment with no vehicles present. The
effects of different lighting conditions in the current and background images are reduced
by first transforming grey tones of one of the images. We develop an iterative, maximum
likelihood-based procedure that requires an aprior estimate of the probability that a
random pixel in the current image is dynamic. Tests on images generated from computer
simulations and on images obtained from scanned aerial photographs show the promise
of this approach and its robustness to the prior probability estimates required. Future
work is needed to refine the image processing components we have been developing, to
test them further, and to incorporate them with vehicle classification modules that would
operate on the set of dynamic pixels identified.

The limited temporal coverage that would be possible from a sensor carried on a satellite
in a nongeostationary orbit has led us to focus on using satellite imagery to improve
estimates of Average Annual Daily Traffic (AADT) on highway segments and Vehicle
Miles Traveled (VMT) over the network of these segments. We develop methods to
simulate the improvements in AADT and VMT estimates produced by combining data
obtained on time scales consistent with satellite orbits with data collected on the ground.
Numerical results indicate the potential of satellite-based data to complement ground-
based data and markedly reduce the errors in AADT or VMT estimation and the
personnel required to obtain sufficient ground data to produce a given level of accuracy.
These encouraging results were obtained when using methods similar to those
traditionally employed in practice. We improve estimates further by developing a method
designed to take advantage of the assumed data models. However, we expected to see
greater improvements when using this method. We, therefore, feel that this method can
be refined and that other methods can be developed to exploit the different spatial-
temporal natures of the satellite- and ground-based data.

V

, .i.

..

Section 1. Introduction

This report documents our continued research into the feasibility of using data obtained
from satellite images to improve estimates of interest in traf€ic monitoring programs.
Using satellite imagery is attractive for traffic monitoring programs, since imagery would
allow wide spatial coverage unobtainable from ground-based sensors. In addition, sensors
onboard satellites are 08-the-rard, and, therefore, there is no disruption to tr&ic flow or
increased hazard to personnel during installation and repair. Moreover, high-resolution
satellite imagery will soon be available for the first time in the non-military world.

Previously, we estimated that approximately 1 -m resolution panchromatic imagery
should allow accurate vehicle counts and rough vehicle classifications, while large
vehicles might be accurately detected with only 4-m resolution (McCord et al. 1995%
1995b). At least three private'groups are planning to market high-resolution satellite data
in the near future (American Society of Photogrammetry and Remote Sensing, 1996).
Earthwatch, Inc. lost the EarlyBird satellite (3-m panchromatic data) shortly &r launch
in December 1997. However, the company is focused on the QuickBird-1 Satellite with a
l-m panchromatic (0.45-0.9 pn) sensor and a 4-m multispectral (MS) sensor onboard.
Orbital Sciences Corporation is presently developing OrbView-3, which will have l-m
panchromatic and 4-m MS sensors. In April 1999, Space Imaging EOSAT lost the
Ikonos-1 satellite that was to cany l-m panchromatic and 4-m MS sensors. Ikonos-2, an
identical twin to Ikonos-1, was launched on 24 September, 1999. After an initial four-
month calibration period, Ikonos images are now available for purchase by the public.

Several issues would need to be addressed before such high-resolution satellite imagery
could operationally be used to complement traffic monitoring programs. This report
addresses the following issues:

To gain acceptance, it would be necessary to demonstrate that vehicles can indeed be
identified and classified accurately from real satellite imagery.

To be used operationally, it would be necessary to develop methods that efficiently
process image &tu into data that can be used to improve traftic parameter estimation.

To stimulate investment in implementation, it would be necessary to assess the value
that the processed imagery data would add to traditional traflic parameter estimation
and to Clevelop methods for integrating he abtu with ground-based data to increase
the value of the combined data.

Showing that the numbers of classified vehicles observed in satellite images match those
obtained from ground truth data would demonstrate that vehicles could be counted and
classified from satellite imagery. However, determining ground truth data comparable to
the type of data observed in a satellite image would not be straightforward. To obtain the
l-m ground resolution we are seeking to detect vehicles, the sensor would need to orbit at
altitudes much less than those permitting geostationary orbits, orbits where the satellite

can continually image a fixed location on the earth (McCord et uZ. 1995a). The
nongeostationary orbits imply that the image-based data would consist of snapshots of
different vehicles over wide spatial weas taken at instants in time (Merry et al. 1996,
McCord et al. 1995a). On the other hand, data obtained from ground sensors would
consist of vehicles passing a point in space over an interval of time. Previously, we
designed and field tested a process to compare the image data with data obtained from
ground sensors (Merry et aZ. 1996). We used aerial photographs to simulate the satellite
imagery because of the unavailability of high-resolution satellite imagery.

In Section 2, we report on new field tests, where we again used aerial photographs to
simulate satellite imagery. In our new work, we also developed software to automate
many of the calculations involved. The empirical results show that our approach and
software work well. However, we still notice differences between vehicle classifications
obtained fiom the image- and ground-based data. We propose that some differences are
unavoidable because of the different nature of the data sets. Therefore, when conducting
tests with real satellite data in the future, data obtained fiom ground-based sensors should
not be considered as absolute ground truth. Further work seems warranted to reduce the
size of the differences that can occur and to obtain a feel for the maximum difference that
could be tolerated before the equivalence of the number of vehicles in the image- and
ground-based data would be rejected with confidence.

Based on our experience with aerial photographs scanned to simulate 1-m imagery, we
are optimistic about the ability to detect and classifjr vehicles from high-resolution
satellite imagery. Specifically, we have always been able to visually detect in the 1-m
images vehicles that appeared in the original aerial photographs. However, if such
imagery is to be usefbl in practice, the detection and classification would need to be
perfomed automati call y .

In Section 3, we report on our progress in developing operational image processing
methods for vehicle classification. The task is different from the presently popular one of
detecting vehicle presence in video images of a fixed location. In video imaging, an
extremely fine-resolution background of the location can be built up from thousands of
frames under almost constant lighting conditions. Satellite-based images, on the other
hand, will only yield pairs of overlapping images of a location, with each image in the
pair taken several seconds apart, and different pairs of images taken days apart. We had
previously developed classification rules that we coupled with thresholding methods to
count and assign vehicles into two classes using panchromatic imagery. The method
worked well under conditions where vehicle shadows were pronounced (McCord et al.
1995a, 199b). However, the method did not perform as well under different lighting
conditions (Meny et aZ. 1996). We, therefore, have been developing and testing a more
robust methodology. We describe this methodology in Section 3.1 and report the
encouraging test results in Section 3.2. We propose hrther work to continue developing
the components of this methodology, integrating these components into an operational
program, and testing the program with simulated and real satellite data.

2

Although a sensor carried on a satellite in a nongeostationary orbit could image the same
area on different orbits, the repeat period would be on the order of days (McCord et aZ.,
199Sa). We propose that such data would be most useful for complementing traffic
monitoring programs that collect and estimate state- or region-wide network trait
statistics over relatively long time periods. Compared to traditional ground-based
methods, satellite imagery would detect concurrent traffic conditions on an increased
number of highway segments. It could also more directly determine changes in
conditions along a segment of highway. Figure 1.1 shows velocities along approximately
10 km of 1-70 in Central Ohio estimated from overlapping aerial photography that we
have been using to simulate satellite data.

5

In our work reported in Section 4, we have been concentrating on the ability of satellite-
based data to improve estimates of Average Annual Daily Traffic (AADT) on highway
segments and Vehicle Miles Traveled (VMT) over the network of these segments. In
Section 4.1 we describe the methods we developed and coded to simulate trafftc patterns
and true AADT and VMT statistics and estimate these measures from observations
assumed to be obtained from samples of the trafEc patterns. The estimation component
can use either a traditional-based method (what has traditionally been used to estimate
these measures fiom ground-based sensors) or a model-based method that uses
observations more efficiently when the data can be assumed to be compatible with a
specified underlying stochastic process. In Section 4.2, we report the results of numerical
studies we conducted using our software. These results indicate the potential of satellite-
based data to complement ground-based data and markedly reduce the errors in AADT or
VMT estimation or the personnel required to maintain an accuracy level when estimating
these parameters.

In Section 5 we summarize the report and expand upon future work we feel is warranted
in several areas.

3

A

U

A .
J
A
I

2000 4000 6000 8000 10000 0

Distance along 170 E (m)

Figure 1.1 . Velocity profile along 1-70 E in Central Oho, estimated
from overlapping aerial photographs.

4

Section 2. Air-Ground Coordinated Field Tests

Our previous work (McCord et ul. 1995% 1995b, Merry et ul. 1996) indicates that 1-m
resolution would be sufficient to identifl vehicles and distinguish between large and small
vehicles in digital images scanned from panchromatic aerial photographs. It would be
necessary to demonstrate that vehicles could be identified in panchromatic imagery
obtained from a satellite platform to convince potential users that satellite imagery can, in
reality, be used to count and classifi vehicles on highway segments.

In our previous work, we compared vehicles identified in digital images scanned from
aerial photographs to vehicles identified in the photographs. That is, the photographs
served as the grmnd truth. When conducting tests with satellite imagery, it would be
difficult to simultaneously image the dynamic highway segments with photographs and
satellite imagery. Therefore, vehicle data detected from ground-based sensors would need
to serve as ground truth. However, vehicle data obtained from ground-based sensors
consist of vehicles passing a fixed location through time (ie., of temporal flow data at a
point), whereas that collected by imagery consists of vehicles imaged at an instant across
an area @e., of spatial density data at one time). We have been developing a means to
compare the ground data to that collected from the satellite. We conducted a field test
similar to that previously described (Merry et ul., 1996) to test and refine our approach.
We also wrote software that automates many of the calculations required and tested th is
program on the data collected. As in the previous study where we conducted the analysis
manually, we scanned aerial photographs to simulate the satellite imagery.

2.1 Acquisition of Data

We conducted a new field test on 29 October 1996. The Ohio Department of
Transportation’s (ODOT) Bureau of Aerial Engineering obtained aerial photography of
the same three highway sites in Central Ohio that were used in a test we conducted in a
previous project (Merry et ul., 1996) - 1-270 in Franklin County on the west side of
Columbus, 1-70 in Madison County just west of Columbus, and 1-71 in Pickaway
County just southwest of Columbus (see Figure 2.1). Photographs were obtained at a
scale of 1 in. = 400 A with the highway centerlines located approximately in the center of
the photos. The recorded weather indicated high overcast clouds, scattered at 1800 m
(6000 A).

While the aerial photographs were being taken, ODOT’s Bureau of Technical Services
was collecting vehicle data passing traffic sensors embedded in the highway. For each
direction of the 1-70 and 1-71 facilities, volume-by-length sensors were used to collect 1-
minute volumes by two length classes - under 20 ft (6.1 m) and 20 ft (6.1 m) and over.
For each direction of the 1-270 facility, weigh-in-motion sensors were used to record
FHWA vehicle class and the time to the nearest second that the vehicle passed the sensor.

5

Figure 2.1. Site location map showing the I-270,I-70 and 1-71 field sites
used in the 1996 field test.

6

To provide additional control, we videotaped traffic in all but the 1-71 southbound
directions during the data collection period. The videotape had time stamps to the minute.

We obtained the aerial photographs and ground sensor data in the same formats as those
described in Merry et ul. (1996).

2.2 Analysis of Data

Our analysis is similar to what we developed and documented in Meny et ul. (1996). The
process compares the number of vehicles in a class passing a ground trafk sensor during
a specified time interval to a projection of the number in that class that would pass the
location of the sensor during the same time interval. The projections are based on vehicle
locations and speeds obtained in the imagery. As such, the comparisons will be influenced
not only by how well vehicles can be identified in the images, but also by how well the
times that the identified vehicles will arrive at the sensor location, which we denoteX""",
can be predicted.

We considered two vehicle classes, small and large, which we call cars and trucks, for
simplicity. We based the classes on size, since it is a parameter that could conceivably be
distinguished in images. In the volume-by-length sensor data, we classed vehicles less than
20 ft (6.1 m) long as cars and vehicles 20 A (6.1 m) or longer as trucks. In the weigh-in-
motion data, we considered vehicles in FHWA classes 1,2,3, and 5 to be in our car
category and vehicles in the other classes to be in our truck category. The sensor data is
provided by lane, but we aggregated across lanes to obtain classified counts during a time
interval by direction (see Merry et ul., 1996). In this way, the numbers of cars and trucks
passing the sensor during a specified time interval were readily available from the data
recorded by the ground sensor. The time intervals are those recorded by the ground
sensor.

We visually classified vehicles in the aerial photographs as cars or trucks based on size.
We also visually identified identical vehicles in different photographs and assigned each
vehicle a 2-part identifier, where the first part indicated its class (C or T, for car or truck)
and the second part (an integer number) allowed it to be identified as the same vehicle in
different images: a vehicle with the same identifier in different photographs was believed
to be the same vehicle.

The photographs were scanned and saved as digital %bit image files. The x,y locations of
the vehicles were digitized from these image files. The times that the vehicles were imaged
and vehicle identifiers were manually added to the file. Highway edgelines were also
digitized fiom these image files. The images were placed in a common x,y coordinate
system. This consisted of registering the images by identiQing points that were common
to pairs of images. The digitized locations of vehicles at specified times, the two-part
identifiers of these vehicles, the digital locations from the reference edgeline of the

7

highway, and the locations of the ground sensor and upstream and downstream ramps
serve as input to the software. This s o h a r e estimates the time that each vehicle passes
the ground sensor location 2" and totals the number of vehicles by class passing x"""
during a specified time interval. The software code is described fully in Appendix A. We
explain the concepts used here and note that comparisons with the manual calculations
conducted as described in Meny et al. (1996) show that our software works very well.

To control for horizontal curvature of the highway, we use the digitized edgeline of the
highway as a linear reference. The program mathematically projects the digitized vehicle
locations to this digitized edgeline, providing linear distances from a referenwdatum. A
vehicle that appears in more than one image is automatically identified by its two-part
identifier. The linear distance traveled between subsequent imaging of the same vehicle is
calculated from the vehicle's locations along the edgeline. This distance is divided by the
times between the images to yield an estimate of the vehicle's average velocity U" in the
time between images. The closest imaged 1ocationX" of the vehicle to the ground sensor,
&e time &e vehicle was imaged at this location, the estimated average velocity U"(X"'
traveled in the time between this image and the next photograph, and the location of the
ground sensor x"" are used to estimate the time the vehicle passes the ground sensor.
Some vehicles may appear in only one image. These vehicles are assigned velocities equal
to the average velocity of the other vehicles in its class - i.e., a car is assigned a velocity
equal to the average velocity of all the cars considered on the segment, and a truck is
assigned a velocity equal to the average velocity of all the trucks considered on the
segment. Once the time that each vehicle passes the ground sensor is estimated, it is
straightforward to determine the number of vehicles that pass the sensor during any time
interval. Since the identifier indicates the vehicle class, the number of vehicles in each class
in any time interval can be readily determined. In this case, the times would correspond to
the airplane clock, i.e., the clock that assigns times to the photographs.

Although the process is conceptually straightforward, there are certain controls that must
be exerted. The ground sensor data are tagged to ground sensor clocks, while the image-
based estimates are tagged to the airplane clock. Discrepancies in these clocks can lead to
poor comparisons in a dynamic system such 8s this. We compensated for time
discrepancies by adding or subtracting a constant time offset to the clocks. The details are
presented in Meny et al. (1996), but the basic approach is to use video data obtained at
the site to independently reference the video camera clock to the airplane clock and to the
ground sensor clock. An offset is found between the video camera and ground sensor
clock that maximizes a correlation measure between video-based estimates of classified
counts passing 2"" during short intervals and ground sensor-based estimates of classified
counts passing 2""" during intervals of possibly different durations over a relatively long
time period. (we maximized Pearson's correlation factor, obtained video-based estimates
of vehicles passing 2"" in 5-second intervals, used 1-min intervals for volume-by-length
sensors and 1 -sec intervals for weigh-in-motion sensors, and compared the estimates over
12-minute periods.) An offset between the video and airplane clocks is found by

8

averaging differences between the video times and estimated photo times when
distinguishable vehicles pass 2". The time offset between the photo and ground sensor
clocks is then determined by taking the differences of these photo-video and ground
sensor-video time offsets. We expect that we will be able to control for the effect of clock
differences more efficiently in tests with real satellite data by simply referencing the
ground sensor clocks to the UTC (universal time code) time used in the satellite clocks.

We also control for vehicles entering or exiting the highway. For example, if time intervals
analyzed are too long, some vehicles could enter the highway from ramps upstream of the
ground sensor after the highway was imaged and pass the ground sensor during the
analyzed interval. Similar problems could occur with upstream exit ramps and
downstream entrance and exit ramps. Therefore, we limit the time intervals to those such
that only vehicles that are imaged downstream of ramps upstream of the ground sensor
and upstream of downstream ramps could pass the ground sensor during the time period
of analysis. Doing so shortens the lengths of the analyzed intervals from what could
otherwise be considered from the imagery, and in some cases we only analyze intervals of
less than a minute.

2.3 Results

After compensating for the time discrepancies among the various clocks, we compared
volumes-by-class projected as passing the ground Sensors from the images, counted fiom
the video, and recorded directly by the ground sensors for estimated concurrent time
intervals. We considered the longest time intervals such that vehicles using entrance and
exit ramps would not confound the comparisons. That is, we determined the time
intervals by estimating the earliest and latest times that imaged vehicles downstream of
upstream ramps and upstream of downstream entrance ramps would pass the ground
sensors, where upstream and downstream directions are defined with respect to the
ground sensor. We shortened the intervals to the nearest minute for the volume-by-length
sensors and to the nearest second for the weigh-in-motion based sensors.

The estimated volumes are presented in Table 2.1. In general, the estimates compare
favorably with the ground sensor data at the 1-70 and 1-71 sites and less favorably at the
1-270 site, although the 1-270 data compare fairly well with the video data. We
investigated the 1-270 data in more detail and, upon contacting ODOT discovered that the
ground sensor (weigh-in-motion) was malfhctioning during the relevant time interval at
this site.

c

Despite the controls for clock differences and the effect of entrance and exit ramps, there
could still exist discrepancies between the classification volumes recorded by the ground
sensors and those estimated from the images that are not attributable to a failure to detect
vehicle classes in the imagery. The discrepancies could result from errors in the estimated
vehicle locations, which would cause errors in the X" and the W discussed above. They

9

could also result from the fundamental difference in comparing data taken from images
covering a stretch of highway at a point in time to data collected from ground sensors at a
point in space during a time interval. In short, if a vehicle would accelerate or decelerate
from the estimated speed U" used to estimate when it would pass xSens, the estimated
time of passingyms would be wrong. Depending on where it fell in the interval of
analysis, this could cause discrepancies between the image-estimated volumes and the
ground sensor-recorded volumes used as ground truth, even if the vehicles were correctly
detected in the images. We have, therefore, begun developing methods and accompanying
sofhvare to determine upper and lower bounds on the classified volumes that wouldqpass
rms during specified intervals. The bounds would account for reasonable errors in
estimated vehicle locations and vehicle acceleration and deceleration characteristics.

Table 2.1. Volumes passing ground sensors estimated from air photos, video and
recorded by ground sensors during estimated concurrent time intervals.

cm l? I i h b 1 I S C l..mn I Tmck Volume I

Segment Ground Photo Video Ground Photo Viako-
sensor sensor

1-70 WB , 1996
Time Interval = 6 rnin 63 72 64 47 42 45
1-70 EB, 1996
Time Interval = 2 rnin 16 16 16 11 12 . 12
1-270 NB, 1996
Time Interval = 0.83 rnin 18 31 28 13 6 6
1-270 SB, 1996
Time Interval = 1.58 rnin 52 45 47 3 10 10
1-71 NB, 1996

1 Time Interval = 2 min 25 27 26 I 7 7 5
1-71 SB, 1996
Time Interval = 6 min 52 53 . na 32 30 , na

We have also begun investigating the contributions of various sources of error in these
estimations. EKOIS due to pixel resolution, digitization of vehicle locations, and projected
locations along digitized highway edgelines seem minor. It appears that errors due to
estimating time offsets and to the registration of images could be more important.
However, in tests using real satellite data, the time offset errors could be reduced by
ensuring that the ground sensor clock is calibrated against a UTC clock, which would be
the time of the satellite image. The error due to registration of overlapping images should
also be reduced because of the precise locations associated with the satellite images. The
most important and, perhaps, most irreducible source of error in estimating when vehicles
imaged at a given time would pass a ground sensor, appears to be the error in determining

1

!
I

I

10

the velocity profile of the vehicle between the time that the vehicle is imaged and when it
passes the sensor. The bounds we are developing and the accompanying software should
help in making useful comparisons between data collected from ground sensors and image-
based estimates collected with real satellite data.

Finally, discrepancies between image-estimated and ground sensor-recorded volumes
could come from errors in the ground sensors themselves or the classification s o h a r e
used. We mentioned above that we only discovered that the 1-270 sensor was
malfhctioning upon detailed analysis. We onlythought to look at the sensor because of
the independent (video) source of data used to form estimates. It actually appears that the
image-estimated volumes generally agree with estimates derived from the video data better
than with the volumes recorded fiom the ground sensors. In future feasibility tests, one
must, therefore, be careful in considering data collected from ground sensors as ground
truth. Obtaining concurrent video data might be necessary when conducting feasibility
tests with real satellite data.

11

Section 3. Image Processing

3.1 Identifying Stationary and Dynamic Pixels

We assume that the remotely sensed image has been segmented for the appropriate highway
section. In addition, we assume that we have a historical estimate of the gray-level image of the
same highway segment in which all pixels represent the background pavement (stationary pixels).
.Given a current image of the same highway segment with vehicles, registered appropriately with
respect to the background image, we want to detect the pixels corresponding to vehicles. That is,
we want to classifjr pixels in the new image as either stationary (pavement pixels) or dynamic
(vehicle pixels). In this section, we present a brief introduction of the statistical pattern recognition
procedure we developed to address this task. The technical dehils are presented in Appendix B.
Future development will investigate: (1) how to obtain this initial estimate of the background
scene, and (2) classification of clusters of moving pixels, e.g., into cars and trucks (or neither).

Let BG demte fie gray-le~e! of the pixel in row i and column j in the estimated background image
of the segment and let Yij be the gray-level of the same pixel of the current image. A priori, before
seeing the new image Y, we start with a prior probability, qj, on the pixel (i, j) being stationary in
the new image. Let

-
?t;j = Probability that pixel (ij) is stationary in image Y. (3.1)

In general, the new (current) image, Y, may not have the same overall brightness level as the
e . ted background image, By due to different lighting conditions under which the two images
were acquired. We, therefore, trun.@orm the brightness level of the background image to make it
comparable to match the overall brightness level of the new image Y using a variety of point
operations (see, e.g., Castleman (1996), Section 6.3). Let (MBij)? where +:[0,255]->[0,255] is a
brightness adjustment transformation in a specified class of pomt operations, denote the
transformed background image. The parameters of the (unknown) transformation are estimated
adaptively from image to image.

Then we obtain the differences, Ri, in gray-level of the current image and the transformed
background, ie.,

The stationary pixels in the current image, Y, are expected to have small values of Rij, whereas the
dynamic pixels are expected to have Rij that are, in general, large in absolute values. We then
estimate the distribution of R, given that the pixels are stationary, p ~ , and its distriiution, given that
the pixels are dynarmc, pv, and compute the posterior probability of each pixel being stationary.
The posterior probability of a pixel being static is used to classifl the pixel into static or dynamic.

The estimation of the transformation $, differencing of the current image and transformed
background image, computation of posterior probabilities, and classification of pixels are applied in
an iterative manner, until the posterior probabilities converge.

12

These posterior probabilities can either be used to classifL each pixel individually or as input to a
rule based clumping procedure. A more advanced statistical pattern recognition procedure, such as
a flexible template-matching procedure, which uses the spatial relationship of dynamic pixel
clusters could also be used to classify groups of dynamic pixels.

3.2 Overview of the Iterative Procedure

For each pixel in the current image, define the mobsewable variables XiJ = 1 if pixel (i j) in the
image Y is a stationary pixel, and 0 otherwise. Let nij = PrOb(Xij = 1) denote the prior probability
that the pixel (id) is a background (Stationary) pixel.

The conditional distributions of the differences Ri, of the background pixels and the vehicle pixels
in the current image are defined as follows:

a p(R6 I Xg = 1) = p~(Rij), probability density of the background pixel differences,
p(R. IJ I X-. *J = 0) = pv(Rjj), probability density of the vehiclehackground pixel differences.

Note that m(.) should be a unimodal distribution centered at 0, but pv(.) depends on the gray levels
of dynamic pixels in the image Y.

Now the joint density of R and X is given by

Mij 2 Xij) = n(Xij) pB(Rij) p~@ij) l-xlj- (3-3)

Using Bayes theorem, the posterior probability of Xij = 1 is given by

To be able to compufe these posterior probabilities, pv (.), ps(.) and M.) all need to be known. In
general, these three components in the model are unla?own and need to be estimated. A 111
Bayesian approach would include s j w i m g priors on the unknown components. However, since
the amount of information about pv (.), ps(.) and M.) is overwhelming (tens of thousands of pixels
- a small segment of the size 10 m x 10,000 m has 100,000 1-m pixels), any prior information
would likely be swamped by the data. Therefore, the approach adopted here is to estimate pv (.)
and ps(.) and +(.) in an iterative fashion, ignoring the fact that they were estimated when computing
the posterior probabilities P(x1j = 1 I Rij) in each cycle of the iteration. The detailed descriptions of
each component of this procedure are given in Appendix B. We illustrate the performance of this
procedure for a test image, as well as scanned 1 m x 1 m resolution aerial images in the next
section.

13

3.3 Numerical Study

To illustrate the potential of the methodology described in the previous section, we conducted the
following studies. The first study is based on simulated images, while the second uses images
formed by scanning air photos taken during our field tests. In the fbture, we expect to form the
background image from an average of several images of the same location. Under light traffic
conditions, forming the average would smooth out any signals from vehicles, and the resulting
image should be a good approximation of the pavement background. In the studies reported below,
we did not have several images of the same location from which to form an average. We, therefore,
simulated the background as explained in the studies. The results of both studies show the promise
of our method in detecting dynamic pixels that would be associated with vehicles and the
robustness of the results to the assumed prior probabilities required by our algorithm.

3.3.1 Simulated Images

To illustrate our approach under a controlled setting, we simulated two images. Specifically, we
formed two 30 x 20 images and assumed that all pixels in the images were eit_h_er shtic,
representing the background pavement, or dynamic, representing vehicles. We assumed that there
were two rectangular vehicles of dimensions 5 x 7 and 6 x 8 in the current image, i.e., the image
that would be analyzed for vehicle counts. In this way, there were truly 14% (= (5 x 7 + 6 x 8) / (30
x 29) x 1000/0) dynamic pixels and 86% (= 100% - 14%) background pixels in the current image.
The remaining pixels in this current image were assumed to be pavement pixels. The second image
was simulated to represent the background image. All pixels in this image were assumed to be
pavement. We generated gray tones from normal distributions. For the background image gray
tones for pixels in columns 4-7, columns 12-16 and columns 19-20, respectively, were generated
from N(110,20), N(120,ZO) and N (80,20) distributions. Gray tones for all other pixels were
generated from a N(150,20) distribution. We considered gray tones of pixels in the current image to
be the sum of the gray tones in the background image and a N(0,7) disturbance term. We
considered the gray tones of the dynamic pixels to be produced by either reflectance off a vehicle
or off the pavement covered with a vehicle shadow. The dynamic pixels produced from vehicle
reflectance for one vehicle (a darker vehicle) were generated from a N(40,5) distribution. The
dynamic vehicle reflectance from the other vehicle (a lighter vehicle) was generated from a
N(1703) distribution. The dynamic shadow reflectance gray tones were generated from a N(0,5)
distribution for both vehicles. We regenerated values whenever a negative value or a value greater
than 255 was obtained and quantized generated values to the nearest whole number. One realization
octhe images is shown in Figure 3.1.

We compared our procedure on these images, using 1- and 5-parameter transformations. We also
compared these procedures against a variant of a thresholding procedure we had used previously
(Merry et ul., 1996). When using the transformations, after the procedure has converged, we
classified pixels with posterior probabilities greater than 0.5 as dynamic. For the thresholding
procedure, we subtracted the gray tones of the pixels in the incoming image from those of the
corresponding pixels in the background image. The assumption is that difference values of pixels
that were static (pavement) in the two images would be closer to 0 than difference values of pixels
that were static (pavement) in one image and dynamic (vehicle) in the other image. Based on this

!

14

Figure 3.1. Simulated background and the incoming image used in the simulated image study.

15

assumption, we classified the pixels in the tails as dynamic, where the number of pixels chosen was
obtained from the prior estimate of the number of dynamic pixels.

15

We calculated errors ofomission and errors ofcommission for each of the procedures. Errors of
omission occur when dynamic pixels are not classified as dynamic. Errors of commission occur
when pixels that are classified as dynamic are in reality not dynamic. That is, an error of omission
occurs when a dynamic pixel is classified as being a background pixel, and an error of commission
occurs when a background pixel is classified as being dynamic.

Thresholding 7/83 (8%) 15/91 (16%)
1 -parameter transform 10/83 (12%) 3/76'(4%)
5-parameter transform 2/83 (2%) 3/84 (4%)

These resulting errors of omission and commission for the three methods assuming three different
prior probabilities of dynamic pixels (1 - qj, where Rj is defined in eq. 3.1) are presented in Table
3.1. (As mentioned above, 14% of the pixels were truly dypnic in the incoming image. Therefore,
this would be the correct prior probability that a random pixel would be dynamic.) The results
show the superior performance of the transformation methods on this simulated set of images and
its robustness across different prior estimates.

Table 3.1 Errors of omission and commission in determining dynamic pixels for thre-methods

(true number (%) of dynamic pixels = 83 (14%)).
on a simulated pair of images, by prior estimate of the percentage of dynamic pix

The usual tradeoff between errors of omission and commission is apparent in Table 3.1 for all
methods, but it is much less pronounced in the transformation method than in the thresholding
method. This tradeoff occm because the chance of misclassifjmg a background pixel as dynamic
can be reduced by classi@ng fewer pixels as dynamic, but doing so will increase the chance of .
omitting a dynamic pixel from being correctly classified as dynamic. If the prior estimates are
small or large enough, the thresholding procedure will have very few errors of commission or
omission, respectively. In the limit, when the prior estimate goes to 0, no pixels will be classified as
dynamic in the thresholding procedure, and there will be no possibility for errors of commission.

16

.P

This occurs, however, at the expense of a large number of errors of omission, which will go to
100% as the prior estimate goes to 0. On the other hand, as the prior estimate becomes large
enough, so many pixels will be classified as dynamic that no dynamic pixels will be omitted. The
percentage of errors of omission will go to 0, but the percentage of errors of commission will
become very large, as many background pixels will be wrongly classified as dynamic. These
extremes are apparent in Table 3.1 for the thresholding procedure. Because of tbis type of extreme
behavior, the thresholding procedure outperforms the transformation method on errors of
commission at low (5%) prior estimates. However, the improved performance is only mar&, and
the thresholding procedure performs markedly poorly on errors of omission. Similarly, the better
performance of the thresholding procedure on errors of omission is overwhelmed by its poor
performance on errors of commission at the high (25%) prior estimate.

When considering the errors of omission and commission together, the transformation methods
perform much better than the thresholding procedure. Moreover, Table 3.1 indicates that the
performance of the transformation methods is not affected much by the prior estimate of the
percentage of dynamic pixels. This insensitivity to the prior estimate is encouraging, since it
indicates that good results could be produced from even poor estimates of traffic conditions that
were present when the image was obtained.

3.3.2 Scanned Images

We also investigated the performance of our method on a pair of air photos scanned to simulate 1-
m resolution. We used two overlapping photos taken from 1-70. We present these two images,
which we call Image A and Image B, in Figure 3.2.

We conducted two experiments on these images. In one we used Image A of Figure 3.2 as the
current image, representing the image containing dynamic and static pixels, and formed the
background image, representing an image of static pixels, from Image B. In the other experiment,
we reversed the roles, using Image A to form the background image and Image B as the current
image. To form the background images, we manually replaced the gray values of what we observed
to be pixels corresponding to vehicles and their shadows (ie., the dynamic pixels) with gray values
corresponding to the surrounding pavement.

To conduct the experiments, the images had to be registered to a common coordinate system. In
both cases we registered the incoming image to that of the background image. Therefore, the
registrations were independent in the two experiments. We shall see the effekt of imperfkct
registration below.

We ran the thresholding method and 1-, 2-, and %parameter transformations on the images for
prior estimates of dynamic pixels (1 - qj, where nij is defined in eq. 3.1) of 1%, 3%, and 7%. (In
reality, approximately 3% of the pixels were dynamic.) For each procedure and prior estimate, we
calculated errors of omission and commission as we did in the experiments on simulated images in
Section 3.3.1.

17

Figure 3.2. Images obtained by scanning air photos to represent 1-m resolution.

18

In Figure 3.3, we plot the errors of omission against the errors of commission for the procedures.
The numbers next to the plotted points represent the value, in percent, of the prior estimate of
dynamic pixels used in the procedures.

Whether image A is used as the current image (Fig. 3.3a) or as the background image (Fig. 3.3b),
the transformation procedures are seen to produce fewer errors of omission than the thresholding
procedure for any prior estimate of dynamic pixel probability. For 1% and 3% prior estimates of
dynamic pixel probability, the thresholding procedure produces markedly fewer errors of
commission than the transformation procedures for the corresponding prior dynarmc probability
estimates. This is not surprising, however, as explained in Section 3.3.1. When prior estimates are
SO low, the thresholding procedure is expected to produce a low number of commission errors, but
it does so at the price of a large number of omission errors.

Moreover, the effect of many of the errors of commission would be reduced when rules, such as
those proposed in Merry et al. (1996), are applied to determine whether the dynamic pixels are

dynamic and static pixels appear in Figures 3.4 and 3.5. In these figures, black pixels are those
classified as dynamic, and white pixels are those classified as static. In the transformation images,
there are many more isolated pixels being classified as being dynamic. Comparing the images of
Figures 3.4 and 3.5 to those of Figure 3.2, one sees that the vehicles correspond to the clumps of
dynamic pixels seen in the processed images. The isolated pixels would be eliminated as noise
when examined in the context of rules designed to classifj groups of dynamic pixels output from
the transformation as being vehicle or nonvehicle elements. Moreover, one sees that the shapes of
the groups of pixels classified as dynamic in the transformation procedures correspond closely to
the shapes of the vehicles seen in Figure 3.2, indicating that vehicle classification rules should
perform well when operating on the output of the transformation method.

J.

J associated with a vehicle or with nonvehicle elements. Images representing the classification of

Examination of Figures 3.4 and 3.5 also shows that many errors of commission result fiom pixels
near the median of the highway segment being classified as dynamic. The long, narrow pattern
observed would again be conducive to rules correctly classifymg the groups of pixels as not being

the images in the common coordinate system. The median shows up much less in Figure 3.5, where
Image B is used as the incoming image, than in Figure 3.4, where Image A is used as the incoming
image. (As a result there are many fewer errors of commission in Figure 3.3b than in Figure 3.3a)
We believe that our registration was significantly better in the former case than in the latter case.
Better registration should be available fiom satellite imagery than fiom the manually registered
scanned images used in this study. Still, we expect that the effects of registration will need to be
investigated in real satellite images before we feel comfortable in interpreting the outputs of our
transformation procedures.

The results again show the robustness of the transformation procedures. Specifically, when the
prior estimates vary fiom 1% to 7%, the thresholding errors of commission and omission vary over
ranges of approximately 50% in Figure 3.3a and 35%40% in Figure 3.3b. The curves produced
from the transformation procedures vary over much smaller ranges - approximately 15% and 5%,
for errors of commission and omission, respectively, in the two figures. Again, it appears that even
rough estimates of trafic conditions when the images are taken can lead to good performance.

i associated with vehicles. Moreover, this phenomenon results in large part from errors in registering

r

E

Commission vs Omission error
I 1 I 1 I - 1 parameter - 2 parameter

+ 5 parameter
& thresholdi ng

I I I I I

0 10 20 30 40 50 60
.. error of commission ,

a. Image A.

Figure 3.3. Percent errors of omission vs. percent errors of commission in identiwg dynamic
pixels for the thresholding and transformation (1-, 2-, and 5-parameter) procedures using the

images of Figure 3.2, for varying prior estimates of dynamic pixel probabilities (3% dynamic pixels
in the image).

20

9c

8a

70

60

C
0 -

50 .-
E

840

0
0

t
0)

IC

30

20

10

0 '

Commission vs Omission error
I I

1
I I I I

I I I 1 I I

* 1 parameter - 2 parameter
5 parameter

U thresholding

I

b. Image B. I

Figure 3.3. Percent errors of omission vs. percent errors of commission in identifj.ing dynamic
pixels for the thresholding and transformation (1-, 2-, and 5-parameter) procedures using the

images of Figure 3.2, for varying prior estimates of dynamic pixel probabilities (3% dynamic pixels
in the image).

21

..
1 .
I

i
' 4

!

.I

I

I

-.

- - . .

;.e 1.
* L f

I

I

a. Thresholchg. b. 1-parameter.

Figure 3.4. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for the
thresholding procedure and 1-, 2-, and 5-parameter transformations (image A used as incoming

image; modified image B used as background image; prior estimate of dynamic pixel probability
was IYO).

22

1

I \ 7.4 ' .. I
I

. . * I *

'I 11 .;

c. 2-parameter.

a. 1

1. f 4 ' . I
I z

I

a

d. 5-parameter.

I
!

!
i

i

I !

!

Figure 3.4. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for the
thresholding procedure and 1-, 2-, and 5-parameter transformations (image A used as incoming

image; modified image B used as background image; prior estimate of dynamic pixel probability
was 1%).

23

r

- . .
c

a. Thresholding.

I

- 1 a w

a

b. 1-parameter.

j

I
1 . .

. .

Figure 3.5. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for
thresholding procedure and 1-, 2-, and 5-parameter transformations (image B used as incqming

image; modified image A used as background image; prior estimate of dynamic pixel probability
was W O) .

24

I

I -
+ ' 'Ja

1

I

c. 2-parameter.

I

I

1
9.1

I

!

a i q
I

d 5-parameter.

Figure 3.5. Pixels contained in Figure 3.1 classified as dynamic (black) and static (white) for
thresholding procedure and 1 -, 2-, and 5-parameter transformations (image B used as incoming

image; modified image A used as background image; prior estimate of dynamic pixel probability
was 1%).

25

Section 4. Use of Image Data

As mentioned earlier, the satellite data would consist of snapshots of the highway
segments at instants in time. Several snapshots could be obtained over time, and the
greatest benefit in the satellite data might be found in identifjmg spatial patterns in traflic
characteristics. For example, the data might indicate consistently high or low velocities
on certain segments. These indications could then be confirmed with traditional spot
speed studies. Or, the series of snapshots might show that certain segments exhibit
temporal patterns different fiom those of other segments in the same traffic monitoring
sampling class. Aggregate estimates could then be improved by redefining the sampling
classes.

Despite these potential advantages, we limit our analysis in this study to the potential of
satellite data to improve estimates of Average Annual Daily Traffic (AADT) in
homogeneous classes of highway segments. The AADT estimates are used to estimate
Vehicle Miles Traveled (VMT) in the class of highway segments, and ,we also investigate
the cbility of smpshot &ta t~ improve W estimates We base homogeneity of traffic
classes on similarity of temporal expansion factors described below. We develop
computer software to conduct this analysis. Our software contains two main components,
a generation component and an estimation component, which we describe in Section 4.1.
The generation component simulates true values of AADT and values that would be
observed in traffic counting programs. As explained below, we consider 24-hour
observations to be representative of data obtained from traditional ground-based sensors
and shorter duration observations to be representative of satellite snapshots. The
estimation component produces AADT and VMT estimates fiom the values produced in
the generation component.

In Section 4.2, we describe the application of our software to investigate the benefits of
combining satellite-based data with ground-based data in the estimation component. The
benefits are considered in terms of reduced errors when estimating AADT and VMT, and
we investigate the reduction in errors as a function of the number of ground counts,
amount of satellite coverage, and variability associated with expanding a satellite
snapshot to a daily count.

4.1 Methodology

We consider a highway network consisting of N segments or links with length dr,I = I,
2, ... , N. We specie N as an input to the simulation program, and we randomly generate
the link lengths dl fiom a truncated normal distribution, dl- N(w, ud, dl 2 dmh

4.1.1 Generation of Volume Data

Of the N highway links, we consider that P are equipped with automatic traffic recorders
(ATR’s) that can count and record daily volumes every day of the year. We also consider
that two 24-hour volumes are recorded on Mdifferent links with movable traffic
recorders. The two daily (24-hour) volumes recorded by the movable recorders occur on

26

consecutive days. The parameters P and Mdetermine the supply of ground count
information collected and are specified as inputs.

The supply of satellite data is determined by inputs on the time between satellite
passes that image links in the network and the number N‘of links imaged each time the
satellite passes. Each time the satellite images the area, $ of the total N links to be
imaged are generated at random. A satellite that images with the p-day repeat period
will produce images of N‘ links in the network 365/ f times per year. That is, there will
be 365 M f l link-images produced per year.

An Average Annual Daily Traffic U T 1 is generated for each link I = I, 2, ..., N of the
network fiom a uniform distribution with exogenously input lower and upper bounds,
A A D T m b and AADT,,. Using the generated true AADT’s and randomly generated link
lengths, the corresponding value of the true Vehicle Miles Traveled (W) is calculated
as:

AADT’s are converted into 24-hour counts for day-of-the-year S, 6 E { I , 2, ..., 3651, by
calculating a deterministic component U of the 24-volume using day-of-the-week and
month-of-the-year expansion factors (McShane and Roess, 1990) and imposing random
error on U. Specifically, a set of month-of-the-year or variation expansion factors @ =

(EPm, m = I , 2, ..., 12) and day-of-the-week expansion factors & = { E p d , d = I , 2,
..., 7) are specified as input, where, for example, month m = I correspnds to January,
month m = 2 corresponds to February, and so on, and day d = I corresponds to Monday,
day d = 2 corresponds to Tuesday, and so on,. The factors are chosen so that they would
represent expansion of the average volumes on a given month or day to the AADT - i.e.,
(1/12) C m = I ,..., I2 @Pd-’ = (117) E d = I ,_.., 7 (EFD = 1 -

The deterministic component of the 24-hour volume for link 1 on day 6is then:

where AADZ is the AADT of the link I generated as described above, and M(s) and D(.,
respectively, represent the month-of-the-year (M(4 E {I,2, ... ,121) and day-of-the-week
(D(S) E {1,2, ... ,71) corresponding to day-of-the year S (6 E {1,2, ... ,3651). Multiplying by
E ~ M (-I imposes the temporal effect associated with month M(@, whereas multiplying
by E # ~(4- l imposes the temporal effect associated with day-of-the-week D(@.

The 24-hour count on link 1 on day 6is generated from the det
considering that the true volume varies from the deterministic model of (4.2) through a
specified stochastic model. We use two stochastic models: one uses a log-normally
distributed error term; the other generates volumes from a Poisson model (see Appendix
C).

. ’stic U ~ S by

27

4.1.1.1 Log-Normal Generation. We primarily used the “lo -normal error term”
model in our analysis. In this model, we generate a 24-hour count 3 g, that would be
observed from a ground sensor (either a permanent ATR or a movable sensor) on link I
and day Sas:

where exp () is the inverse function of the natural logarithm and .dg, - N(0, &). (This
formulation ensures that the expectation of the error tern is one, i.e., E[exp(& -
~@~/2)]=1.) We assume that V@ is observed without any measurement error. That is, V@
is both the true 24-hour volume on link I and day Sand that which is observed fiom the
ground sensor on this link and day.

To simulate the volume estimated fiom the satellite image, we assume that a satellite
image of a link is converted into a 24-hour count v’”! and simulate this 24-hour count as:

where a p () is again the inverse function of the natural logarithm and E? - N(0, 8’).
(Again, in this formulation the expectation of the error term is one, z. e., E[exp(p) -
8)2/2)]=1 .) The error associated with converting the satellite image into a %-hour count
is handled through the magnitude of d”‘ relative to o@. This process implies that, unlike
in the case when generating 24-hour volumes fl@ obtained with ground sensors, the 24-
hour counts V@ estimated fiom the satellite data are not necessarily the true 24-hour-
volumes on the segment on the day of observation. We note here that determining the
relative magnitudes of dj‘ and dg, to appropriately account for the error in estimating a
24-hour volume fiom the satellite data is an area for future research. We present our
results below as a function of the relative difference in these terms.

4.1.1.2 Poisson Generatiin. The second stochastic model considers volumes to
be Poisson distributed. To generate a 24-hour volume obtained from a ground sensor, we
use the deterministic component UAS of Equation (4.2) as the mean of a Poisson
distribution for 24-hour volumes and generate the volume fiom this distribution. That is:

Vlg116- Poisson(G6). (4.5)

Again, the 24-hour volume obtained with the ground-based sensor is assumed to be the
true volume in this process.

To generate satellite observations, we simulate a 5-minute volume fiom a Poisson
distribution and convert this generated.5-minute volume to an estimated 24-hour volume.
(Time intervals other than five minutes could be used in our program, but we used five
minutes as a first approximation of the time interval corresponding to satellite data.) We
assume that the 5-minute volume is observed without error, but that there could be error
in expanding the 5-minute volume to a 24-hour volume.

28

To generate the 5-minute volume, we convert the deterministic component of the 24-hour
volume U~,,S of Equation (4.2) to a simulated 5-minute volume obtained in hour h, h = I ,
2, ..., 24, where, for example, hour h = 1 corresponds to 12:OOa.m. - 1:00 a.m., h-= 2
corresponds to 1:00 a.m. 2:OO a.m., and so on. The deterministic component of the 5-
minute count @h in hour h is obtained by factoring the 24-hour Uby an hourly ex ansion
factor E?, taken fiom a set of exogeneously specified hourly factors @ = { E d , h =
I, 2, ..., 241, and converting this hourly volume to a 5-minute count by assuming equal
distribution among the twelve 5-minute intervals in the hour:

As with the monthly and daily expansion factors, the hourly expansion factors E p h are
specified to represent expansion about average hourly Volumes - i.e., (I/24) C h = I , ._., 24

E?h-’ = 1. Dividing by 288 hi Equation (4.6) represents the fact that there are 288 5-
minute intervals in 24 hours and assumes an equal distribution of a given hour’s volume
into twelve 5-minute intervals. Unequal distributions could be handled by an expansion
factor for subperiods, but since the actual volume will be a randomly generated
realization, it would seem overzealous to consider expansion factors for such a short
period.

To generate a S-minute volume ffS)[& obtained in hour h on daySon link I from a
satellite sensor, then, we use the deterministic component of Equation (4.6) as the
mean of a Poisson distribution for 5-minute volumes and generate the volume fiom this
distribution. That is:

We then expand this 5-minute volume to an hourly estimate in hour h by multiplying by
12 and then the hourly estimate to a 24-hour estimate by multiplying by 24 times an
“estimate” of the hourly expansion factor E p i. That is:

In the work reported here we set E p i, either equal to the true expansion factor used in
generation or to E P h , but fbture work could hvestigak the sensitivity of the solution to
erroneous estimates of the hourly expansion factor. In this way, the E p j l value used is
not truly an estimate that depends on observations, but an exogenously specified
parameter.

4.1.1.3 Output of Data Generation The simulation program considers one year
as the analysis period and uses either Equation (4.3) or Equation (4.5) to generate:

a 24-hour volume count for each of the 365 days of the year for each link assumed
to be equipped with a permanent ATR;

29

two consecutive 24-hour volume counts for each of the links assumed to be
covered by a movable ground sensor; these links are randomly generated (without
replacement) fiom the set of links not equipped with permanent ATR's, and it is
assumed that the first of the two days that a movable ground sensor collects data
on a link is the day afler the second of the two days that the sensor collected data
on the previously sampled link.

The simulation program also uses either Equation (4.4) or Quation (4.8) to generate:

an estimate of the 24-hour volume for each of N' links randomly generated with
replacement every F days.

One can, therefore, think of partitioning the N links in the simulated network into the
following sets based on the types of traffic volumes assumed to be collected on links in
the set:

a set consisting of the links that are equipped with permanent ATR's;

a set MS consisting of the links for which 24-volumes are obtained from a
movable ground sensor during the year and for which at least one 24-hour volume
estimate is obtained fiom satellite data during the year;

a set M consisting of the links for which 24-hour volumes are obtained from a
movable ground sensor but for which no satellite-based 24-hour volume estimates
are obtained during the year;

a set consisting of the links for which no ground-based 24-hour volumes are
obtained, but for which at least one satellite-based 24-hour volume estimate is
obtained during the year;

a set
24-hour volumes are obtained during the year.

consisting of the links for which neither ground-base nor satellite-based

We call 'Np, Nm, NM, Ns, and NR, the numbers of links in the respective &, with N p +
NMS + NM + Ns + NR = N. We also assume that the links have been renumbered so that
the first Np links are those in set the next NAAS links are those in set MS. the next NM
links are those in set M, the next Nslinks are those in set & and the final NR links are
those in set ,R In this way, the output of the simulation program consists of "ground
based" and "satellite-based" data. The ground-based data are comprised of:

v " r &
fl5 6

S= I , 2, ..., 365; 1 = I , 2, ..., Np;
S= Ago), Ag()+l; 1 = N p + I , Np+2, ..., N~+NM+NM;

where Ago) indicates the day on which the first of the two consecutive 24-hour ground-
based counts are obtained with movable ground sensors.

30

The satellite-based data are comprised of

v”l.6 9 &&I@), AS^@), ..., &I[@,); I = Np+It Np+2, ..., NP+NM&
Np+Nm+NdI, ...,
NP+N&NdNS

where &j(l) indicates the day on which a satellite-based estimated daily volume was
produced on link l for the
satellite-based estimated volume was produced on link I during the year.

time in the yeary and I1 indicates the number of times that a

The simulation program also produces the true values of the AADT’s and link lengths for
each link 1 and the true VMT as output, i. e. :

4, I = I , ...) N;

I = I , ... N, AADTI,

VMT.

A listing of the generation programs can be found in Appendix D.

4.1.2 Estimation of T r a r i Parameters

Our estimation programs use the output of the simulation programs as input and estimate
Annual Average Daily Traffic (AADT) for each link I in the network and then Vehicle
Miles Traveled (VMT) fiom these AADT’s and the corresponding segment lengths dl.
We consider two methods - what we call the traditional method and what we call a
model-bused method - to produce these estimates. We produce estimates when using
only the ground-based data and when combining the ground-based and satellite-based
data.

4.1.2.1 Traditional Esti n Mahod

Ground-based data on&: Estimating AADT’s using the traditional method with only
ground-based data is similar to the commonly proposed method (U.S. Department of
Transportation 1992, McShane and Roess 1990) of

i)
ii)

iii)

iv)

estimating expansion factors fiom data obtained fiom permanent ATR’s;
using these expansion factors to convert 24-hour volumes into annual
average estimates;
averaging the different annual average estimates for the same link to
produce an estimate of that link’s AADT;
estimating AADT on links with no observations from the AADT estimates
of the links for which there were observations.

i

!

31

Specifically, the AADT's for the N p links in set equipped with permanent Am's are
estimated as the average of the 365 hourly volumes:

where we append "('" to the AATIT variable to indicate that the AADT is estimated from
ground data only.

The 365 rrg! volumes on these N p links are also used to estimate the month-of-year and
day-of-week expansion factors as:

where [.] 1 E {I, .._, ~ p f represents the harmonic average over the N p segments with
permanent ATR's, and < . >M(@=m and < . >~(@d represent the arithmetic averages over
ali days-of-the-year Sthat are, respectiveiy, in month m and on day-of-the-week d, and
the "@" 's appended to the EFs indicate that the factors are estimated from ground-based
data only.

The AADT's using ground-based data only for the links in sets MS and M where counts
have been taken with movable ground sensors are estimated as:

that is, the average of the two 24-hour volumes obtained on the link on consecutive days
(Ago) mi Ago) + 1) after "expanding" the 24-hour volume into an estimate of the annual
average using the appropriate monthly and day-of-the-week expansion factors.

The AADT's estimated when using only ground-based data for the links in sets S and &
where no ground-based data have been obtained, are estimated as the arithmetic average
of the estimated AADT's of the links for which ground-based data have been obtained:

m * l = c k = 1, .._ , h?P+h5US+k u D f l @ k 1 @p+Ni.i+N$,
I = NP+NM,+N& I , ... , N. (4.13)

The VMT using ground-based data only TA47@ is estimated as:

I

Combined satellite-based and ground-based data: When combining the satellite-based
data with the ground-based data in the traditional method, we treat 24-hour volumes
generated from simulated satellite observations in the same way that we treat 24-hour
volumes generated from simulated ground observations, except when simulated satellite-

32

based estimates occur on one of the Np links assumed to have permanent ATR’s. In this
case, we ignore the satellite observation, since the ground-based data on the links
equipped with permanent ATR’s are assumed to be error-free data.

Specifically, the AADT’s for the Nplinks of set equipped with permanent ATR’s are
estimated from ground data only, so that:

AADFdI = AADPI , 1 = I, ... , Np, (4.15)

where AADZ@l is determined from Equation (4.9), and we now use “(’@ ’’ to indicate that
we are considering the case where we can combine the satellite-based data with the
ground-based data to produce estimates. The month-of-year and day-of-week expansion
factors are again estimated using the ground-based data on the links assumed to be
equipped with permanent ATR’s so that;

m = I , ..., 12;
d = I , ..., 7.

(4.16)
(4.17)

where E f l f l m and EfldDd, respectively are determined from Equations (4.10) and (4.11).

For the NMS links on which 24-hour volumes are observed with a movable ground sensor
and for which at least one satellite observation is obtained during the year - is., the links
in set MS - the 24-hour volumes (whether obtained from the ground sensor or estimated
fiom the satellite observation) are expanded to an estimate of the annual average using
the appropriate expansion factors and then averaged. That is:

where the average is seen to be taken over the 2 ground-based observations and the II
satellite-based observations.

The AADT’s for the set M of links simulated to have ground-based observations taken
from a movable ground sensor but for which no satellite data are obtained are estimated
from the ground-based data only as in Equation (4.12). When only considering ground-
based data, Equation (4.12) was used to estimate AADT’s for all N&NM links where
ground-based data were obtained with movable sensors. The equation would only be used
for the N~l inks in set M when considering combined satellite-based and ground-based
data. That is:

AADF@~ = AADF,, 1 = NP+NM,+I, ..., NP+NM,+NM’ (4.19)

where AADZ@I is determined in Equation (4.12).

33

The AADT's for the set S of links for which no ground-based data were simulated, but
for which at least one satellite observation is obtained during the year are estimated as the
average of the expanded satellite-based estimates of the 24-hour volumes. That i-s:

where the average is seen to be taken over the I1 satellite-based observations.

Finally, as before, the AADT's of links for which no data are available - i. e., the links in
set R - are estimated as the arithmetic average of the estimated AADT's of the links for
whiih some data have been simulated

M P d i = (c k = 1, _.. . Npimsim+m m P d k J (Np+N&Nki+Ns),
I = N ~ + N M ~ N & N ~ + I , ... , N. (4.21)

A listing of the traditional method estimation code is provided in Appendix D.

4.1.2.2 Model-Based Estimaabn Method

Ground-based data only: When assuming the log-normal error model as that which
generates the link volumes, our model-based method uses a least squares approach to
estimate AADT's. Unlike the traditional estimation method, the model-based model uses
all observations to estimate the parameters of the model assumed to produce the
observations.

Specifically, when using ground-only data the model-based method assumes that
Equations (4.2) and (4.3) produce observed link volumes. Substituting Equation (4.2) into
EQuation (4.3) and taking the natural logaritbm of both sides produces:

~n P4i= I ~ A A L I ~ - ~n EP&~ - ~n EP~~,,, - P2i2 + PLst
S= I ,..,, 365' I = 1, ..., Np (4.23 a)

for the Nplinks in set E and

for the NMS+NM links in sets MS and M. These 365Np+2(3.!&-Nu) equations are used in
a least squares routine to minimize the sum of the squares of the ddi,s terms and produce
estimates of the (NP+NM+NU) In AADTis, the 12 In E F M ~ ~ ((~ ' s , the 7 In E p ~ (@ ' s , and

34

dd2 12. We denote the estimated values of the In AADT’s by In AADfi@ ’. Unbiased
AADT estimates R4Dfid1 can be shown to be:

where q ’is the (estimated) variance of the In AADF@ ’1 estimate.

Unbiased estimates AADfld1 of the AADT’s on the Ns+NR links where no ground data
were obtained can similarly be shown to be:

where <In AADl@ *>e 1, ..., W+NMS+M and Var<ln A A D P ’ ~ > & I ~ + W + M ,
respectively, represent the arithmetic average and variance of the average of the
estimated “ln AADT’s” for the links in sets P, MS, and M output from the least squares
routine.

The estimated VMT using ground data only Wd is then computed as:

TAL“@ = C i = I N di * m f i ‘ i . (4.26)

where the AADfl@l values are determined from Equations (4.24) or (4.25), and the dl
values were generated in the simulation program. -

Combined satellite-based andground-based data: When assuming the log-normal error
model and combining satellite and ground data, the model-based method parallels that
described when using ground-based data alone and assuming the log-normal mor model.
Equations (4.2) and (4.3) are again assumed to produce 24-hour link volumes that are
observed by ground-based sensors, and Equations (4.2) and (4.4) are assumed to produce
24-hour estimated link volumes derived from satellite observations. Therefore, in
addition to Equations (4.23a) and (4.23b), the satellite-based data can be used with
Equations (4.2) and (4.4) to produce:

b In P)ia= In AADfi - In EPcI,,, - In EP*(@ - &j2/2 +
S= drlfl), ... + dr~i; 1 = Np+I, ..., Np+N~si

Np+NmN&I, ... , N p + N ~ f i N d Ns; (4.27)
I

I The 365Np+2@~fiNd equations associated with the ground-based data (Equations
(4 . W and (4.23b)) and the CI=W+I ..,.._ J P + ~ c3r, + CI=W+=+M+I ..,,.., W + ~ + M + N S PJ
equations associated with the satellite-based data (Equations (4.27)) are used in a
weighted least squares routine (Chambers and Hastie, 1992) to minimize the (weighted)
sum of the squares of the d@ls and ,?)l,sterms to produce estimates of the (n p + N ~ d N &
N , In AADTI’S, the 12 In E ~ M (@ ’ s , the 7 In E p ~ (@ ’ s , d@’ 12, and d““ /2. (The weights
used in the routine are inversely proportional to the variances @’ and the ds”, which are

35

assumed to be known as inputs for the routine in this preliminary work. In reality, these
variances would be unknown - indeed, they are estimated in the routine, as seen in
Equations (4.23) and (4.27). A process could be developed that iterates until the variances
assumed when dete
the routine.)

. . g the input weights are close to those that are estimated from

We now denote the estimated values of the In AADT’s by In AADp@ ’ to indicate that
both satellite and ground data have been used in this estimate. Similar to what we did
above, we form the unbiased AADT estimates as:

AAD~(“~‘I = exgln AAD?~ ‘1 - q’12) , l=I , ... Np+N~s- tNdNs; (4.28)

where q 2 is, again, the (estimated) variance of the estimated In AADfld ;.

The unbiased estimates of the AADT’s on the NR links in set
were obtained are, then:

where no ground data

where <In ~ ~ ~ 7 “ ’ 5 > ~ 1 , m+miw+m and VM<ln A A D I + @ * ~ ~ ~ , N P i N M S + M i N S ,
respectively, represent the arithmetic average and variance of the average of estimated
“log AADT’s” for the links in sets P, MS, M, and S output from the least squares routine.

The estimated VMT using combined satellite and ground data KA4$$ is then computed
as:

where the R4Dfldlvalues are determined from @uations (4.28) or (4.29), and the dl
values were generated in the simulation program.

We developed but did not implement the underlying theory of the methodology for
model-based estimation when assuming volumes were generated from a Poisson
distribution. That is, when assuming Poisson generation, we only used the traditional
model.

A listing of the model-based estimation code is presented in Appendix E.

4.2 Numerical Study

We ran our simulation program for several sets of input values. In all cases, we
considered a network with N = IOU links and N p = 3 links; i. e., we assumed that 3% of
the links were equipped with permanent ATR’s, a percentage roughly equal to that in the
Ohio Department of Transportation system. We generated the link lengths dr from a

\

I

\

I

36

I

truncated normal distribution with = 1.5, od = 1.0, and dmjn = 0.3, and the true link
AADT’s from a uniform distribution with R4DTmin = IO, 000 vehicles and AADT,, =
90,000 vehicles (see Section 4.1 and Table 4.1). We set the variance of the error-term of
Equation (4.3) d@ = 0.04 and the satellite repeat period at = 18.25 days.

We considered different numbers of movable ground sensors, variance of the error term
associated with satellite data in Equation (4.4), and number of links imaged by the
satellite per repeat period. Specifically, we considered combinations of NM = 0, 12,25,
38, 50; 2‘’) = 0.04, 0.16, 0.36, and = 5, IO, 15. In McCord et al. (1 995) we estimated
that a 1-m resolution satellite would be capable of i-g roughly 0.5% of the links in
the continental United States per day. This percentage accounts for the fact that images
could not be obtained in cloudy conditions or at nighttime. Therefore, a 1-m sensor on a
satellite platform would be capable of imaging 365*0.5% of the N=IOO network links per
year. Since the satellite is assumed to image hp links each of the 365/F times per year it
repeats its coverage of the region, we can consider the “equivalent satellite coverage”
ESC as:

ESC =A? * (365/F)/(365 * 0.005 *N) = 200 * (idm) / p
= 200 * @/loo) / 18.25 = Iv‘/ 9.125. (4.3 1)

,

This equivalent satellite coverage represents the hction of data fiom a 1-m resolution
sensor equivalent to that which would be produced with the assumed N‘ and values.
For example, hz = 5 links would correspond to using roughly half (2 . e., ESC =

5/9.Z254.5) of the data p;oduced from a 1-m sensor on a satellite platform.

We summarize these input parameters and the expansion factors used in Table 4.1.

For each set of input values, we ran the simulation-generation program 100 times,
simulating 100 independent replications of a one-year analysis period. Each run produced
for each link I one true AADT, one AADT estimated when using the ground-based data
only, and one AADT estimated fiom combined ground-based and satellite-based data. As
above, we denote these values AADfi, AALIPI, and AADD?@l, respectively. We formed
the relative AADT error for link I for each simulation run r when either using ground-
based data only or when combinin satellite-based data with ground-based data as

mean squared relative error in AADT across all links for a given simulation run as r:
(AAo$)Lr -AADThJ/R4DTl,,, ‘ B =@,(“; I = Z ,..., N : r = l , ... ,100; andtheroot

From these 100 values, we formed the average of the root mean squared relative errors
across all runs as:

AMREaadk) = &=I. ..., 100 RMsREaadk), f 100, = @, (’&. (4.32b)

37

Table 4.1 Values of input parameters used in simulation-estimation runs.

Yumber of total network links (N)
Number (%) of links equipped with
permanent A m ' s (N p) I

Number (%) of links equipped with
movable ground sensors (N,)
Mean of link length distribution or(r)
Standard deviation of link length
distribution (a d)
Lower bound of link length distribution
[dmd
Upper bound of AADT distribution
(A W m c c 1
Lower bound of M T &StrdOUtiofi
(M T m i n)
Day-of-the-week expansion factors (EFU =
SEPd, d = 1, ... ,7})
Month-of-the-year expansion factors mM
= (ern, m = I,..., 12))

100
3 (3%)

0 (O%), 12 (12%), 25 (25%), 38 (38%), 50
(50%)
1.5
1.0

0.3

10,000

30,000

{ 1.072OO0,1.121000,1.108000, 1.098000,
1.015000,0.899000,0.790976}
{ 1.215000, 1.191000, 1.100000,0.992000,
0.949000,0.918000,0.913000,0.882000, _ .

HourZy expansion factors = {EFHb h
0.884000,0.931000,1.026000, 1.152032)
(1.011000,1.123000,1.221000,1.709000, - - l,.. , 24)) (used for Poisson generation)

Variance of "ground-based data error term"
(a2")
Variance of "satellite-based data error
termyy (d@)
satellite repeat period (Ix)
Number of links imaged per pass (N")
Approximate equivalent satellite coverage
(ESC) (determined by and N">

. . . . -. .. .

2.062000,1.532000,0.925000,0.703000,
0.33 1000,0.433000,0.825000,0.995000,
1.601000, 1.774000,0.964000,0.734000,
0.402000,0.373000,0.854000, 1.437000,
1.755000,2.158000,2.105000,1.123 191)
0.04

0.04,O. 16,0.36

18.25 days
5,10,15
0.5, 1.0, 1.5

We used the generated link lengths to estimate the true VMT, the VMT estimated when
using ground-based data only, and the VMT estimated when combining satellite-based
with ground-based data as in Equations (4. l), (4.14), and (4.22)- Somewhat similar to
what we did in s u m m ~ n g t h e AADT CZTOTS, we formed the relative VMT error for a
given run r and the average relative errors across all runs, respectively, as:

I

, -s
I

I

I

/-

I
/

i

38

f

(433b)

In Figures 4.1a-4. IC, we graph the average AADT errors AMREaadt of Equation
(4.32b) as a funetion of the number of movable groundsensors Mwhen using only
ground-based data (solid curve) and when combining satellite-based and ground-based
&(dashed curves). In these figures, the abscissa portrays the number of moveable
gound sensors as a proportion of theN=lOO links in the network. That is, an abscissa
valueof 0.2, fsr example, is obtained from M/N = 20/100. The results in these figures
were produced using the lognormal generation and traditional estimation programs. We
present results for equivalent satellite coverage ESC approximately equal to 0.5 satellites
(Le.,
(z.e., A# = 15) in Figure 4. IC.

= 5) inFigure 4.1% 1.0 satellite (z-e., N' = IO) inFigure 4.lb, and 1.5 satellites

The different curves for the combined satellite-based and ground-based data represent the
use of different variances of the error term in the satellite-based information. tlrs
mentioned above, we held d@ = 0.04 for all runs. The lowest combined satellite-based
and ground-based data curves in the figures were produced with 8) = 0.04, representing
a case where the 24-volume estimates from the satellite data would be as good as those
obtained fiom ground sensors. This would be an unrealistic case, but it serves as a lower
bound on the combined satellite- and ground-data case. The middle and highest combined
satellite-based and ground-based data curves were produced with d") = 0. I6 and =

0.36, respectively. As mentioned above, an appropriate relation between 8) and d@ is
-own at this time, and dete
we note that when 8') = 0.36 the variance of the error term used in producing satellite-
based estimates would be nine times that of the error term used in producing the ground-
based volumes, which could be considered a large increase.

. * g such a relation would require future research. Still,

In Figures 4.la-4. IC, we see that all the curves produced when combining satellite-based
and ground-based data lie entirely below the curve produced when using only ground-
based data. (The ground-based data only curve is the same in the three figures, since the
figures differ only in the amount of equivalent of satellite coverage.) More specifically,
even when covering up to 50% of the links per year with movable sensor (Proportion of
movable ATR's - 0.50) and when using the equivalent of only one-half of available
satellite data (Figure 4.1 a), using satellite data markedly decreases AADT error fiom that
produced when using ground-based data only, even when the error associated with
scaling up the satellite snapshot to a 24-hour volume is considered high (d") = 0.36).

Note also that the error associated with using only ground-based data when the
proportion of movable ground sensors is 0.50 (50% of the N links) is greater than that
associated with combined satellite-based and ground-based data when the proportion of
moveable ground sensors is 0.12 (12% of the N links), even in the d'') = 0.36 case and
when using only half the available satellite data (Figure 4. la). Since we are considering a
time period of one year, a 0.12 proportion of movable ground sensors represents a
scenario in which all the links of the network would be covered with movable counts

39

..

I- n
I
I
I
1
I
I
i
I
I
I
I

!
I
I
I
I
I
I
I
I
I
I
I
I +
I
I
I
I
I
I
I
I
I
I
I
4

I I I I I I I

Z ' l 0'1 8'0 9'0 P'O Z'O 0'0

J O J J ~ a ~ ~ e l a i paienbs ueaw JOOU

r h

t..

I -

O w ,

..-

i

I

I I I I I I I

rn
0

-?
0

c')
0

cu
0

Y

0

0
0

Z'1 0'1 8'0 9'0 9'0 Z'O 0'0

JOJJa aA!lelaJ paienbs UBauI l O O u

1 i

I- n

I 1 I I I

Z'C O'L 8'0 9'0 P'O 2'0 0'0

I
' v) -
0

."?
0

c\!
0

7

- 0

0
- 0

,m
I

I

r '

I
i

I'

approximately every eight years, whereas a 0.50 proportion represents one in which the
network would be completely covered with movable counts every two years. According
to these results, then, incorporating satellite data into the estimation of AADT’s would
allow ground crews to operate on an %year cycle and still produce better estimates than if
they operated on a 2-year cycle without satellite data, even when there is great variability
in scaling up satellite snapshots to 24-hour volume estimates. Fewer DOT resources
would be required for an 8-year cycle (ie., the “with satellite data7’ scenario) than for a 2-
year cycle (ie., the “without satellite data’7 scenario).

In Figure 4.2 we graph the average relative VMT errors AREvrnt’s of Equation (4.33b)
for equivalent satellite coverage of 1.0. Again, we see that the combined satellite-based
and ground-based data curves lie below the ground-based only data curve. From the
figure, we see again that the error when a proportion of 0.12 of the links is covered with
movable ground sensors on the $(‘)=O. 36 combined satellite-based and ground-based
data curve is no worse than the error at a 0.50 proportion on the ground-based data only
curve. That is, covering the links of the network with movable ground sensors on an 8-
year cycle when incorporating satellite data would lead to VMT estimates that are as
accurate on average as those produced when covering the network on a 2-year cycle
when not using the satellite data, even when scaling up satellite snapshots to 24-hour
estimates is very ccnoisy’7 (high d(”).
In Figure 4.3 we graph the average VMT errors ARMSREvmt of Equation (4.33b) when
using the traditional estimation method, but when assuming that volumes are generated
fiom a Poisson distribution. We again graph as a function of the number of movable
ground sensors Mwhen using only ground-based data (solid curve) and when combining
satellite-based and ground-based data (dashed curve). Since there is only one parameter
of the Poisson distribution (the mean), we cannot parameterize the simulation by
vitsiances, as in the log-nor-xnal case. Therefore, there is only one curve for the combined
satellite-based and ground-based data estimation.

Under this different set of assumptions (Poisson generation) the value of the satellite data
in reducing the error in AADT estimation is again strikingly apparent. The curve
produced when combining the satellite-based data with the ground-based data lies below
that produced when using only the ground-based data. Again, covering the network with
ground-based counts on an 8-year cycle when coupled with satellite data produced better
results than covering the network on a 2-year cycle without satellite data.

We also investigated the improvements that would stem fiom using the model-based
estimation procedure with the log-normal generation assumption (see Section 4.1.1.1). As
we did in Figures 4.la-4.1~’ we plot in Figures 4.4a-4.4~ the average AADT errors
AWREuadt of Equation (4.32b) as a function of the proportion of movable ground
sensors when using only ground-based data (solid curve) and when combining satellite-
based and ground-based data (dashed curves). Whereas the results in Figure 4.1a-4. IC
were produced when using the traditional estimation method, the results graphed in
Figures 4.4a-4.4~ were produced when using the model-based method.

43

..

I
I
I
I
I
I
f
I
I
I
I
I +

I
I
I
1 .
I
I
I
I .
I
I
I
i

I
I
I
I
I
I
I
I

4
I
I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4
I
I
I
I
I

I ,
I
I
I
1
I
I
I
I
I
I
I
b

s 1'0 0 1'0 SO'O 0'0 OZ'O

0
0

!

. o :
4

II
0 wl Ct.1

, 6:.

*... . . . -. .
I /

!

I

I
! -

I

-.,

- - -

/

I
t
I
I
I
I
I
I
I
I
I
I
I
I +
I
I '
I
I
I
I
I
I
I
1
I
1

OZ'O s C'O 01'0 90'0 0'0

1

I I I I 1

m
0

w
' 0

c3
0

"!
0

Y

0

0
0

l o
OZ'O s L'O OL'O. SO'O 0'0

C .-

. .
. .

0

- .

+

0

I I I I I

0'0

0

0
0

0

y.
0

0
0

t t 0 .

. ' I
I
1
I
I
I
I
I
I
1
I
I
I
I

i
I
I
I
I
I
I
I
I
I
I
I
I +
I
I
I
I
I
I
I
I
I
I
I
1

I
1
I
I
I
I
I
I

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
4

+

0

m
0

Tf
0

c'3
0

c\!
0

7

0

0
0

c c

i
u3

- 0

1 l i
1 ;

I I :

Z'l 0'1 8'0 9'0 P'O Z'O 0'0

I
' I
I
I
I
I
I
I
I

1
I
I
I
I
I
I
I
I
I
I
I

+
I
I
I
I
I
I
I
I
I
I
I
1

I

I I I I I 1
I

I ' l 0'1 8'0 9'0 P'O Z'O 0'0

Ln
- 0

- Y
0
. _

m
- 0

. c \ !
0

.r

0

0
0

The results in this set of figures again show that adding satellite data is markedly reduces
estimation errors even in the high variance (d(’)=0.36) case and when using only half the
satellite data (ESC - 0.5). Once again, lower average error is produced from covering the
network with ground counts on an 8-year cycle with only half the satellite data @SC =
0.5) than on a 2-year cycle without satellite data, even in the hgh variance case (see Fig.
4.4a).

A comparison of the Figures 4.4a-4.4~ curves to their counterparts in Figures 4.la-4.1c
shows that our model-based estimation method improved on the traditional estimation
method. The improvement was most pronounced when using ground-based data only and
seemed least pronounced for the combined satellite-based and ground-based data curves
with high variance in the satellite error term (df”=O.36) with the highest satellite
coverage (ESC=l.5).

We also note that the d(’)-0.36 combined satellite-based and ground-based data curve
produced when using the traditional estimation method has smaller errors than the
~ I U U U U - U ~ ~ ~ ulLly dab zwve p d w e d whex~ 1mhg ?!x model-based estimation method.
That is, even when the satellite-based data are “noisy,” using these noisy data with an
inferior (traditional) estimation method decreases AADT estimation errors more than
using a better (model-based) estimation method without the data,.

---.-A L..,,A ..-l.,

,

The errors graphed in Figures 4.4a-4.4~ are based on averages over 100 replications of a
one-year analysis period. In Appendix F, we present scatter plots of the 100 paired
(traditional method vs. model-based method) WREaadt values of Equation (4.32a)
when using only ground-based data and when combining the satellite-based and ground-
based data at various do) values for 0.25 @4=25) and 0.50 (M=50) proportion of links
covered with moveable ground-based sensors, and at ESC=l.J. Comparing the results of
Figures 4.4a-4.4~ to Figures 4.1a-4. IC, we saw that our model-based estimation method
performs better on average than the traditional method. The scatter plots confirm that the
model-based method does better than the traditional method in most individual
replications. Still, there are many cases where the traditional method outperforms the
model-based method, and we feel that future improvements could be made to our model-
based method.

I

i

52

Section 5. Summary and Future Work

In this report, we documented progress on three issues that would need to be addressed
before high-resolution satellite imagery could be used to complement trafKc monitoring
programs:

demonstrating that vehicles can be identified and classified accurately from real
satellite imagery;

developing efficient image processing methods;

. . dete g methods to integrate the imagery with ground-based data and assessing
the value of this integration.

Although substantial progress has been made, we feel that further work is needed in each
of these areas.

We have been developing a methodology to compare vehicle classifications obtained
from satellite images with those obtained from traditional ground counts and writing
software that would automate much of the analysis. The results of field tests designed to
demonstrate the methodology, where we used scanned aerial photographs to simulate
satellite imagery, were encouraging and instructive.

When high-resolution satellite data becomes available, the methodology we have been
developing should be applied to show that vehicles could in fact be identified and
classified in hgh-resolution satellite imagery. Because of the different types of data -
data obtained over space at an instant of time in the images, and data obtained over time
at a point in space in the ground data - discrepancies can occur between the two
classifications. These discrepancies can occur even if every vehicle is correctly identified
and classified in the satellite imagery. Therefore, we suggest that more work be devoted
to reducing the size of this discrepancy and developing a maximum size of discrepancy
that can be tolerated and still conclude that vehicles are being classified acceptably in the
two data sets. When pl g for tests with real satellite data, additional thought will also
have to be given to differences that can arise when using real satellite data. For example,
thought should be given to differences in data format, the ease with which the
appropriate highway segments can be identified in large area images, and an edge
detection algorithm to efficiently determine the highway edge lines.

We are also encouraged by the progress made in our image processing approach.
Specifically, we have developed a means to transform the steady-state background image
of a highway segment to those of a time t-image that is to be analyzed for vehicles. Our
objective is to classifL the subtracted pixel values of the two images into dynamic and
static pixels, where the dynamic pixels would serve as an indication of movement
attributed to vehicles. Experiments on simulated images and scanned aerial photographs

53

produced encouraging results and demonstrated the robustness of the results to prior
estimates of traffic density, estimates required as input to our approach.

Future work would be necessary to develop, test, refine, and code the image processing
algorithms we have been developing. Until now, we have used simulated images or
scanned aerial photographs to serve as the steady-state background images of the
highway pavement. In practice, we would expect that the background image would be
constructed from a series of images taken over time. For example, the background image
could be obtained by averaging images of a specific segment acquired at different times.
Each time a new image is acquired, it would be combined with the present background to
form an updated background image. Averaging the images should substantially reduce
the contribution of the dynamic signals (principally, vehicles) after a sufficient number of
observations, leaving a background image that corresponds almost entirely to an average
of pavement signals. This averaging procedure could be tested using a series of satellite
images when such images become available. Until then, a series of scanned aerial
photographs or digital photographs of the same highway segment at different times could
be used. Tiis approach is motivated by a~ iissmptim &!zit the d p ~ m i c (vehicle) si-gnals
are sufficiently few that they would be filtered out after averaging a few images. This
should be the case on lower vehicle density highways. However, it is also necessary to
determine a good procedure for constructing the background image on highways with
higher vehicle densities.

It appears that our transformation procedure is working well. Still, it should be tested
more systematically and under a variety of conditions. It would be more efficient to
conduct large-scale testing on simulated images, but some real images - either scanned
aerial photographs, digital images taken fiom an aircraft, or real satellite images - should
also be investigated to ensure reasonableness of the process generating the simulated
images.

m

The transformation and subtraction procedure must also be integrated with a vehicle
classification module. The classification module would operate on the pixels that
received a sufficiently high probability of being dynarmc after subtracting the
transformed background image fiom the time t-image. Decision rules can be used to
determine whether groups of such dynarmc pixels constitute a vehicle or a nonvehicle
object. If the group of pixels is identified as a vehicle, the group of pixels must then be
classifiedrby vehicle type. Previously, we developed rules to operate on a binary output of
a thresholding procedure (Merry et al. 1996). These rules worked well in conditions
where vehicle shadows were pronounced. We feel that it will be possible to modi@ these
rules to work well with our transformation and subtraction approach under a wider set of
conditions, but other methods should also be investigated.

Further work is also warranted in determining the value that imagery data would add to
traflic monitoring programs and to integrating these data with those obtained from
ground sensors. We have been concentrating on estimating Average Annual Daily Traffic
(AADT) and Vehicle Miles Traveled (VMT). Based on results produced from the

54

simulation and estimation programs we have developed, it appears that adding satellite
data to ground-based data would improve the quality of the AADT and VMT estimates
while requiring fewer ground personnel to collect ground-based traffic counts. -

Y

These encouragmg results were obtained even when using methods similar to those
traditionally employed, methods that were not designed to take advantage of the two
different types of data. Our first attempt at “model-based” methods improved the
estimates further. However, we expected to see greater improvement with the model-
based method, and we therefore feel that this method can be refined in the future. Also,
the method should be investigated for robustness to data that are not entirely compatible
with the assumed model. More radically different methods should also be investigated for
combining ground-based and image-based data more effectively - for example, methods
that take advantage of spatial correlation in the traffic patterns that can be observed in the
satellite images.

We also feel that slight modifications in the generation and estimation software we have
developed would produce powem tools for investigating other questions. For example,
this type of software could be used to identrfy temporal patterns in traffic flows that lead
to especially large or small additional value that could be contributed by the satellite
data. Such knowledge would ultimately be useful in deciding which highway segments to
target with pointable satellite sensors. The software could also be used to assess the
relative effectiveness of ground-based sampling patterns when using satellite data. This
idormation could then be used to design sampling strategies in state Departments of
Transportation (DOT’S), or other agencies interested in estimating AADT and VMT.

In addition, other issues not addressed in this study should be investigated if satellite
imagery is to be incorporated in traffic monitoring or other transportation programs. For
example, institutional issues associated with obtaining data in standard formats on a
long-term and reliable basis, preprocessing these data, making them accessible to state
DOT’s, and having the DOT’S integrate them into their operations would need to be
addressed. Moreover, exploring the use of the imagery data to identi@ parameters other
than AADT or VMT seems
developing classes for volume or weight samples, targeting resources for speed studies,
detecting high truck volumes on alternative routes to those passing open weigh stations,
or calibrating flow prediction models.

ted. For example, the image data could be useful in

55

References Cited

American Society of Photogrammetry and Remote Sensing, 1996. "Land satellite
information in the next decade - The World Under a Microscope," Executive Summary,
American Society of Photogrammetry and Remote Sensing, Bethesda, Maryland, 72 p.

Castelman, K.R., 1996. Digital Image Processing, Prentice Hall: Upper Saddle River,
New Jersey.

Chambers, J.M., and J. Trevor J. Hastie [e&.], 1992. Statistical Models, S . Wadsworth
and BrooWCole, Pacific Grove, California.

McCord, M.R., C.J. Merry and J.D. Bossler, 1995a. The feasibility of traffic data
collection using satellite imagery, Final Report to Federal Highway Administration, The
Ohio State University, Research Foundation: Columbus, Ohio, April, 208 p.

McCord, M.R, C.J. Merry, X.D. Sun and F. Jafar, 1995b. Resolution effects on vehicle
counts and classification through remote sensing, Journal of the Transportation Research
FOM, 35(1):41-52 1

I

McCord, MR, C.J. Merry and P. Goel, 1998. Incorporating satellite imagery in traffic
monitoring programs, Proceedings of the North American Travel Monitoring Exhibition
and Conference (NATMEC '98), Charlotte, North Carolina., 1 1-15 May, 18 p.

I

McShane, W.R. and R.P. Roess, 1990. T r e e Engineering, Prentice-Hall: Englewood
Cliffs, New Jersey, 660 p.

I

Merry, C.J., M.R. McCord, J.D. Bossler, F. Jafar, L.A. Perdz, 1996. Feasibility of using
simulated satellite data coordinated with traffic ground counts, Final Report to Federal
Highway Administration, The Ohio State University, Research Foundation: Columbus,
Ohio, August, 80 p.

U.S. Department of Transportation, 1992. Traffic Monitoring Guide, U.S. Department of
Transportation, Federal Highway Administration, Office of Highway Information
Management, FWWA-PL92-017, October, Washington, DC.

56

Appendix A. Description of the Software Code for Computing Traffic Measures

!

Introduction

We developed software that computes tr&c measures at a location on the highway
during a time interval from a snapshot of the highway. We called this software COUNT.
The basic input data for COUNT are the highway axis, vehicle records, count location,
and the time interval during which the measures are to be computed. The output data are
traffic measures during this time interval at the specified location. Additionally, this
software has the capability to compute the maximum time interval allowed by the
highway limits for extracting W i c measures. COUNT is written in FORTRAN and is
complied and linked using a FORTRAN-77 compiler on a workstation platform. It can
easily be adapted to any other FORTRAN compiler or other platforms.

In th is chapter we describe the input data required by this software, the output, and the
code of the software. The next section describes the input and output data and gives
examples of the data format. The following sections describe the various modules of the
program-

Software Input Data

In this section we describe the input data for COUNT and provide examples to illustrate
these data. The data format described is that read by the version of COUNT used at the
time of this writing. This version is the one described in here. All the components of the
data must be included as input to COUNT; however, the format and order of the
components can be changed. The modules that read the input data may be modified to
read the input in different formats. Thus, the input format would have to be changed to fit
the requested input format by that version.

In this section, we first explain the highway axis data, then the vehicle record data, the
highway count data, and the highway limit data.

Highway Axis Data
Highway axis data are used as an axial reference for all the vehicle locations on the
highway at different times. The Euclidean distance computed using the coordinates of two
locations would determines the straight line distance between these two locations on the
highway. However, distances on highways are not necessarily straight. For example, a
vehicle does not travel in a straight line when navigating a horizontal curve. The highway
geometry can be represented by the highway axis. The axis is a linear feature of the
highway. We found it usell to have this axis correspond to the inner edge of road
pavement. In this research, we refer to this highway inner edge axis as axis for simplicity.

Highway axis data used in this software are a highway datum point and the digitized
highway axis coordinates. The datum point is an arbitraxy distance corresponding to the
first point of the axis. It could, for example, be the linear distance from a known- landmark
on the road to the point, the mile marker distance of the point, or any other arbitrary
distance specified. The coordinates of each digitized point are denoted (xq,y%), where x%
refers to the xa coordinate of the ith digitized point and ya; refers to the ya coordinate of
the ith point on the axis. These coordinates could be given with reference to any
coordinate system, but the digitized axis coordinates for one highway segment should
refer to the same coordinate system and datum.

This version of COUNT assumes that the datum point is given in units of meters because
this software is set to process images with resolution given in Metric units. Figure A-1
shows an example of a highway axis input data file corfesponding to the images shown in
Figure A-2. The first line in this data is the datum point distance, which was arbitrarily
set to a value of 2000. If desired, the real mile marker distance could have been used as the
reference distance for the datum point. We choose the datum value to be some distance
greater tban zero so that if an extension beyond the beginning of the highway axis is
extended by some distance from the starting end, the axis distance in the extended part of
the axis will remain positive. We explain this aspect in more detail when we talk about the
highway axis module.

Axis coordinate data start on the second line in Figure A-1. This line contains the
coordinates of the datum point of the highway axis whose arbitrary distance was given in
the first line. In this example, the point-at xa = 1087 and ya = 6106 is 2000 m from some
datum. The coordinates of the following points along the axis follow in order.

,

A2

Vehicle Record Data
Location and time data for imaged vehicles are also required as input for this software.
Using the location of a vehicle on an image, the time when the vehicle was imaged at that
location, the location of the count point, and the speed of the vehicle, the time when the
vehicle would pass the count point is estimated. (Count point is where vehicles are to be
estimated to pass during the time interval of interest.) Using time and location records of a
vehicle in two consecutive images, the average speed of the vehicle when traveling
between these two locations can be estimated.

Each vehicle observed in an image receives a record. Records of vehicles in different
vehicle classes are saved in separate lists. The version of COUNT described here only
considers two classes of vehicles, large vehicles and small vehicles. For simplicity we refer
to them as trucks and cars in this research. Thus, the vehicle records are sorted into two
lists, one list for cars and one list for trucks. A record contains information that identifies
the vehicle with an integer identity number, locates it in the coordinate system through its
x and y coordinates, and indicates when the vehicle was at the given location with a time
stamp.

A vehicle that is imaged more than once will have more than one record. However, the
integer identification number would be the Same for different records corresponding to
this vehicle. Identiwng the same vehicle at different locations in different images leads to
velocity estimates of the vehicle. The velocity is estimated as the distance traveled
between the image when the vehicle was at these locations.

Vehicle coordinates are the coordinates of the vehicles located with reference to the
coordinate system used for the highway axis. The vehicle coordinates are referenced by
(xvj, y"j), where xvj represents the x coordinate of the jth vehicle and yvj represents the y
coordinate of the jth vehicle. The time when the vehicle is seen at the specified location
(xvj, yvj) is the time when the vehicle was imaged at these coordinates.

To illustrate, consider the vehicle record data in Figure A-3. The first line in the file is a 1
to indicate that the following are records of cars, which are identified as class 1 of vehicles
in this study. The first line in the records of cars contains the record of a vehicle that is
identified as car 4. The following two numbers are the x and y coordinates of the location
of this car. The last number in the record is the time when this car 4 was at these
coordinates, represented in h0urs:minutes:seconds. This line indicates that car 4 was at
x=1018 and y = 5846 at time 10:54:3 1. The second line contains the records of vehicle 5.
This record indicates that vehicle 5 was at x=1017 and ~ 5 8 2 8 at 10:54:31. Line 7
contains the records of car 1 1 , which indicates that car 1 1 was at x=921 and y=545 1 at
10:54:3 1. Lines 17 and 24 also contain records of car 1 1. However, these records
correspond to car 1 1 being imaged at times 10:54:36 and 10:54:41, respectively. Line 27
has the values (-1, -1, -1, -1, -1, -1). This is the indictor for the end of car data. The next

I

I

I

i

A3

line contains a 2, which indicates that the following data are data records of trucks, the
record category of vehicles in this study. The truck data are arranged in the same format
as the car data. Like the car data, the last line has the values (-1, -1, -1, -1, -1, -l), which
indicate the end of the data in this class. If more vehicle classes are eventually used, then
class numbers can be added. The module that reads the data would have to be modified to
read data of more classes. We will indicate the lines code where this module needs to be
modified to read more data when we explain the modules in the following sections.

Vehicle data are listed in order of the time when the images were taken. The records of the
vehicles imaged at an earlier time are listed before the records of the vehicle imaged at a
later time. The soha re assumes that the data are arranged in this time ascending format
in the input data file. Ifvehicles are not arranged in an ascending order, we could write a
module to rearrange it in this ascending format.

Highway Count Data
To compute level of service measures at a !mz!im, tkc sakmiie requires highway
parameters, count location data, and count interval. Highway parameters are the number
of lanes of the highway and the passenger car equivalent of trucks. The number of lanes of
the highway must be recorded for the specific highway at the given location. The
passenger car equivalent of a truck is also predefined for the specific highway depending
on the terrain of the highway at the specific location. @@way terrain is classified as
level, rolling, or mountainous, and each type of terrain has a different passenger car
equivalent of trucks for different highway class (see Highway Capacity Manual (TRB,
1997).) Count location data consist of the x and y coordinates at the location on the
highway where the traffic measures are estimated. (Traffic measures are estimated at a
point location on the highway to compare the measures estimated from the image data to
the measures estimated from at ATR location at this point. This work was motivated in a
large part by our desire to compare measures estimated from satellite data to those
estimated from ATR data.) The time interval is the time during which tr&ic measures are
computed at the count location. We denote the beginning of this time interval by t' and
the end by ?.

To illustrate, consider the example of highway count data in Figure A-4. These data
corfespond to the same highway for which the axis and vehicle data in Figures A-1 and A-
3 were obtained. The highway has three lanes (line 1) and has a passenger car equivalent
of trucks of 1.5 (line 2) (The passenger car equivalent of 1.5 was obtained from Table A-1
of the HCM for level terrain. The three lanes and 1.5 passenger car equivalent are entered
to this input file manually.) The count location coordinates are (x=903, y=5393) and the
time interval for the count begins at10:54:30 (line 5) and ends at 10:55:00 (line 6).

Highway Location and Limit Data
We mentioned earlier that the COUNT software has the capability to compute the largest
time interval allowed by the highway limits for extracting measures. Given images of a

A4

highway segment we can estimate traffic measures at any location on this highway. Time
interval for computing these traffic measures is limited by the length of the highway
segment imaged or by ramps. This software requires the limits of the highway and the
count location as an input to compute the largest possible time interval for computing
traffic measures. The highway location is defined by the x and y coordinates of the count
location. Highway limit data include the farthest points of the highway that have been
imaged. Figure A-5 shows an example of count location and highway limit data. The first
two lines present the coordinates (x=1011, y=5795) of the count location. The next two
lines indicate the coordinates of the limits of the highway. For exabple, the first limit of
the highway is at (x=lOSO, y = 6077) and the other limit is at (x=947, y= 5530).

SOFTW MODULES

In this section we describe the main program of the COUNT software and its various
modules. We present the general logic in flowcharts and explain the code in detail.
COUNT first reads the highway axis from input files described in the previous section
and computes the linear distances of these points from the datum. It then reads the
vehicle coordinate data from input files and projects the vehicle coordinates to locations
along the highway axis defined by the highway axis coordinates. Then the sofhare gives
the user the option to compute traffic measures during a specified time interval at a
specified location, or to compute the largest time interval possible for computing traffic
measures at a specified location for given highway limits. Ifthe user chooses to compute
M i c measures during a specified time interval, the software requires the user to input
the count location and count time interval. If the user asks the software to compute the
time interval, the software requires the user to input the count location and the highway
limits. Figure A-6 shows the general flowchart of this sohare.

TheMain Rocam
The main program declares variables and calls modules. This program is listed in
Appendix Al. Lines 4 through 63 in this listing declare the variables used in the program.
Comment lines have been added to explain where each variable is first used in the
program.

The main program first calls the module CENTERLINE. This module reads the highway
axis data and computes the axial distances fiom the original data of the coordinates in the
highway axis data file. The command to call this module is in line 66 of the main program
listing found in Appendix Al. In line 67, the main program then calls --Cy the
module that uses the axial distance to find the minimum and maximum distance of the axis
coordinate point in the output from CENTERLINE.

The main program then calls the VEHICLE, LOG-VEH, ORDER WH, DIRECTION,
and SPEED modules to read the vehicle data and process them to determine the individual
vehicle speeds and average speeds of cars and trucks. The commands to call these

A5

modules and associated comment are in lines 68 through 100. These are 12 command lines
to call modules in these lines are only 12. These 12 lines call 7 modules, 5 of which are
called twice, once for cars and once for trucks. Some of the call command lines take more
than one line of program list lines due to the large number of variables being passed to and
from these modules and due to the length of the variable names. (Most of the command
lines that call modules require more than one program list line and there are comment lines
that explain the program within the command lines.)

Next the main program calls CNT-TYPE, the module that asks the user to choose
between computing traffic measures during a time interval or computing the time interval
for the given highway limits. It does this by asking the user to respond with 1 to compute
traffic measures during a time interval and with 2 to compute the time interval for the
given highway limits. CNT-TYPE also accepts the user’s response. Depending on the
user’s choice, the main program calls different sets of modules. The flowchart in Figure
A-6 depicts the options. Line 104 in Appendix A1 is where the call is made to the module
that gives the user the choice and reads the user’s response. If the user chooses “l”, the
main module calls the.modules to compute the traffic measures for the given count
location, and lines 106 through line 124 are processed. If the user chooses “2”, it calls the
modules that compute the time interval for given highway limits, and lines 126 through
line 187 are processed.

Highway Axis Module
The CENTERLINE module, which process the highway axis data to compute linear
distances along the axis, is listed in lines 1 through 74 of Appendix A2. This modie reads
the coordinates of the points that define the highway axis contained in Highway Axis
Data Input file and computes the distances of these points from the same reference datum
as the first point in the file. The x and y coordinates of the points are saved in arrays XC
and YC. The distances at these axis points are saved in an array, LOC-CL. The
coordinate values and the distance for a given point are saved at the same reference
location in their respective arrays.

The XC, YC, and LOG-CL arrays are sized at the beginning of the main module and the
highway axis module. The statement to declare the sizes of the arrays is found in line 6 of
the main module (Appendix Al) and in line 5 of the highway axis module (Appendix A2).
Presently these arrays are sized to 800 spaces. If there are more than 800 points that
define the highway axis, the statements to set the sizes of these arrays should be modified
in these two arrays. (The FORTRAN compiler used to compile this software does not
allow for dynamic allocation of memory and has problems with global variables.
Therefore, we allocate a memory size for the arrays at the beginning in the main module.
For the same reason we allocate the memory size at the beginning of each module for the
m y s that are being used in that module.)

A6

After reading the data and assigning distances to the coordinate points, the axes are
extended at the edges and an extra point is added to each end of the highway axis. The
axes are extended so that vehicles that lie around the beginning or end of the axis can be
projected to the axis. This extension becomes important when the highway axis is at an
angle with reference to the coordinate axis of the images. (This case is explained in more
detail in the LOG-VEH module section.) The need to do this will become clear when we
explain the method of assigning distances to vehicles with reference to the highway axis.
To allow for these “extensions”, the first place in each array is saved for the extension of
the beginning of the highway axis. The extension at the end of the axis is saved in the
place following the last point of the axis.

CENTERLINE first asks the user for the name of the file that contains the centerline data
in line 13 and accepts the user’s response in line 14 (see Appendix A2). After reading the
name of the file, the CENTEXLINFi module calls the command to open the file (line 16 of
Appendix A2). If the file is opened with no problem, lines 26 through 68 are processed.
Otherwise, a failure message is printed at line 70, and the entire program is terminated.
When the file containing the axis data is opened, the value in the first line of the data file is
read (line 26) and saved in the second space in the array of centerline distances. As
explained above, this number represents the distance from some exterior datum to the first
axis point, the coordinates of which are listed in the second line of the axis data file. As
mentioned above, the first space in the LOG-CL array is kept vacant to save the distance
at the extended point of the axis.

Next, CENTERLINE reads the coordinates of the highway axis points in a loop (lines 29
through line 38 of Appendix A2). After reading the first line of the data file the loop
starts. The x and y coordinates of each point are read and saved into arrays XC and YC
sequentially through th is loop. While reading the data the module checks for invalid data.
Any data other than numerical values are considered invalid. Alphanumeric characters or
any other symbol characters in the data are considered invalid data. Similarly numerical
data with more than one decimal point, for example 2.2.0 or 2.2.0.0 are considered invalid
input. If any invalid data are read the program is terminated.

In addition to reading the data and checking for validity, the module checks for the end of
file within the loop and counts the number of axis points. The number of axis points is
used to define the size of the axis arrays to be used to save the data and to read data from.
A counter is used to count the number of axis points and this counter increments by 1
every time a new coordinate set is read. When the end of file is encountered the counter
stops incrementing and the loop is terminated. These checks are performed through
decision statements listed in lines 31 through 38.

When the loop is terminated two extra data records are added to the array. The first is
added at the first location, and the second is added at the location following the last record
in the array. These records are for the extension of the axis. The beginning of the axis is

A7

extended by creating a point located at a distance from the first point of the axis data that
is equal to three times the linear distance between the first two points of the input data.
The end is also extended in a similar manner, by creating a point located at a distance from
the last point of the axis that is equal to three times the linear distance between the last
two points of the axis. The beginning of the axis is extended by adding x and y coordinates
to the first space in the arrays XC and YC. This is done in lines 43 and 44 of Appendix
A2. The last point is extended by adding x and y coordinates to the spaces following
those where the last point of axis had been saved. This is done in lines 47 and 48.

The distance read from the first line in the axis data input file was assigned to the second
space in array LOG-CL because the coordinates of the point with this distance (Le., the
second line in the axis coordinate data file) are saved in the second spaces of arrays XC
and YC. Given the coordinates of this point and those representing the extension of the
axis explained above, the Euclidean distance of the extended chord is computed. This
distance is subtracted from the distance of the first axis point to yield the distance at the
exter?ded first p i n t cfaxis. Tt.,e &stace is szvd in the LC;G-CL a m y in &e first space.
The software then processes a loop (lines 61-68 in Appendix A2), beginning with the
third point., that computes the distances of each point and saves them at the appropriate
locations in the distance may, LOG-CL. The distances are determined by computing the
Euclidean distance between each point and the previous point and adding this incremental
distance to the cumulative distance of the previous point. The logic of this module is
illustrated in the flowchart shown in Figwe A-7.

Within the same loop (lines 61-68) the module checks for the largest distance in the x or y
direction between two consecutive points. This distance is used later in the module that
computes the distance of vehicles along the road axis. The largest distance is assigned to a
variable called DINC. The module initializes DINC to zero (line 10). Whenever, the loop
increments to compute the distance at a point on the axis, the linear distance between the
present point and the previous axis point is checked to determine if it is larger than DINC
(lines 65 and 66). E the distance is larger than DINC, this distance value is assigned to
DINC. When the loop is terminated, the value of DINC is the largest difference in either x
or y direction between the coordinates of consecutive points. This value is saved and
passed to the main program.

When completed, CENTERL,INE returns the control to the main program. It also returns
the values of the axis coordinates, the distances along the axis, and DINC to the main
module of the software. After completing the CENTERLANE module, the main program
calls the MINMAX C module that determines the minimum and maximum values of the
array LOG-CL. Th&e values are needed in later modules. They are saved in variables
CMIN and CMAX and passed to the main program.

. . a

A8

Vehicle Modules
There are six modules that read vehicle data and process them to obtain vehicle speeds
and then the average speed of each class of vehicles. We call these modules the vehicle
modules. The first vehicle module is called only once. The other five are each called twice,
once for processing car data and again for processing truck data. The first module, called
VEHICLES, reads the car and truck data and saves them in arrays. The other five modules
use these arrays to determine distance and speeds of cars and trucks. The flowchart
shown in Figure A-8 illustrates the order in which these modules are called. The first of
these five modules is LOG-VEH. This module uses the vehicle data arrays and the
centerline data to compute locations of vehicles, represented as distances, along the
centerline. This module is called once for each class of vehicles, cars and trucks in this
research. Module ORDER-VEH is called next for each class of vehicles. This module
sorts the vehicle data by their ID numbers and returns the vehicle data in the sorted
format. After sorting the vehicle data the DIRECTION module is called. This module
returns a value of +1 for the variable DlRECT if the distances of the vehicles increase as
they travel downstream, otherwise it r e m s a -1 for the value of the variable DIRECT;
that is, a +1 if the distances are measured in the direction of traffic flow and -1 if the
distances are measured opposite to the direction of flow. This is important in computing
the speeds of vehicles to ensure that the speed values are all positive. It is also important
when estimating the times when vehicles pass the count location. We explain this in more
detail when we explain the modules that estimate the time when vehicles pass the count
location. Once the direction of the increase in the vehicle distances is determined, the
SPEED module is called to compute the speeds of the vehicles. Again, SPEED is called
once for each class of vehicles. After the speeds of individual vehicles have been
computed, module AVG-SP is called. This module computes the average of all the speeds
of the vehicles. It computes the average speeds of each class of vehicles separately and is
called once for each class. The commands to call the vehicle modules are listed in lines 68
through 100 of Appendix Al. Next, we describe these modules in more detail.

VEHICLES Module. This module reads the data in the format explained in the
VEHICLE RECORD DATA section. Every vehicle has a record for every time when it
was imaged. The record contains the vehicle identification number, x and y coordinates of
location of the vehicle, and the time when the vehicle was at that location.

The code for this module is listed in lines 76 through 132 of Appendix A2. This module
first asks the user for the name of the file that contains the vehicle data (line 88). After
reading the name of the file input by the user (line 89), the module calls the command to
open the file (line 91). If the file is opened without problem, lines 94 through 129 are
processed. Otherwise, a failure message is processed and printed (line 132), and the
program is terminated.

A9

- - -

When the file is successfully opened the counters for cars and trucks are set to initial
values of l(lines 95 and 96), and a loop to read the data is executed. (The counters are
defined by variables CRS and TKS for cars and trucks, respectively.) One large loop
(lines 98 through 124) is executed once for each class of vehicles. This loop starts by
reading the class of the vehicles and, depending on the value of the class, one of two
smaller internal loops is executed. If the class is 1, the loop that reads the car data is
executed (lines 102 through 107), and if the class is 2, the loop that reads the truck data is
executed (lines 1 10 through 1 15).

The loop to read car data starts by reading the first car identification number, the x and y
coordinates of the car location, and the time when th is car was at this location. The time is
given in a format consisting of three numbers that represent the hours, minutes, and
seconds. The time is then converted to.units of hours by calling module T C O W . The
car data is saved in the space defined by the counter for cars, which starts with 1, in the
arrays CAR-ID, XCAR, YCAR, and CAR-TIME-ID. The values saved in these arrays
are &e car identificatior? xmber, x cc?or&n~?es zfhe GZ-!SCZ~~U=ZI, y ccxx&nms ~ f k c GK
location, and the time in the units of hours. If the car identification number is not -1, the
counter for the number of cars is incremented by one (line 106) and the loop is repeated.
The next time through the loop the data of the next vehicle is read and saved in the arrays
at the location defined by the counter. If the car identification number is -1, which
indicates the end of car data records (see the Highway Axis Module section), the loop
terminates.

-

The loop to read the truck data is similar to the loop that reads the car data. The truck
data is saved in the arrays TRK-ID, XTFUC, YTRK, and TRK TIME - ID at the
locations defined by the counter for trucks. The values saved in-these arrays are the truck
identification number, x coordinates of the truck location, y coordinates of the truck
location, and the time in the units of hours when the truck was at that location.

After both the car and truck data are read, the larger loop is terminated and the module
passes the data to the main program. This module presently considers only two vehicle
classes, cars and trucks. It can be expanded to accommodate more classes of vehicles.
More loops can simply be added to read data for more classes. The new loops would
have to be added within the larger loop that contains the smaller read loops.

LOG- VjEH Module. The module LOG-VEH computes the linear distances (Le.,
distances measured along the road axis) of the vehicles with respect to the externally
defined datum. The input data for this module are the arrays that contain the highway axis
and vehicle data and the value of DJNC. (Recall that DINC was defined in module
CENTERLINE above and represents the largest distance in the x and y direction between
two consecutive points on the axis line.) The LOG - VEH module passes back to the main
program the array of linear distances that represent the vehicle locations along the
highway axis. To calculate the linear distance of a vehicle, a perpendicular to the centerline

A10

is projected fiom the x and y coordinates of the vehicle to the centerline axis. Then, the
distance from the external datum to the point where the perpendicular line intersects the
axis is computed and assigned as the vehicle location distance.

A flow chart of this module is presented in Figure A-9. The code for this module is listed
in lines 1 through 181 in Appendix A3. The distances of all the vehicles are computed
through a loop that repeats once for each vehicle record.

To determine the distance of a vehicle, the road axis points that are within a given
proximity of the vehicle location are identified. The module defines a search proximity
box with the vehicle location coordinates in the center and a width and height that are
equal to 4 times DINC, which was determine in module CENTERLINE. Any chord that
is partially within the search box is inspected. Imaginaq perpendicular lines to these
chords are drawn from vehicle location. The point of intersection between the
perpendicular line and the chord or its extension is determined by calling module
INTERSECT (line 26 of Appendix A3). If the point of intersection between the chord
and the perpendicular is on the chord, this is defined as the point to reference the vehicle
by. If the point of intersectin is on the extension of the chord, the chord is disregarded,
and the next chord is checked.

To illustrate, consider the schematic of a highway axis and a car represented in Figure A-
10. In this figure highway axis is represented by points C1, C2, C3, and C4 by the chords
(Cl,C2), (C2,C3), and (C3,C4), where C1, C2, C3, and C4 are the points whose
coordinates are saved in arrays XC and YC that represent the highway axis. The car
location is represented by the center of the rectangle labeled CARl . The perpendicular
drawn from the car location to the chords (Cl,C2), (C2,C3), and (C3,C4) or their
extension are points X1, X2, and X3, respectively. Points X2 is on chord (C2,C3), while
X1 and X3 are on the extension of the chords (Cl,C2) and (C3,C4), respectively.
Therefore, we consider point x2 to represent the location of the vehicle. We determine
the distance of CARl location as being the distance at C2 added to the Euclidean distance
between point C2 and X2.

This process is done through a loop that goes through many checks. Lines 3 1 through 174
are the list of the different check code lines for the intersection point of the two lines.
When the intersection is determined on axis chord, module DLOG is called to compute
the distance along the intersection point on the axis. This is done by adding the Euclidean
distance fiom the intersection to the chord edge point to the distance at the end of the
chord. This distance is then assigned to the vehicle as its location distance.

Lines 15 through 178 are the commands that process the loop to find the distance location
of one vehicle. The large loop determined by lines 12 through 179 is processed once for
each vehicle. When all the vehicle distances are computed, the module passes the new
vehicle records to the main program. The new vehicle records contain the vehicle

A1 1

identification number, the vehicle distance along the highway axis, and the time when the
vehicle was at this location. Figure A-1 1 presents car record data, for the vehicles in
Figure A-2, in the format passed from this module to the main program.

Module INTERSECT takes the coordinates of the end points of the two lines, the
highway axis chord line and the perpendicular line, as input and returns the coordinates of
the intersection point. This module listed in lines 183 through lines 197 uses basic
trigonometry to find the intersection of two lines. It takes line 1, which represents the
chord on the highway axis, and line 2, which represents the perpendicular to the chord
from the vehicle location, and finds their intersection. Line 1 is defined by coordinates
(xl,yl).and (x2, y2) and line 2 is defined by coordinates (x3,y3) and (x4,y4). Point of
intersection is defined by point (x5,yS) and the equation to compute these coordinates are
listed in lines 194 and 195.

In determining the vehicle location distance with reference to the road axis for the vehicles
that !ie zt begixii~g er cnC c ; f h a i s , die pixpendicuiar may intersect at a point on
the first chord outside themcis limits. When the axis of the highway is at an angle with
reference to the coordinates of the first image, locations of some vehicle could be out of
the range of the axis. This case is represented in the schematic of Figure 12. The schematic
represents a case of a first image in a series of images. The axis of the highway in this
image is at a sharp angel with the respect to the image X axis of the image. Truck-1 is out
of the ranges of the highways axis. When a perpendicular is dropped fiom the location of
Truck-1 to, @e axis, the intersection of the axis and the perpendicular lies outside the
ranges of the image limits and thus the range of the axis.

This case is treated in our work by extending the axis beyond the starting point at the
limit of the image. This extension should be long enough to ensure that the intersection of
the axis and the perpendicular on the axis of the highway lie on this extension.

Recall, we explained in the Highway Axis Module section that the highway axis are
extended at the ends to consider the vehicles that may lie at the beginning and end of the
highway. This was the reason for extending the axis at the beginning and the end in the
CENTERLW module. -

ORDER-VEHModule. Module ORDFR-VEH sorts the vehicle data in
ascending order of vehicle identification number. The new sorted vehicle data and
identification numbers are saved in new arrays. Vehicle data are ordered such that vehicles
with similar identification numbers are in consecutive locations. Figure A-13 presents the
vehicle records of Figure A-1 1 in the new format.

The general process of this module is presented in the flowchart shown in Figure A-14.
The code for this module is listed in Appendix A3 in lines 229 through 297. As seen in
the flowchart, we determine a vehicle to be the present vehicle under consideration. We

A12

call the vehicle that is being processed the present vehicle and use the variable
LATESTVEH to indicate the ID of this vehicle. We start the loop by defining the present
vehicle to be the vehicle with the smallest identification number of all the vehicles in the
class (line 254 in Appendix A3). The smallest identification number is defined by calling
module h4INMAX with the array that contains vehicle identifications (line 249 of
Appendix A3). This array returns the smallest and largest vehicle identification numbers.

The vehicle records are sorted through two nested loops. The outer loop changes the
present vehicle ID every time the loop is incremented. The inner loop checks the entire
set of vehicle records to find all the vehicles with the same identification number. Each
vehicles with identification numbers identical to the present vehicle identification number
is saved in a new array N - VEH ID in the order that it is found in VEH-ID each in the
next available cell. At the same ;me these vehicles are marked for deletion in the old array
vEH_ID of identification number. These vehicles are marked for deletion so that this cell
will not be checked the next time we go through the array to check a different vehicle
identification. When the last vehicle in the array VEH-ID has been checked to find all the
vehicles with identical ID as the present ID, the LATEST-VEH variable is incremented
(line 266) and the smaller loop is terminated. The larger loop checks for the
LATEST-VEH to be less than or equal to the largest vehicle ID. When an ID greater than
that of the LATEST-VEH is found there are no more vehicles left to be ordered, and the
larger loop is terminated.

As the vehicle identification numbers are saved, their distances and time data are also
saved in the same reference location in new arrays N-VEH-LOG, and
N-VEH-TIM€-ID, respectively. This module process all the vehicle data and passes the
new set of arrays that contain the vehicle data sorted by vehicle identification number to
the main program. These new vehicle data are used in the next modules.

SPEED Module. This module computes the speed of every vehicle that is listed
more than once in the vehicle data. A vehicle is repeated more than once when its
identification number is repeated more than once in the list of identification numbers. This
would be the case when the vehicle is imaged more than once. Vehicles that do not appear
more than once are given a speed of zero. The speed of every vehicle is saved in a new
array called VEH-SP in the same reference location as that of the corresponding vehicle as
the other arrays. The vehicle location and identification are saved in N-LOG-WH and
N-VEH-ID in a location marked by the vehicle counter. The speed is saved in the array
VEH-SP at the location marked by the same counter. The data used in this module are the
sorted data that were passed from module ORDER-VEH. The process of this module is
presented in the flowchart of Figure A-14. The code for this module is listed in lines 290
through 3 12 of Appendix A3.

Speeds are computed in a loop that starts at the second location in the vehicle
identification array. If the identification of the vehicle in this record is equal to the

A1 3

identification number of the vehicle in the first location, the speed of the vehicle is
computed and saved in array IEH-SP. Otherwise, the vehicle is assigned a speed of zero
and the module proceeds to process the next vehicle. Only consecutive vehicle .

identifications have to be checked because the vehicles have been ordered in the previous
module such that the consecutive appearances of the same vehicle are in consecuthe
locations in this list.

Speed is computed by dividing the difference in the location distances by the time
difference of these two vehicle locations. Recall that the distances are linear distances,
since the vehicles locations were projected to the axis in module LOG-VEH. The
calculated speed represents the average speed between these two locations during the time
when the vehicles were imaged at these locations. The speeds of the vehicles are saved in
the array in the same reference location parallel location to the second appearance of the
vehicle. The speed in the location referenced by the same reference location as first
appearance of the vehicle is given a zero in the speed array. The speed of the vehicle is

assumed to be meters and the time in hours; therefore, speed is divided by 1000 (line 303)
to convert the speed to units of kilometers per hour (KPH).

I

C3rni)ldted irr !he 303 ir! Appendix Ai. h &e preserrt VerSioE, h e distmce Qf...e!?!C!es is

This module passes the array of speeds of vehicles to the main program. These speeds are
used in later modules.

AVG-iYPD Module. This module computes the average speed of all the vehicles
in the array that contains the speed data. This module calculates the average speed as the
sum of the speeds divided by the number of non-zero speed values. This gives the average
speed of the vehicles in the class for which the data are being processed. This average
corresponds to the space mean speed of the vehicles. The code for this module is listed in
lines 314 through line 329 of Appendix A3.

This space mean speed is then substituted for the speed of vehicles that have been imaged
only once. The speeds of these vehicles had been temporarily set to zero. Recall that the
speeds of speeds of cars are generally greater than speeds of trucks; therefore,
substituting the average speed of cars for the speeds of a cars would tend to lead to more
accurate results than when substituting the average speeds of all the vehicles. Similarly,
substituting the average speed of trucks for the speeds of trucks would tend to lead to
more accurate results than when substituting the average speeds of all the vehicles. For
this reason, we compute the average speed of each vehicle class separately by calling this
module to compute the average speeds of cars once and to compute the average speed of
trucks once.

Count Type
This is a simple module that asks the user to enter the choice of modules to run. It
requires the user to enter a 1 to compute traffic measures at a given location and time

A14

interval or to enter a 2 to compute the largest time interval for which parameters can be
estimated for the given road location highway limit. The user might not be able to define
the count interval from the data, in this case the user can define the highway limits from
the image and determine the maximum count interval that this highway limits would -

allow. This interval then can be used to determine the count intervals, within this interval,
that the user wishes to use to get traffic parameters.

This is the module that represents the choice in the general flowchart of the program
shown in Figwe A-15. This module is listed on lines 1 through 37 of Appendix A4. Ifthe
user enters a 1 or a 2 as a response, the module returns the control to the main program
and passes the response back too. If the user’s response is anything else other than a 1 or
a 2, a message is presented to indicate that the response is invalid, and the response is
requested from the user again.

According to the user’s response, different sets of lines are processed in the main
program. When the user’s response is 1, lines 107 through 148 of the main program, listed
in Appendix A1 , are processed. These lines call a series of modules called COMPUTE-1.
When the user’s response is 2, lines 15 1 through 188 are processed. These lines call a
series of modules called COMPUTE-2.

COMP -1 Modules
Compute modules are modules that read the highway data file and compute traffic
m
Figwe A-16 shows the general process of this set of modules.

at the given location during the giva time interval. The flowchart presented in

In COMPUTE-1, trflic measures are computed from the estimated times of when the
vehicles pass the count location. Since this work is motivated in large part by a desire to
compare measures estimated from satellite images to those that would be estimated from
an ATR (Automatic TrafEc Recorder), we refer to the count location a ATR location. The
count location does not have to correspond to a true ATR location; it could be any
location on the given highway. This name is used for simplicity to identifjl the count
location.

The times when the vehicles would pass the ATR locations are estimated from the given
location and time data in arrays N-VEH-LOG and N-VEH- ID. When a vehicle
has more than one location and time data, the closest location of thevehicle to the ATR

either use the average speed of the vehicles of the class or the speed of the individual
vehicle at the location where it resides to estimate the time it would take to travel from
the given location to the ATR location. We use these options to compare the measures
that we estimate using each speed to check the accuracy of both versus the measures
estimated from an ATR.

!?

Y location is used to estimate the time when it would pass the ATR location. The user can

A15

In COMPUTE-1 series of modules, the first module called is XYATR, which reads the
highway data from a data file and passes the data back to the main program. Then, the
user is given a choice of which speed to use to project the vehicles to the ATR location. If
the user chooses to use the average speed of vehicles, then the BRING-TO-ATR_A_SP
module is called twice, once with truck data and once with car data. Otherwise, if the user
chooses to use individual speeds of vehicles, BRING-TO-ATR module is called twice,
again once for truck data and once from car data. The BRING-TO-ATR and
BRING-TO-ATR-A-SP modules pass the estimated time when the vehicles pass the
ATR location to the main program. When these modules are completed, the COW-PAR
module, which computes the parameters and prints them, is called.

In the following sections we present details of the modules used in COMPUTE-1 in the
order that these modules are called. .

Count Locations Module, This module is called XYATR and it is listed in lines 1
through 48 of Appendix A4. XYATR first mb the user fer the m a 2 afthe file &at
contains the count location data (line 15) and accepts the user’s response (lines 17). M e r
reading the filename, the module calls the command to open the file (line 2 1). If the file is
opened successfblly, lines 21 through 42 are processed. Otherwise, a failure message is
printed at line 44, and the module and the entire program are terminated.

When the file is opened, the module reads the data. The number of lanes and the
passenger car equivalent of trucks are read and assigned to variables NL and Et,
respectively, in lines 21 and 22. Line 23 reads the ATR location x and y coordinates, start
of count interval, and end of count interval. Each of the times is read in three numbers that
represent hours, minutes, and seconds. Module T C O W is called to convert each of the
times to one number in hour units. This module, called twice (lines 29-30), converts each
of the times - count start time, and count end time - to hour units. These times are
returned as values of the variables T1 and T2.

Module LOG-LOCATION, called in line 34, computes the count location distance along
the highway axis and assigns it to DIS-ATR. After determining the count location
distance, this XYATR module terminates and passes all the data to the main program.

BRING_TO_ATR_A_SPModule. The BRING-TO - ATR-A-SP module
estimates the time when each vehicle passes the ATR location using the average speed of
the vehicles of the class of the vehicle being estimated. When a vehicle has only one
location record, this location is used to estimate the time when it passes the ATR
location. When a vehicle has more than one location record, the location closest to the
ATR is used to estimate the time when the vehicle passed the ATR location. The time
when the vehicle was at the location of the ATR is computed by estimating the time that
the vehicle would take to travel from the defined location to the ATR location and adding
this time to the time when the vehicle was imaged at the location of record closest to the

I

A16

L

ATR. The speed of the vehicle while traveling to the ATR location is the average speed of
the vehicles of the class of vehicles that are being processed. Recall that when the user
chooses to use the average speed of vehicles, module BRING-TO-ATR-A-SP is called.
Figure A-17 presents a flowchart of the process of this module. The code for this module
is listed in lines 49 through 200 in Appendix A4. (The data that are used in this module
are the data that are sorted in the ORDER-VEH module. Thus, the location and time
records of a vehicle are listed in consecutive order.) Line 93 is the start of a large loop that
repeats with every vehicle record. Each time through this large loop, a small loop listed in
lines 96 through 102 is processed. This smaller loop checks whether the vehicle has more
than one record. The first and last records of the same vehicle are determined in this small
loop.

If the vehicle has only one record the time when it would have passed, the ATR location
is computed in the equation listed in lines 106 and 107. In these lines, ab-t-veh is the
variable representing the estimated time when the vehicle pass the ATR location,
n-veh-timejd is the variable representing the time when the vehicle was imaged, log-atr
is the variable representing the location of the ATR, n-log-atr is the variable representing
the location of the vehicle, and spd is the variable representing the average speed of
vehicles.

If the vehicle has more than one record, lines 105 through 15 1 are processed. In these lines
first the location of the ATR is checked (lines 114 through 133) to determine whether it is
located between any consecutive locations of the vehicle. Ifthis is the case, then the time
when this vehicle passed the ATR is estimated using the first one of these two locations
for this vehicle. This is done in the loop that is listed in lines 11 1 through 122. If the
location of the ATR is not between 2 consecutive locations of the vehicle, then the
location record closest to the ATR location is determined and used to compute the time
when the vehicle would have passed the ATR. This is done in lines 123 through line 150.

The new times when the vehicles are estimated to pass the ATR location are saved in a
new array called ATR-T-VEH. The minimum and maximum values in this array are
determined in line 158 and 159 and saved in variables TMIN and TMAX, respectively.
The identification numbers of these vehicles are saved in array ,ATR V-ID in parallel
locations to their times in the array ATR-T-VEH. When the data ofthe vehicle with the
Same identification have been processed, the loop finishes one cycle at line 163 and
increments to run the for a vehicle with new identification number. If the last vehicle has
been processed, this loop terminates and line 164 is processed. The check for more
vehicle data is performed at line 160.

After the times that the vehicles are estimated to pass the ATR locations have been
determined, the number of vehicles estimated to pass the ATR location during time
interval [t',?] is determined. This is done in a loop that starts at line 173 and runs through
line 179. The vehicle identification numbers and speeds for the vehicles that are in the

A1 7

time interval are saved in the new arrays ID-IN-T and SP-IN-T, respectively. Then the
vehicles that have speeds are counted and the average of these speeds is computed. This
is done in a loop listed in lines 185 through line 194.

After computing the average speeds of vehicles in the count interval, this module
terminates and passes the data to the main program.

BMNG-TO-ATR Module. The BRING-TO-ATR module estimates the time
when each vehicle passes the ATR location using the individual speed of the vehicle.
Recall that when the user chooses to use the individual speed of vehicles, module
BRING TO-ATR is called. This module uses the individual speeds to project the
vehiclest0 the ATR location.

This module works in the same manner as the previous module,
BRING-TOARTA-SPY except that the speed used to bring the vehicle to the ATR

record and no speed was estimated for this vehicle, the average speed of the vehicles of
the class is used in the equation to estimate the time at the ATR. If the vehicle has only
one speed record, this speed is used to estimate the time at the ATR location. When a
vehicle has more than one speed record, the speed of the vehicle at the location closest to
the ATR, as explained in module BRING-TO ATR-A-SO, is used to estimate the time.
This module is listed in lines 202 through 363 if Appendix A4.

. . imbon 1s &e average sped of& icdkv<&i v&ic!c. If&e \p&ic!e hss en!y gfie

C0Wm-P' Module The COMPUTE-PAR module computes the trfiic
parameters at the given ATR location during the time interval given. Module
BRING-TO-ATR or BRING-TO-ATR-A-SP computed the number of cars and the
number of trucks that are estimated to pass the ATR location in the given time interval
[t',?]. The average speeds of ail the vehicles that pass this location in this time interval
was also computed. Module COMP-PAR takes this speed and the number of cars and
trucks that are estimated to have passed the ATR location during time interval [t',?] and
the highway count data described in the Highway Count Data section and computes
traffic parameters. The parameters computed in this module are the volume of cars in time
interval [ti,?], the number of trucks, total number of vehicles, percent of trucks, flow in
passenger car equivalent (PC), the space mean sp&, and the density in vehicles and in
PC. This module then lists the output to the screen.

The code for this module is listed in lines 1 through 41 in Appendix AS. Traffic
parameters are computed in lines 15 through 23 and printed out in lines 25 through 39.
Figure A-18 shows an example of an output printed out by this module.

COMPUTE-2 Modules
Compute modules are modules that read the highway data file and compute the largest
count time interval for the given data. In COMPUTE-2, the time interval is determined.

A1 8

As in BRING - - TO ATR and BRING - - TO ATR - - A SP, explained in the COMPUTE-1
Modules section, the times when the vehicles pass the specified location, ATR location,
are estimated. From these times the earliest time and the latest time when a vehicle passes
the ATR are determined. These earliest and latest times determine the allowable time
interval for the count. Module X1X2 is called to read the count location time and highway
limits data explained in the Highway Location and Limit Data section. Modules
BRING-TO-ATR X1X2 - AS and BRING - - TO ATR X1X2 are called to estimate the
time when the vehicles pass the ATR location using theaverage speed of vehicles and the
individual speeds of vehicles, respectively. Module CHECK-TlT2-XlX2 is called to
determine the maximum allowable time interval for the count.

The first module called is XlX2. This module reads the highway limit data and passes the
data back to the main program. (Highway limits data are the coordinates of the first and
last location on the highway segment under consideration.) Then the user is given a choice
of which speed to use to project the vehicles to the ATR location. If the user chooses the
average speed of vehicles, then BRTNG - - TO ATR_XlX2_AS module is called once with
truck data and once with car data. Otherwise, the individual speeds of vehicles are used to
project these vehicles to the ATR location. In this case BRING-TO-ATR-XlX2 module
is called. Both modules pass the estimated time when the vehicles pass the ATR location
to the main program. Then CHECK-TlT2-XlX2 module, which prints out the time
interval is called.

XlX2 Module. The X1X2 module is listed in lines 1 through 57 of Appendix A6.
Module X1X2 starts by prompting the user for the name of the file that contains the
count location data and waits for the user to enter the filename. The commands for this
prompt and response are listed in lines 21 and 22 of Appendix A6. After reading the
filename in line 23, the module calls the command to open the file. Ifthe file is opened
successfully lines 27 through 51 are processed. Otherwise, a failure message is printed at
line 53, and the module and the entire program are terminated.

Y

When the file is opened, the module reads the data. The loop listed in lines 29 through line
38 reads the x and y mrdinate data for the count location, the beginning limit of the
highway, and ending limit of the highway. Module LOG_LOCATIONis called next to
compute the distances along the highway axis for the location and limits of the highway.
After being determined, the location distances are printed and module X1X2 terminates
and passes the ATR location and highway limits data to the main program.

k

-
BRING TO-ATR_xIxzAs Module. The code for the

BRING - - TO A k XlX2-AS module is listed in lines 59 through 21 1 of Appendix A6.
This module estimates the times when the vehicles pass the ATR location using the
average speeds of vehicles. It has the same logic as modules BRING - - TO ATR - - A SP
used in COMPUT-I, which was explained in the BRING-TO-ATR-A-SP Module
section. It differs in that the estimated time that a vehicle passes the ATR in

A19

BRING-TO-ATR-XlX-AS is checked against the maximum and minimum times. If
the estimated time that a vehicle passes the ATR is larger than the maximum time, this
time is set to be the maximum. Similarly, if the estimated time that the vehicle passes the
ATR is smaller than the minimum time, this time is set to be the minimum time. The
maximum time is determined to be the latest time when the vehicles of the class pass the
ATR locations. The minimum is determined to be the earliest time when the vehicles of
the class pass the ATR location. These minimum and maximum times are the times to
determine the count interval to estimate trafllc measures from the given satellite data. The
values of the minimum time and the maximum time are passed to the main program ;when
each of the modules terminates. This module is called twice, once for cars and once for
tucks.

BRZNG-TO-ATR-Xlx2 Module. The code for the BRING-TO-ATR-XlX2
module is listed in lines 213 through 374 of Appendix A6. This module estimates the
times when the vehicles pass the ATR location using the individual speeds of vehicles. It
has &e same !q$c as module BRING - - TO ATR used in COMPUT-1, which was
explained in the BRING TO-ATR Module section. As in
BRING-TO-ATR-Xll6-AS, this module checks the estimated time that the vehicles
pass the ATR location against the maximum and minimum times. Ifthe time that a vehicle
passes the ATR is larger than the maximum time, this time is set to be the maximum.
Similarly, if the time that the vehicle passes the ATR is smaller than the minimum time,
this time is set to be the minimum time. The maximum time is determined to be the latest
time when the vehicles of the class pass the ATR locations. The minimum isdetermined
to be the earliest time when the vehicles of the class pass the ATR location. As explained
in the previous section, these minimum and maximum times are the times to determine the
count interval to estimate traflic measures from the given satellite data. The value of the
minimum time and the maximum time is passed to the main program when each of the
modules terminates. This module is called twice, once for cars and once for tucks.

CHECK-TlT2-XlX2 Module. The code for the CHECK-TlT2-XlX2
MODULE module is listed in lines 104 through 129 in Appendix A7. This module takes
the minimum and maximum times that cars and trucks would have passed the ATR
location, which were estimated in modules BRING - - TO ATR-XlX2 or in
BRING-TO-ATR-X1X2-ASy and determines the maximum allowable interval for the
count. The largest of the minimum car and trucks times is considered the start of the
count interval and the smallest of the maximum car and truck times is considered the end
of the count interval.

A20

Figure A1 . Sample of highway axis data.
LUUU

1087, 6106
1080, 6077
1071, 6040
1065, 6015
1057, 5982
1048, 5946
1039, 5909
1025, 5852
1018, 5823
1011, 5795
1007, 5775
997, 5738
991, 5713
983, 5677
976, 5648
971, 5628
965, 5603
960, 5583
953, 5554
947, 5530
937, 5487
931, 5465
930, 5459

Figure A2. Photographs 94 and 95.
The reference axis of the photographs and the first axis point.

Photo # 94. Time 1054:31

Photo # 95. Time 10:54:36

Figure A3. Sample of vehicle record data.

1018, 5846,
1017, 5828,
959, 5615,
936, 5527,
931, 5481,
921, 5451,

. 910, 5413,
922, 5439,
914, 5405,
887, 5293,
878, 5272,
922, 5472,
903, 5392,
896, 5331,
890, 5306,
884, 5297,
876, 5278,
880, 5270,
872, 5239,
844, 5121,
837, 5103,
848, 5135,
846, 5144,
832, son,

-1, -1, -1,

1050, 5981,
1042, 5951,
1036, 5921,
1017, 5862,
979, 5687,
939, 5527,
946, 5550,
904, 5379,
892, 5349,

-1, -1, -1,

10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 36
10 54 36
10 54 36
10 54 36
10 54 36
10 54 36
10 54 36
10 54 36
10 54 36
10 54 36
10 54 41
10 54 41
10 54 41

-1, -1

10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 31
10 54 36
10 54 36
10 54 36

-1, -1

5
1.5
903, 5393

10 54 30
10 55 00

1011, 5795

1080, 6077
947, 5530

i

COUNT

.?.

Figure A6. General flowchart of the COUNT software.

Y

Highway axis data include:
0 HighwayDatumpoint

Highway axis coordinates (xc,yc)

Vehicle record data contains:
Vehicle coordinates (XVJV)

0

0

Time vehicle was at (xv,yv) coordinates
Identifier of vehicle at (x v , ~) coordinates
Class of vehicle at (XV, yv) coordinates.

Highway data include:
HighwaynumberoflanesNI

0 Truck Terrain factor Et

Count location data include:
Traffic estimate location (A) coordinates (qya)
Time -pint A was imaged

Interval data include:
Time interval limits [tl,t2]

Couut location data include:
0

TimepointAwasimaged

Highway limits data include

0

Traffic estimate location (A) coordinates (qya)

Highway limits coordinates (x17yl)7 (x2,y2)
Time when these limits of the mad were imaged.

Traffic measures at the fmed location in time interval [tl,t2]:
Volumeofcan
Volumeoftrucks
Total volume
Percentoftrucks
Equiv. Ofpassenger car flow
Spacemeanspeed
Equivalentpassengercardellsity

A- AXIS MODULE

n

sentpointandprevious

Figure A7. Flowchart of highway axis module.

B- WHICLE MODULES

-B4- DIRKTION
DetermineDktionof IncreaseDistances

Determioe vehicle velocities aud append
them to vehicle records

I 8 6 - AVG-SP
Determine average velocity of vehicles I

e records sorted by identifier
appendingaxial'distancesand

0 Average velocities of vehicles

1

i

,,-

Figure AS. Flowchart that shows the order for calling the vehicle modules.

B- LINEAR DISTANCES OF VEHICLES

Find linear distanEe of projected vehicle
location s

c

. .

.

I

- - + A B Endofvehic e

Project vehicles to Highway Segment a
of vehicles along the highway axis

Figure A9. Flowchart of LOG-VHE module.

-B2- SORT VEHICLE RECORDS BY IDENTFIER \

rust vehlcle xecom is present
RCOrd
I

the sorted vehicle records.

deletion
I

I

I-

YES No. of sorted

of vehicle records

recordmarked for

A

I -eP==m-h recOm=next
sortedvehicle mrds .

Mark word for deletion

q+L

sorted by idenlifier

1

I I I I

i

I

I

(-

I

I

.' I

I

ii

Figure A14. Flowchart of the general process of Module ORDER-VEH.

.-.

.

Sorted Vehicle records

present vehicle record

-+yl I
Sorted vehicle records with Sorted vehicle records with

I No I velocities appended I
1 I I

ID =previous

lye
Dit€ indistance,/Diff.intime Velocity = O

Figure A15. Flowchart of SPEED module.

Sortedvehicle records

Estimate the time when vehicles
pass count location A using

individual speeds
I

I I Project c o d o m i o n (A) to
highway segment

Estimate the time when vehicles
pass count location A using

averagespeed

a location A at the projection point

Average
Speed

f
422- 1 1 421- 1

s
I T M c measures at location A in I time interval [tl,t2]

,

.-

t

<’ -
\

..
Figure A16. Flowchart that shows the process of calling the set of COMPUTE modules. I

E '

YES New record of vehicles with time
when each vehicle passed locatio1
A

Axial distance at A.

Average velocity of vehicles

Present vehicle &ord is the first in
the somi list of vehicle records

Sorted vehicle records

a

I
;
I

'rime when vehicle'passed A = time I

whenvehicle was seen + (Linear

vehicle)/Avemgespeed

kime when vehicle passed A = time 1
listance at A -Lineardistance of

P
NO

seenonly once

lvehick location is the location of th$
YES vehicle at its closest sitting to

was Seen + &inear

I I I I I *
+

nd time at A to vehicle record

Nextvehicle mrd I t

Figure A17. Flowchart of the BRING-TO-ATR-A-SP module.

APP-A1 arev.xls

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

!

!

!
!

!

!

!

!

!

!

!

program count
!!!!+!!
implicit none
variables introduce for the first time in centerline subroutine
integer numcl
real xc(800),yc(800),lo~c1(800), dinc
variables introduce for the first time to find min and max
of CL points
real cmin,cmax
variables introduce for the first time in Vehicles subroutine
integer crs.tks,car-id(400),trk-id(400)
real xcar(400),ycar(400),xtrk(400),ytrk(400)
real trk-time-id(400),car,time-id(400)
variables introduce for the first time in minmax-veh-times
real tt_st,tt,end,tc_st,tc-end,t-s~~,t-end
variables introduce for the first time in log-veh subroutine
real log~car(400),log-trk(400)

i d XC;(~OO j,y~l;4OO;,xe2;4OOj,jic2j4OOj
real xt1(400),yU(400),xt2(400),yt2(400)
variables introduce for the first time inorder-veh subroutine
integer n-car-id(4OO). n-trk-id(400)
real n-log-car(400).n-~og-t,trk(400)
rea I n-trk-time-id(400), n-ca r-time-id(400)
variables introduce for the first time in direction subroutine
integer direct
variables introduce for the first time in speed subroutine
real car-sp(400),trk-sp(400)
variables introduce for the first time in avasp subroutine -
real a-sp-cars, a-sp-trks

! variables introduce for the first time in cnt-type subroutine

! variables introduce for the first time in xlx2 subroutine
integer f-type

integer NL
real dis-atr,dis-xl .dis-x2, Et
real to, tl.t2

! variable inrtoduced to choose the speed to use to bring vehicles back
! to the ATR location

integer speed-type,ie
! variables introduce for the first time in bring-to-atr-xlx2 subroutine
! integer c-nxlQ,t-nxl&
! integer x12~car~id(400),x12~trk~id(400)

integer -b-c-id(400), atr-t-id(4OO)
real tminc-xl2,tmaxc-xl 2.tmint-XI 2,tmaxt-x12

! real x12~car~tid(400),x12~trk~tid(400)
! real x i 2~car~log(400).x12~c~sp(400)
! real x i 2-trk~bg(400),~12-t-sp(400)

! variables introduce for the first time in xyATR subroutine
! None
! variables introduce for the first time in bring-to-atr-a-sp subroutine

real a t r ~ c ~ ~ 4 ~) . a t r ~ t ~ ~ 4 ~) , a t r ~ c ~ s p (4 O O) , a t r ~ t ~ s p (4 0 0)

integer cars-in-t,c-sp-i-t,trks-in-t,t-sp-i-t
real tminc,tmaxc,tmint.tmaxt, a-sp-c-in-t,a-sp-t-in-t

! variables introduce for the first time in volume subroutine
!

integer trks-in-xlx2,cars-in-xl x2

I

,

Page 1 Of 4

APP-A1 arev.xls

I
i-

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
I09
110
111
112
113
114
115

integer cnt_trk_id(400),cnt-car-id(400)
real cnt~trk~log(400),cnt-trk~sp(400)
real cnt-car-log(4OO),cnt-car-sp(400)
real tl_t,Q-t,tl-c,t2-c

!
! variables introduce for the first time in check-tit2 subroutine

integer fail

!
call centerline(xc,yc,log-cl.numcl,dinc)
call minmax-cl(numcl,log-cl,cmin.cmax)

call vehicles(xcar.ycar;xMZytrk,

call log-veh(dinc,xc,yc,log-cl,numcl,xcar,ycar,locar,

call lo~veh(dinc,xc,yc,log_cI,numcl,~,ytrk,~g~trk,

+ car_id,trk_id.tks,cn,trk_time_id,car_time_id)
! ,tmin,tmax)

+ crs,car-id,car-time-id.xcl,ycl,xc2,yc2)

+ tks,trk_id,trk_tme_id,~,ytI,ytl,xt2,yt2)
!

call minmax(crs,car-time-id&-st,tc-end)
call minmax(tks,trk-time-id,tt-st,tt-end)

t-end =tt-end

if(tc-end.gt.tt-end) t-end = tc-end

call order-veh(log-car,crs,car-id.car-time-id.

call order-veh(log_~tks,trk_id,trk_time_id,

This subroutine gets the direction of the Center Line Increase
!!!!+!!
call direction(direct,crs.n-log-car,n-car-id,n-car-tim-id)

! The following subroutine will compute the speeds of vehicles
prinr.'
prinr,'CARS '
call speed(crs,n_log_car,n_car_id,n_car_time_id,car_sp.direct)
call speed(tks, n_log-trk,n_trk_id,n_Mr_time_id,trk_sp,direct)

! The following will get me the average speed if trks (L and cars
prinv,'
call avg_sp(crs,car-sp.a-sp-cars)
call avg-sp(tks,trk-sp,a,sp-trks)

prinP,'average speed of cars = ', a-sp-cars,' Kmph'
print*,'average speed of trucks = '.a-sp_trks.' Kmph'

prinr,'type of count is :', f-type
if(f-type.eq. 1)then
call xyATR(NLEtdinc.numcl,xc,yc,log_cl.dis-a~,t0,tl ,Q)
call which-sp(speed-type)

if(speed-type.eq. 1) then
call cars
read'

t-start = tt-st

if(tc-st.ktt-st) t-start = tc-st

!

+ n_log_car,n_car_id,n_car_time-id)

+ n-log-trk. n-trk-id,n-trk-time-id)

I

I

call cnt-type(f_type)

!
!

print.,' Your start time is = '$1
print.,' Your end time is = ',t2

call bring-to-atr-a-sp(crs. n-log-car,

Page 2 of 4

APP-A1 arev.xls

116
117
118
119
120
121
122
123
1 24
125
126
127
128
129
130
131
1 32
133
134
135
136
! 37
138
139
140
141
142
143
144
145
146
147
148
149
150
151
1 52
153
154
155
156
157

158
159
160
161
1 62
163
164
165
166
167
168
169
170
171

+ n-car-id,n-car-tme-id,
+ car_sp,direda_sp_carr,dis_atr,
+ atr-c-id,atr-c-t,tl ,Q,tminc,tmaxc.
+ cars_in-t,a-sp-c-in-t,c-sp-i_t)

call trucks
call bring-to-atr-a-sp(t, n-log-trk,

+ n-trl-id.n-trk-time-id,
+ trk_sp,direda_sp-trksks,dis-atr,
+ atr-t-id,atr-t-t,tl ,t2,tmint,tmaxt,
+ trks-in-t,a-sp-t-in-t,t-sp-i-t)

else if(speed-type.eq.2) then
call cars
read*
call bring_to-atr(crs,n-log_car,n-car-id,n-car-time-id.

+ car-sp,direda-sp-can,dis-atr,
+ atr-c-id,atr-c-t,tl ,Q,tminc,tmaxc,
+ cars-in-t,asp,c,in_tc-sp-i-t)

read*
call trucks
call bring_to_atr(tks,n-log_trk,n_trk-~,n-trk-time_id,

+ f~-sp,dire~t,as,q_!rks,dis_atr,
+ atr-t-id.atr_t_tt,t1,t2,tmintbmaxt,
+ trks-in-t,a-sp-t-in-t,t-sp-i-t)

end if
call out-times(t1 ,t2,tminc,tmaxc,tminttma~)
call check-cl_limits(direct,tl .t2,tminc,tmaxc,tmint,tmaxt,

+ a_sp-cars,a-sp_trks,dis_atr,
+ log_cl(2),log_cl(numl-l),
+ tc-st, tc-end,tt-st,tt-end)

call check-tW(t1 ,t2,tminc,tmaxc,trnint,~~,~il)
if (fail.gL0) stop
ca I1 compgar(NL,Et, t i ,t2, ca rs-in-t. trks-in-t,

+ a_sp-c-in_t.c_sp_i_t,a-sp_t_in_t,t_sp-i-t)

elseif(f-type.eq.1)then
call xlx2(NL.Et,dinc,numcIci,xc,yc,locl,

call check_xlx2(dis_xl ,dis_x2,direct,log-cI,numcl)
call veh-in-xlx2(dirfl ,Q,d-xl ,d-x2,crs,n-car-id.

n_log_car,n_car_time_id,car-sp,
x12~car~tl2~idc,x12~lgc~t12~tc,x12~spc)

call veh_in_xlx2(dir,tl ,Q,d-xl ,d-x2,tkS,n-trk-id,
n_loamcn_trk_tirne-~,tp,
xl2~~x12~idt,x12~lgt,x12~tt,x12~spt)

call which-sp(speed-type)
iyspeed-type.eq.1)then
call cars
call bringJo-atr-xlx2as(cw.n-log_car,n-car-id,

+ dis-xl,dis-x2,dis_atr,tO,tl,t2)

+ n-car-time-id.
+ car_sp,direct.a_sp_cars.dis_atr,dis-xl ,dis-x2,
+ tminc-x12,tmaxc_xl2,
+ atr-c-id,atr-c-t,atr-c-sp,
+ cars-in-t,a-sp-c-in-t,c-sp-i-t)

+ n-trk-time-id,
+ trk_sp.direct,a_sp_trks.dis-atr,dis_xl ,dis-x2,
+ tmint_xl2,tmaxt_xl2,

call trucks
call bring_to-atr-xlx2as(tks,n-log-trk,n-trk-id.

c

.
I

Page 3 of 4

i

\

172
173
174
175
176
177
178
179
180
181
1 82
1 83
184
185
186
187
188
189
190
191
1 92
193
194

APP-A1 arev.xls

+ atr-t-id,atf-t-t,atf-t-sp.
+ trks-in-t,a-sp-t-in-t,t-sp-i-t)

else iqspeed-type.eq.2) then
call cars
call bring-to-atr-xlx2(crs, n-log-car,n-car-id.

+ n-car-time-id,
+ car_sp,direct,a-sp_can.dis-a~,dis-xl ,dis-x2.
+ tminc~xl2.tmax~xl2.
+ atr-c-id,atr-c-t,atr-c-sp,
+ cars-in-~a,sp-c-~n-t,c-sp-i-t)

call trucks
call brin~to-~r-xlx2(tks.n-log-trk.n-trk-id,

+ n-trl-time-id,
+ trk-sp.direct,a-sp-trks,dis-atr.dis-xl ,dis-x2,
+ tmint-x12,tmaxt-x12,
+ atr-t-id,atr-t-t,ap,
+ trks-in-t,a,sp-t-in-t,t-sp-i-t)

+ tmint-xl2,tmaxt-x12)

endif
call check-tlt2-xlx2(tl,t2, tminc~x12.tmaxc~x12,

end if
999 stop

end

i

I

Page 4 of 4

w P-N.XLS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
119
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

!!!!+!!
subroutine centeriine(xc, yc,log-cl, k,dinc)
!!!!+!!
implicit none
real xc(8OO),yc(8OO),log~c1(800),dist,dinc
integer iof, ior, k, kk,sig n
charactem0 cent-file
data iof,ior/O,O/
sign = 1
dinc = 0.0
k = 2
print+,'@
prinr.'*
read(5,lO) cent-file

10 format(a)
open(unit =l 1 ,file=cent_fle,status='old',iostat=iof)

Please Enter the Center Line Data File name: ' '

!
!
!
!
!
!
!

!
!
!
!

if(iof.ge.0) then
...
Reading the mileage of the first point of the C L
It is the second point in the array because I am going
to add a point at the beginning of the C L Therefore,
the first point that we read for the CL is the second
point of the array.
This value, the mileage or distance of the first point,
is the value given on the first line of the CL data file.

read(11 ,*,iostat=ior) loacI(2)
prinr,'Mileage at first point of CL is ',log-c1(2)
dowhile(ior.ge.0)
read(11 .*,iostat=ior)xc(k).yc(k)
if(ior.k.0)then

elseif(ior. gt0)then
print+,'Error in reading data STOP'
stop
else
k = k+l
end if

end do
prinr,' Center line points k ='. k
close(1 1)
! !!!!!!!!!!!!!!!!!!!
Adding one point at the beginning of the Cener Line

Xc(1) = xc(2)-(xc(3)-xc(2))3
Yc(1) = Yc(2HYc(3)-Yc(2))'3
!!!!!!!I!!!! !!!! !!! !
Adding one point at the end of the Center Line
XC(k+l) = Xc(k)+(Xc(k)-Xc(k-l))'3

!!! !!!!!!!!!!!!!!!!!
k = k + l
!!!!!!!!!I !! !! !!!! ! !!
At this point if we want to input the mileage at the
beginning of the CL we can read it in here instead of
reading it from the data file.
just use the following 2 lines.
print+,'Enter the mileage distance at beginning of the CL :'

k = k-1

Yc(k+l) = Yc(k)+(Yc(kFYc(k-1))*3

i

I

/'

I

i

I

1

I

Page 1

AP P-A2.XLS

. ..
I

/

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82 '

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
1 00
101
102
103
104
105
106
107

109
110
111
112
113
114
115

i oa

! read',log_cl(2)
!
! dist = sqrt((xc(2)-xc(1))H2+(yc(2)-yc(1))Y)

log-cl(1) = log-cI(2) - dist

d ist = sq rt((xc(kk)-xc(kk-l))T+(yc(kk)-yc(kk-1))T)
log_cl(kk) = log-cl(kk-1)+dist
if(kkgt.2.and.kklt.k) then
if(abs(xc(kk)-xc(kk-1)).gt.dinc) dinc = abs(xc(kk)-xc(kk-1))
if(abs(yc(kk)-yc(kk-1)). gt.dinc) dinc = abs(yc(kk)-yc(kk-1))
end if
end do
else
prinr.%enter Line Data File failed to open '
STOP
end if
return
end

subroutine vehicles(xcar,ycar,xtrk,yt&

dOkkZ3.k

!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~!!!!!!!!!!!!!!!!!!!!!!!!!!

+ car_id,trk_id.tks,crs,trk_tme-id,car_tme_id)

!!!!+!!
implicii none
integer car-id(400).trk-id(400)
integer iof2,ior,car-trk,tks,crs,pho-n .classes
real trk-time-id(4OO),car-tim-id(400), pho-t,hh,mm,ss
rea I xca r(400), yca r(400),xtrk(400), ytrk(400)
character20 veh-file
data iof2,ior10,01
classes = 2
Print+,'Please Enter the Vehicle Location Data File name:'
read(5,lO) veh-file

open(unit =12,file=veh-file,status='old',iostat=iof2)

if(iof2.ge.O) then
ior = 0
tks = 1
crs= 1
dowhile(ior.ge .O)
read(12, *, iostat=ior) p ho-n , h h, mm, ss
call t-conv(pho-t.hh,mm,ss)
if(ior.ge.0) then
car-trk = 1
do while(car-trk.lt.classes)
read(12:)car-trk
if(car-trkeq.1) then
car-id(crs)= 0
dowhile (car-id(crs). ne.-1)
read(12,*)car_id(cn),xcar(crs), ycar(crs)
car-tirne-id(crs) = pho-t
if(car-id(crs).ge.O) CIS = CIS +l
end do

else if(car-trk.eq.2) then
trk-id(tks) = 0
dowhile(trk-id(tks).ne.-1)
read(12,+)trk_id(tks).xtrk(tks),ytrk(tks)
trk-time-id(tks) = pho-t

! + .tmin,tmax)

10 format(a)

!

Page 2

AP?-A2.XLS

116
117
118
119
120
121
122
123
1 24
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
1 52
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

if(trkid(tks).ge.O) tks = tks+l
end do

! If we have more classes than 2 then we should add an
! if statement here and have more arrays to save the data
! inthem.

else
print*,'Error in data format'
print*.'At photo # : ', pho-n
print-. car-id(crs-I),xcar(crs-I), ycar(crs-1)
print-, trk-id(tks-1),xtrk(t ks-1), ytrk(tks-1)

end if
end do
else
prinr,'End of Vehicle data File '
end if
end do
crs = crs - 1
tkS = t k ~ - 1
print-,'
prinr,' number of cars = ',CIS
print-,' number e? t ! s = '.tks
print-,'
else
print*,'Vehicle Location Data File failed to open'
STOP
end if
return
end
!!!!+!!
subroutine minmax(n,yarray,ymin,ymax)
implicit none
integer i.n
real ya nay(n), y mi n , ymax
ymin = yarray(1)
ymax = yarray(1)
do i = 2,n
if (yarray(i).gt.ymax) then ! elements.
ymax = yarray(i)
elseif (yarray(i).lt.ymin) then '

ymin = yarray(i)
endif
enddo
return
end !End of subroutine.

subroutine minmax-cl(nc.carray,cmin,cmax)
implicit none
integer i.nc
real carray(nc).cmin,cmax
cmin = carray(2)
cmax = carray(2)
do i = 3,nc
if (carray(i).gt.cmax) then !elements.
cmax = carray(i)
elseif (carray(i).lt.cmin) then
cmin = carray(i)
endif
enddo

stop

t

.

!Set ymin and ymax to
! first array element.

!Test balance of array

!

!Set cmin and cmax to
!second array element

!Test balance of array

I

\

\

I

Page 3

i

APP-M.XLS

. -. ..

-.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

return
end !End of subroutine.
. I !!!!!!!!!!! .
subroutine t-conv(t-con, hh,rnm,ss)
!!!!+!!
implicit none
real hh,mrn,ss,t-con
t-con = hh + mm160. + ssL3600.
return
end
. .
subroutine t-conv-back(tt-con, h h h ,rnmm, sss)
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! .
implicit none
real hhh, mmm,sss,tt-con
hhh = int(tt_con)
rnmm = int((tt-con-hhh)%O.)
sss = (((tt-con-hhh)%O)-mmm)%O.
retu m
end

APP-A3.XLS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
?9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

subroutine log-veh(dinc,xc,yc,log_cl,nc,xv,yv,logv,veh.
+ v-id.v-time-id,xl, y l ,x4,y4)
!!!!+!!
implicit none
integer veh,i,ii.flag,nc
integer v-id(ve h)
real v-time-id(veh)
real xc(800),yc(800),1og_cl(800),xv(400),yv(400),logv(400)
real angle,anglel ,xvl ,yvl ,x5,yfi,d,dinc,dd
real x i (400).yl(400).x4(400),y4(400)
dd = dinc '2
do i = 1, veh
ii= 1
flag = 1
dowhile(flag.eq.1)
if(ii.eq.nc) then
flag= 0
else
~ ! ! ~ c ! i l ! . ! e . ~ ! i ? + ~ ~ . ~ n ~ . ~ ~ i i ! . g e . w ! i ~ d !

+ .and.(yc(ii).le.yv(i)+dd.and.yc(ii).ge.yv(i)-dd))then
angle = atan2d((yc(ii+l)-yc(ii)),(xc(ii+l)-xc(ii)))
if (angle.gt.360) angle = angle - 360
anglel = angle+90.
xvl =xv(i)+dinc'cosd(anglel)
yvl=yv(i)+dinc*sind(anglel)
call intersed(xv1 ,yvl .xv(i),yv(i),xc(ii),yc(ii),

+ xc(ii+l),yc(ii+l),x5,y5)
! !!!!+!!
! FIRST CHECK SEE IF XC1= XC2 & IF Y5 IS INBETWEEN YCl & YC2
! THEN CHECK IF YCl = YC2 8 IF X5 IS INBETWEEN XCl & XC2.

+ y5.le.yc(ii)) .or.
+ (xc(ii).eq.xc(ii+l).and.y5.le.yc(ii+l).and.
+ y5.ge.yc(ii))) then

+ log-cl(ii), log_cl(ii+ 1), logv(i),xl (i), y l (i))

if((xc(ii).eq.xc(ii+l).and.y5.ge.yc(ii+l).and.

call d-log(xc(ii),y5,xc(ii),xc(ii+l),yc(ii),yc(ii+l),

x4(i) = xvl
y4(i) = yvl
flag = 0
elseif((yc(ii).eq.yc(ii+l).and.x5.ge.xc(ii+l).and.

+ x5.le.yc(ii)). or.
+ (yc(ii).eq.yc(ii+l).and.x5.le.xc(ii+l).and.
+ x5.ge.yc(ii)))then

+ log_cl(ii),lo~cl(ii+l),logv(i),xl (i), y l (i))
call d~log(x5.y5,xc(ii).xc(ii+l).yc(ii),yc(ii+l)

x4(i) = xvl

flag = 0
Y4(i) = yvl

else if((x5.ge.xc(ii).and.x5.le.xc(ii+l).and.
+ y5.ge.yc(ii).and.y5.le.yc(ii+l)).or.
+ (x5.ge.xc(ii+l).and.x5.le.xc(ii).and.
+ y5.ge.yc(ii+l).and.y5.le.yc(ii)).or.
+ (~5.ge.xc(ii+l).and.x5.le.xc(ii).and.
+ y5.ge.yc(ii).and.y5.le.yc(ii+ 1)).or.
+ (x5.ge.xc(ii).and.x5.le.xc(ii+l).and.
+ y5.ge.yc(ii+l).and.y5.le.yc(ii))) then

\

-

/

6

I:

log-veh4 Page 1

AP P-A3.XLS

i
k l

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

call d_log(x5,y5,xc(ii),xc(ii+ 1), yc(ii),yc(ii+l)
log-cl(ii).log_cl(ii+l).logv(i),xl (i), y l (i))

x4(i) = xv l
y4(i) = yv l
flag = 0

else iy

+

+ (x5.ge.xc(ii).and.x5.le.(xc(ii)+0.5).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+O.5)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+0.5).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+O.5)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)+0.5).and.
+ y5.1e.yc(ii).and.y5.ge.(yc(ii)+OS)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+0.5).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+O.5)).or.
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l)+0.5).and.
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)+0.5)).or.
+ (~5.le.xc(ii+l).and.x5.ge.(xc(ii+1)+0.5).and.
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)+0.5)).or.
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l)+OS).and.
+ y5. le. yc(iii 1).and.y5.ge.(yc(ii+ 1)+0.5)).or.
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)+OS).and.
+ y5. le. yc(ii+ 1). and.y5. ge.(yc(ii+ 1)+OS)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-0.5).and.
+ y5.ge.yc(ii).and.y5.Ie.(yc(ii)-OS)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-0.5).and.
+ y5.ge.yc(ii).and.y5.Ie.(yc(ii)-OS)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-O.5).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)-OS)).or.
+ (~5.Ie.xc(ii).and.x5.ge.(xc(ii)-O.5).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)-0.5)).or.
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l)-0.5).and.
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l>0.5)).or.
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-O.5).and.
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)-0.5)).or.
+ (~5.ge.xc(ii+l).and.x5.le.(xc(ii+1)-0.5).and.
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)-O.5)).or.
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-O.5).and.
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)-0.5)))then

call d-log(x5,y5.xc(ii),xc(ii+l),yc(ii),yc(ii+l)
log-cl(ii),log-cl(ii+l),logv(i),xl (i),yl (i))

x4(i) = xvl
y4(i) = yvl
! flag=O
else if ((x5.ge.xc(ii).and.x5.le.(xc(ii)+l).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii)+l)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+l).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+ 1)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)+ 1).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+l)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+l).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+l)).or.
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l)+1).and.
+ y5.ge.yc(ii+ 1).and. y5.le.(yc(ii+ 1)+1)).or.
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)+l).and.
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)+l)).or.
+ (x5.ge.xc(ii+ 1).and.x5.le.(xc(ii+l)+ 1).and.
+ y5.le.yc(ii+ 1).and.y5.ge.(yc(ii+l)+1)).or.

log-veh4 Page 2

APP-A3.XLS

116
117
118
119
120
121
122
123
1 24
125
126
127
128
129
130
131
1 32
133
134
135
1 36
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
1 52
153
154
155
1 56
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)+l).and.
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)+l)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-l).and.
+ ydge.yc(ii).and.y5.1e.(yc(ii)-l)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii>l).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)-l)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-l).and.
+ y5.le.yc(ii).and.y5ge.(yc(ii)-l)).or.
+ (x5.le.xc(ii).and.x5. ge. (xc(ii)-1).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)-l)).or.
+ (~5.ge.xc(ii+l).and.x5.le.(xc(ii+l)-l).and.
+ y5. ge. yc(ii+ 1).and. y5.Ie.(yc(ii+l)-l)).or.
+ (~5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-l).and.
+ y5.ge.yc(ii+l).and.y5.le.(yc(ii+l)-l)).or.
+ (x5.ge.xc(ii+l).and.x5.le.(xc(ii+l)-l).and.
+ y5.le.yc(iiil).and.y5.ge.(yc(ii+l)-l)).or.
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-l).and.
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)-l)))then

+ log-cl(ii),log-cl(ii+l),logv(i),xl(i),yl(i))
call d~bg(x5,y5,xc(ii),xc(ii+l),yc(ii),yc(ii+l)

x4(i) = xvl
y4(i) = yl
else if ((x5.ge.xc(ii).and.x5.le.(xc(ii)+5).and.

+ y5.ge.yc(ii).and.y5.le.(yc(ii)+5)).or.
+ (~5.le.xc(ii).and.x!5ge.(xc(ii)+5).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)+5)).or.
+ (~5.ge.xc(ii).and.x5.le.(xc(ii)+ti).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+5)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)+5).and.
+ y5.le.yc(ii).and.y5.ge.(yc(ii)+5)).or.
+ (xb.ge.xc(ii+l).and.x5.le.(xc(ii+l)+$).and.
+ y5. ge. yc(ii+ 1).and.y5.le.(yc(ii+ 1)+5)). or.
+ (x5.lexc(iii I). and.xfi.ge.(xc(iii 1)+5).and.
+ y5.ge.yc(iiil).and.y5.le.(yc(ii+l)+5)).or.
+ (x5.ge.xc(ii+ 1).and.x5.le.(xc(ii+l)+5).and.
+ y5.le.yc(ii*l).and.y5ge.(yc(ii+l)+5)).or.
+ (x5.lexc(iiil).and.x5.ge.(xc(ii+l)+5).and.
+ y5.le.yc(ii+l).and.y5.ge.(yc(ii+l)+5)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-5).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)-5)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-5).and.
+ y5.ge.yc(ii).and.y5.le.(yc(ii)-5)).or.
+ (x5.ge.xc(ii).and.x5.le.(xc(ii)-5).and.
+ y!Lle.yc(ii).and.y5.ge.(yc(ii)-5)).or.
+ (x5.le.xc(ii).and.x5.ge.(xc(ii)-5).and.
+ y5.le.yc(ii).and.y5.ge.(yc(iiw)).or.
+ (x5.ge.xc(ii+l).and.x5.le.(xc(iiil)-5).and.
+ yfi.ge.yc(ii+l).and.y5.Ie.(yc(ii+l)S)).or.
+ (x5.le.xc(iiil).and.x5.ge.(xc(ii+l)-5).and.
+ y5.ge.yc(iiil).and.y5.le.(yc(ii+1)5)).or.
+ (~5.gexc(ii+l).and.xti.le.(xc(ii+l)-5).and.
+ y5.le.yc(ii+ 1).and.y5.ge.(yc(ii+ 1)-5)).or.
+ (x5.le.xc(ii+l).and.x5.ge.(xc(ii+l)-tj).and.
+ y5.le.yc(ii+ l).and.y5.ge.(yc(ii+l *)))then

+ log-cl(ii).log-cl(ii+l).logv(i),xl (i),yl (i))
call d-log(x5,y5,xc(ii),xc(ii+l),yc(ii),yc(ii+l)

x4(i) = xvl
y4(i) = yvl
end if

log-ve h4 Page 3

4

175
176
177
178
179
180
181
1 82
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
21 0
21 1
212
21 3
214
21 5
216
217
21 8
21 9
220
221
222
223
224
225
226
227
228
229
230
231
232
233

end if
ii = ij+1
end if
end do
end do
retum
end
!!!!+!!
subroutine intersect(x1, y l , ~ , y 2 , ~ 3 , ~ 3 . x 4 , ~ 4 , ~ 5 , ~ 5)
!!!!+!!
implicit none
real x l ,x2,x3,x4.x5,yl ,y2.y3,y4,y5
real al,bl,cl,a2,b2,~2
a1 = y2-yl

c l = x2”yl- XlW
a2 = y4y3

c2 = x493 4 9 4
x5 = (bl*c2-b2W)/(al’b2-a2’bl)
y5 = (cl*a2 - @a1 Y(aPb2-aPbl)
retum
end
!!!!+!!
subroutine d-log(x5.y5,xcl ,xc2,ycl ,yc2.logcl ,logc2.logv,xl,yl)
!!!!+!!
implicit none
real x5,y5.xcl,ycl,xc2,yc2,logcl ,logc2.logv,xl.yl,d
XI = x5
yl = y5
if(logc1 .gt.logc2)then
d = ((xCi-xc2)T?+(y5-y~2)T)~.5
logv = d + logc2
else
d = ((x5xcl)W+(ySycl)T)“S
logv = d + logcl
end if
retu m
end
!!!!+!!
subroutine dis_xy(x5,y5,xcl ,xc2,ycl .yc2, logcl , logc2,logv)
!!!!+!!
implicit none
real ~5.y5.xcl ,ycl .xc2,yc2,logcl .logc2.logv.d
if(logc1 .gt.logc2)then
d = ((x5xc2)”2+(ySyc2)”2)”.5
logv = d + logc2
else
d = ((x5xcl)T+(y5ycl)”2)“. 5
logv = d + logcl
end if
return
end
...
subroutine order-veh(log-veh,veh,veh-id,veh-time-id,
+ n-log_veh.n-veh-id,n-veh-time-id)
!!!!+!!
implicit none
integer iii.ii,i, veh.veh-id(4OO),n-veh-id(400)

b l = x i -x2

b2 = ~3 -x4

log-ve h4 Page 4

AP P_AB.XLS

234
235
236
237
238
239
240
24 1
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

integer rnin-veh-id, max-veh-id
integer flag,flag2,latestveh,veh-de1(400)
real veh-time-id(400),n-veh-tirne-id(400)
rea I log-ve h(400), n-log-ve h(400)

100 fonnat(/.60(1-'),/,
+ ' ID DistanceLog Time '/60('-'),/,
+ i9EO('-'))

do i= 1,veh
veh-del(i) = 0
end do

! This loop will organize the data in the vehicle ID assending order format
! that we want
!

call minrnax(veh,veh-id,min-veh-id,max-veh-id)
print.,' I

print*,'rninimum vehicle ID is = ',min-veh-id
print*.'maximurn vehicle ID is = '.max-veh-id
print..' *
latestveh = min-veh-id
i = l
dowhile(i. le.veh. a nd. latestveh . le. max-veh-id)
flag = 0
ii = 1
do while(flag.eq.0.and.ii.le.veh)
if(veh-id(ii).eq.latestveh.and.veh-del(ii).eq.O) then
n-veh-id(i) = latestveh
n-logveh(i)' log-veh(ii)
n-veh-time-id(i) = veh-time-id(ii)
veh-del(ii) = 1
flag = 1
latestveh = latestveh + 1
i = i+1

!

!
else if(ii.eq.veh) then

latestveh4atestveh + 1
end if

end do
flag2 = 0

do while(flag2.eq.O.and.iii.le.veh)
iyveh-id(iii).eq.latestveh-1 .and.veh-del(iii).ne. 1.

flag2= 1
latestveh = latestveh - 1

end if

if(flag.eq.0) latestveh = latestveh + 1
end do
end do
return
end
!!!!+!!
subroutine speed(veh.n-veh-lg, n-veh-id,n-veh-tirne,veh-sp,direct)
!!!!+!!
implicit none

ii= ii+l

iii = ii

+ and.iii.le.veh)then

iii = iii+l

I

log-veh4 Page 5

APP-AB.XLS

I

%

i

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
31 0
31 1
312
31 3
314
31 5
316
31 7
31 8
31 9
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

integer veh,i, direct
integer n-veh-id(400)
real ve h-sp(4OO).n-ve h-lg(400). n-ve h-time(400)
real dt-time

write(6.300)
veh-sp(1) = 0
do i= 1. veh-1
if@-veh-id(i).eq.n-veh-id(i+l)) then
dt-time = (n-veh-time(i+l)-n-veh-time(i))
veh-sp(i+ 1)=(n-ve h-lg(i+ 1)-n-veh-lg(i))/dt-time11 OOO*di rect

iyveh-sp(i+l).It.40) veh-sp(i+l)= 0.
if(veh-sp(i+l).gt.lSO) veh-sp(i+l)= 0.
else
veh-sp(i+l)= 0
end if
end do
return
end
!!!!+!!
subroutine avg_sp(n'veh-sp, a-sp-vehs)
!!!!+!!

! Now We request the time difference between the set of photos.

! 3.6)*direct

implicit none
integer n,i,nn
real veh-sp(n),a-sp-vehs,sum
sum = 0
nn=O
do i=l ,n
if(veh-sp(i).ne.O) then
nn = nn +l

sum = sum + veh-sp(i)
end if
end do
a-sp-vehs = sum Inn
return
end
!!!!+!!
subroutine direction(direct,veh,n-log-veh,n-veh-id,n-veh-time)
!!!!+!!
implicit none
integer direct ,veh.n-veh-id(veh).i. n
real n-log_veh(veh). n-veh-time(veh). sp
n=O
direct = 1
do i= 1. vehn
if@-veh-id(i).eq.n-veh-id(i+ 1)) then
sp=(n-Iog-veh(i+l)-n-log_veh(i))/lOOO/

if(sp.lt0) n = n-1
if(sp.gt.0) n = n+l
end if

end do
if(n.lt0)direct = -1

! print'.'
! print*.'n is = ', n
! print*,'Direction is = ', direct
! print','

return

+ (n-veh-time(i+l)-n-veh-time(i))

I

APP-A3.XLS

352
353

end
!!!!+!!

log-ve h4

(I

, . .

Page 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

!
!

10

+

!

101
+
+
+

subroutine xyATR(NL.Et,dinc,nc.xc,yc.log-cl,dis-atr,t0,tl .t2)
!!!!+!!
implicit none
integer NL,nc , iof,ior
integer p-id(2)
real xc(nc),yc(nc),log-cl(nc),xp(l).yp(l) M A 1 1
real xpl(l),ypl(l),xp4(1),yp4(1),p-time(l),dinc
real hh,mm,ss,to,tl,hhl,mml,ssl,t2,hh2,mm2,ss2
real dis-atr, Et
charactelr0 xy-atr .
!!!!+!!
ASK FOR A F I E WITH XY-ATR AND to DATA FILE AND FIND THE
COORDINATES WITH REFERNCE TO THE CENTER LINE.

prinP,'Please Enter the name of the file that has @

prinr,'XY-ATR,to, ti, t2 e

read(5,lO) xy-atr
format(a)
open(unit =9,file=xy-atr,status='old',iostat=iof)
if(iof.ge.0) then
read(9,+, iostat=ior)NL
read(g.*,iostat=ior)Et
read(9,', iostat=iir)xp(1),yp(1), hh,mm,ss.

if(ior.ne.0)then
print*,'Check data format in data file???'
stop
end if
call t-conv(to.hh.mm,ss)
call t-conv(t1 ,hhl ,mml ,ssl)
call t-conv(t2,hh2,mm2,ss2)
p-time(1) = to
p-id(1) = 1
call log-location(dinc.xc. yc,locl,nc,xp. yp,logg, 1)

mml ,ssl,H14,mrn2,ss2

dis-atr = logg(1)
print*,'
print101 , dis-atr,hh,mm,ss, hh l .mmI ,ssl .ti ,hh2,mm2,ss2.t2
format(@ ATR is at distance : '.flO.2/

' Base time is :@.f4.0,f4.0,f6.3/
' Starttime is :@,f4.0.t4.0,f6.3,fl1.5/
' End time is :@.f4.0,14.O,R3.3,fl1.5)

I

else
prinr,Xi,X2,t data file failed to open '
STOP
end if
return
end

! !!!!+!!
! NOTES
! This Subroutine brings all the vehicles to the atr location
! using the average speed of all the vehicles in the same
! class to compute the time by taking distancekpeed
! !!!!+!!

subroutine bring-to-atr-a-sp(veh.n-log-veh,
+ n-veh-id,n-veh-tirne-id,

App-A4rev. XIS

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7%
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1 02
103
104
105
106
107
108
109
110
111
112
113
114
115

+ veh-sp,dir,a-sp-veh,log-atr,atr-v-id.atr-t-veh,
+ tl,t2,tminv,tmaxv.iii,a-sp-in,i-sp)

!!!!+!!
implicit none
integer dir,veh,k.i.il j2,flagl .flag2,flag3,iii,i-sp
integer n-veh-id(veh), atr~v~id(400).casev(400)
integer id_in-t(400)
real sp-in-t(400)
real n-log-veh(veh),veh-sp(veh),n-veh-time-id(veh)
real atr-t-veh(veh), atr-v-sp(400)
real a-sp-veh,spd
real loaatr.tl ,t2,tminv,tmaxv
real Lil, I-Q
real tmin,tmin-diff,t-diff,t-diff2,tt
real a-sp-in.sum-sp
a-sp-in = 0
i-sp = 0
tminv = 9999
tmaxv= 0
print1 3,log_atr,tl,t2

+ fStart tjm for count is = '.fl 1 .?.
+ rEnd time for count is = ',fll.7,
+ //The values of the log and speed are:'//
+ ' # ID Dist-veh Speed'lGO('-'))

do i=l .veh
print*,i,n-veh-id(i), n-log-veh(i),veh-sp(i)
end do
tmin = 1 J(3O.WOO.)
tmin-dm = 5s3600.
flag1 = O
i = O
il = 1
i 2 = 1
spd = a-sp-veh
do while(flag1 .eq.O)

flag2 = 0
do while(flag2.eq.O)
if(n-veh-id(il).eq.n-veh-id(i2+ 1))then
i2= i2+1
else
flag2= 2
end if
end do
atr-v-id(i) = n-veh-id(i1)
if(i1.eq.Q) then
casev(i) = 1
atr-t-veh(i) = n-veh-time-id(i1) +

atr-v-sp(i) = 0.0

flag3 = 0
do k = il ,i2-1
if((n-log-ve h(k).ge.log-atr.and.

+ n-log_veh(k+ 1).le. log-atr). or.
+ (n-log-veh(k). le. log-atr. and.
+ n-log-veh(k+l).ge.log-atr))then

13 format(6O('-'),/'ATR dist inside the subroutine is:',f9.1,

i = i+1

+ (log-atr - n-log-veh(J4))1(1000*spd)* dir

elseif(i2.gt.il) then

. . .

I

I ..

116
117
118
119
120
121
122
123
124
125
1 26
127
128
129
130
131
1 32
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

atr-t-veh(i) = n-veh-time-id(k) +

atr-v-sp(i) = veh-sp(k+l)
flag3 = 1

end if
end do
if(flag3.eq.O) then
I-il = n-loaveh(i1)
1-Q = n-log-veh(i2)
if (dir.gt0) then
if(l-i2. le. loaatr) then
atr-t-veh(i) = n-veh-time-id(i2) +

atr-v-sp(i) = veh-sp(i2)

elseif(1-il .ge.log-atr) then
atr-t-veh(i) = n-veh-timeJd(i1) +

atr-v-sp(i) = veh-sp(il+l)
casev(i) = 4

end if
else if(dir.lt0)then
if(l-il .le.log-atr) then
atr-t-veh(i) = n-veh-time-id(i1) +

atr-v-sp(i) = veh-sp(il+l)

elseif(l-G.ge. log-atr) then
atr-t-veh(i) = n-veh-time-id(i2) +

atr-v-sp(i) = veh-sp(i2)
casev(i) = 6
end if
end if
end if
else
print.,'
print','" SOME THING IS WRONG IN THE CHECK *
print.,'" AT VEHICLE # 'A'
print..'
end if
if(atr-t-veh(i).gttmaxv) tmaxv = atr-t-veh(i)
if(&-t-veh(i).ktminv) tminv = atr-t-veh(i)
if(i2.eq.veh) Rag1 = 10
il =i2+1
i2 = il
end do
prinr,
print'." Direction is = ', dir,' *
print',". # of vehicles = ', i , ' *
print.,
do k = 1,i
write(6,130)k.atr-v-id(k),atr-t-ve h(k),atr-v-sp(k),casev(k)
end do

iii = 0
do k = 1,i
if(atr-t-veh(k).ge.tl .and.atr-t-veh(k).le.Q) then

+ (log-atr - n-log_veh(k)y(1000'spd)'dir

casev(i) = 2

+ (log-atr - n-logveh(i2))/(100Ofspd)*dir

casev(i) = 3

+ (log-atr - n-Iog_veh(il))/(lOOO*spd)*dir

+ (log-at1 - n_log_veh(il))/(lOOO*spd~dir

casev(i) = 5

+ (log-atr - n_log_veh(d5)y(1000*spd)*dir

t+(

130 format(i5, i7,3x.fl2.7,f9.3.i4)

I

i

Ap p-A4 rev. xls

175
1 76
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
1 92
193
194
195

197
198
1 99
200
201
202
203
204
205
206
207
208
209
210
21 1
212
21 3
214
21 5
216
217
218
21 9
220
221
222
223
224
225
226
227
228
229
230
231
232
233

1- I J O

iii = iii + 1
id-in-viii) = atr-v-id(k)
sp-in-t(iii) = atr-v-sp(k)
end if
end do
printl40,tminv. tmaxv

140 fomat(6O('-')fFor this segment Tmin is = ',fl1.7/
1 8 Tmax is = ',fl1.7//

6OO('-')/'Vehicles that are included in the count are',
/60('-'y # ID SPEED(kmph) 'EO('-'))

i-sp = 0
sum-sp = 0
do k = 1,iii
print1 50.k,id-inJ(k),sp-in,t(k)
if(sp-in-t(k).gt.O) then
i-sp = i-sp + 1
sum-sp = sum-sp + sp-in-qk)
end if
end do
if(i-sp.ne.O) a-sp-in = sum-sp I i-sp
print160,a_sp_in, i-sp

. .

:52 fanat(62i'-')me sve,.=ge speed c!!?hese vehic!es is:',
+ f9.4,' kmph './'This is for',i4.' Vehicles'BO('-'Y)

150 format(2(i5),f11.4)
return
end
!!!!+!!
NOTES
This Subroutine is based on the fact the same vehilce that
sppears more than once is organized in the format that the
the vehicle's first appearance is listed firts.

!!!!+!!
subroutine bring-to-atrfve h. n-log-ve h, n-veh-id , n-veh-time-id,

+ veh sp.dir,a-sp_veh,log_atr,atr-v-id,atr-t-veh,
+ tl,t2Timinv,tmaxv,iii,a_sp_in,i_sp)

!!!!+!!
implicit none
integer dir,veh,k,i.il ,i2.flagl .flag2.ftag3.iii.i-sp
integer n-veh-id(veh), atr~v~id(400),casev(400)
integer id_in-t(400)
real sp-in-t(400)
real n-log-veh(veh),veh-sp(veh),n-veh-time-id(veh)
real atr-t-veh(veh), atr-v-sp(400)
real a-sp-veh,spd
real loaatr,tl ,tZ.tminv,tmaxv
real 1-il, 1-Q
real tmin,~in_diff,t_dit-d~,~
real a-sp-in,sum-sp
i-sp = 0
spd=o
tminv = 99999
tmaxv=O
print13,log_atr,tl ,t2

13 format(GO(?-')./'ATR dist inside the subroutine is:'.f9.1,
+ tStart time for count is = l.fll.7.
+ /'End time for count is = ',fl1.7.
+ Inhe values of the log and speed are:'//

I

b

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

+ ' # ID Dist-ve h S peed'/60('-'))

do i=l .veh
print., i, n-veh-id(i). n-log-veh(i),veh-sp(i)
end do
tmin = 1 ./(30.'3600.)
tmin-diff = 5.13600.
flag1 = 0
i = O
il = 1
i 2 = 1
do while(flagl.eq.0)
i = i+ l
flag2 = 0
do while(flag2.eq.O)
if(n-veh-id(il).eq.n-ve h-id(i2+1))then
i2= i2+1
else
flag2= 2
end if
end do
atr-v-id(i) = n-veh-id(i1)
if(i1.eq.E) then
casev[i) = 1
atr-t-veh(i) = n-veh-time-id(i1) +

atr-v-sp(i) = 0.0

flag3 = 0
do k = il,i2-1
if((n-loave h(k). ge.1opatr.a nd .

+ n-loaveh(k+l).le.lopatr).or.
+ (n-log_veh(k).le.log-atr-and.
+

+ (lopatr - n-log-veh(J4))l(1000'a-sp-vehp dir

elseif(i2.gtil) then

n-loaveh(k+ 1).g e. log-atr))then
spd = veh-sp(k+l)
if(veh-sp(k+l).eq.O) spd = a-sp-veh
atr-t-veh(i) = n-veh-time-id(k) +

atr-v-sp(i) = veh-sp(k+l)
tlag3 = 1
casev(i) = 2
end if
end do
if(flag3.eq.O) then
1-i1 = n-Ioaveh(i1)
I,s2 = n-bg-veh(i2)
if (dir.gt.0) then
if(l-i2.le. lopatr) then
spd = veh-sp(i2)
if(veh-sp(P).eq.O) spd = app-veh
atr-t-veh(i) = n-veh-time-id(i2) +

atr-v-sp(i) = veh-sp(i2)
casev(i) = 3
elseif(l-il .ge.log-atr) then
spd = veh-sp(il+l)
if(veh-sp(il+l).eq.O) spd = a-sp-veh
atr-t-veh(i) = n-veh-time-id(i1) +

+ (log-atr - n-lo~veh(il))/(lOOO*spd)*dir

+ (lopatr - n-Iog_veh(k))/(lOOO*spd)*dir

+ (l-atr - n-Ioaveh(ii))/(lOOO*spd)'dir

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
31 0
31 1
312
31 3
314
315
316
317
31 8
31 9
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

atr-v-sp(i) = veh-sp(i1 +l)
casev(i) = 4
end if
else iqdir.tt.0)then
if(l_il .le. log-atr) then
spd = veh-sp(il+l)
if(veh-sp(il+l).eq.O) spd = a-sp-veh
atr-t-veh(i) = n-veh-time-id(il) +

+ (log-atr - n-log-veh(il))/(lOOO*spd)*dir
atr-v-sp(i) = veh-sp(il+l)
casev(i) = 5
elseif(I-i2.ge.log-atr) then
spd = veh-sp(i2)
if(veh-sp(i2).eq.O) spd = a-sp-veh
atr-t-veh(i) = n-veh-time-id(i2) +

atr-v-sp(i) = veh-sp(i2)
casev(i) = 6
end if
end if
end if
e!se
print*,'*'
print*.'* SOME THING IS WRONG IN THE CHECK *'
prinP;* AT VEHICLE # ',i;
prinr,**
end if
if(atr-t-veh(i).gttmaxv) tmaxv = atr-t-veh(i)
if(atr-t-veh(i).lttminv) tminv = atr-t-veh(i)
if(i2.eq.veh) flag1 = 10
il = i2+1
i 2 = i l
end do
print*,**
print*,'* Direction is = ', dir,'
print*,'* # of vehicles = ', i , '
prinr,m'
do k = 1,i
write(6,13O)k, atr-v-id(k). a tr-t-ve h(k), atr-v-sp(k). casev(k)
end do

+ (loaatr - n_log_veh(J5))/(1000*spd)*dir

m

HI

130

140
+
+
+

format&, i7,3x,f12.7,f9.3,i4)
iii = 0
do k = 1,i
if(atr-t-veh(k). ge. t i .and. atr-t-veh(k).le.t2) then

sp-in-t(iii) = atr-v-sp(k)
end if
end do
printl40,tminv. tmaxv
format(60('-'~For this segment Tmin is = ',fl1.7/

iii = iii + 1
id-in-t(iii) = atr-v-id(k) i -

I & Tmax is = '.fll.7//
60('-'yVehides that are included in the count are',
/60('-')l # ID SPEED(kmph) 'BO('-'))

i-sp = 0
sum-sp = 0
do k = 1 .iii
print1 50, k,id_in-t(k),sp-in-t(k)
if(sp-in-t(k). gt.0) then

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

i-sp = i-sp + 1
sum-sp = sum-sp + sp-in-t(k)
end if
end do
a-sp-in = sum-sp / i-sp
printl60.a-sp-in. i-sp

160 fonnat(60('-')l'The average speed of these vehicles is:',
f9.4,' kmph ',/'This is for',i4.' Vehicles'/6O('-'Y)

150 format(2(i5).fl1.4)
print*,'Cars with Speed = ',a-sp-in ,' Speed='.i-sp
return
end
!!!!+!!!!!!!!!!!!!!!!!!!!!!!!!!!!!?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
NOTES
This Subroutine computes that earlist time and the latest
time that we can do the count in. Based on the first and last
points of the CL and using the speeds of the cars and the speeds
of the trucks.

+

!!!!+!!
subroutine t-cl_b_e(d-strt,d-end,dirr,tmin,tm,

+ + a-sp-cars,a-sp_trks,dis-a~,tl ,t2)
!!!!+!!
implicit none
integer din
real d-strt,d-end,dir,tmin,tmax
real a-sp_cars,a-sp-trks,dis-atr,tl ,t2
real car-s~-tcar-end-t,t~-s~-ttrk-end_t
print*,'lnside the subroutine '
prinr.' Your start time is = ',ti
print-.' Your end time is = '.a
if(dirr.gt.0)then
car-sttt-t = tmax+(dis-atr - d-end)/ (lOO[ra-sp-cars)
car-end-t = tmin+(dis-atr - d-strt)/(l OOO'a-sp-cars)
trk-strt-t = tmax+(dis-atr - d-endy (1 OOO'a-sp-trks)
trk-end-t = tmin+(dis-atr - d-strtY(1 OOO'a-sp-trks)
else if(dirr.tt.0) then

car-strt-t = tmax-(dis-atr - d-strty (1 000-a-sp-cars)
car-end-t = tmin-(dis-atr - d-end~(lOOO*a-sp-cars)
trk-str-t = tmax4dis-atr - d-strty (lOOO*a-sp-trks)
trk-end-t = tmin-(dis-atr - d-end)/(1 OOO'a-sp-trks)

end if
print205,d-s~d_end,dis-atr,tmin,tmax,din,

print21 O,car-~-~car_end_t,trk_strt_ttrk_end-~n ,t2
if(t1.It.car-strt-tor.tl.ttrk-strt-t) then
prinr.'Your start time is invalid '
print*.lEnninating process '
stop
end if
if(t2.gt.car-end-torJ2.gt.trk-end-t) then
prinr,'Your end time is invalig '
prinr.'TErminating process
stop
end if

+ a-sp-cars.a-sp-trks

205 format(/,70('-')/
+
+

' Start distance of CL is =',fll.2
' End distance of CL is =',fl 1.2

! '

41 1
41 2
41 3
414 + ' Direction is =',PI I
41 5 + 'Average speed of cars is =',f10.2/
416 + 'Average speed of Trucks is =',flO.U)
41 7 210 format(1,70('-')/
41 8 + ' Start time of Car count =',fl1.71
41 9 + ' End time of Car count =',fl1.71
420 + ' Start time of Truck count =',fl1.7/
421 + ' End time of Truck count =',fl 1.711
422 + ' Your start time is = '.fl 1.71
423 + 'Yourend time is =',fl1.7/70(,-')/)
424 return
425 end
426 !!!!+!!

+
+
+

' Distance of ATR is = ',fl I .2/
' Start time of photos is =',fl I .7/
* End time of photos is =',fl 1.71

App_/wrev.xls

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

subroutine compgar(N/Et t l ,t2,vol-c,vol-t,
~

a_sp_c,c,i,a,sp_t,t_i)
!!!!+!!
implicit none
integer vol-c,vol-t,c-i,t-i,tot-vol
integer NL
real t l ,t2,t-intew.hl,ml.s1
real a-sp-c,a-sp,t,s-m-sp
real Et, per-t,fhv, flow-toteggc-fl,density,densgc-ln
print+,'cars with speed = ',c-i,', Their speed=',a-sp-c
prinr,'trucks with speed = 'j-i,'. Their speed=',a-sp-t
print*,'Number of lanes = ',NL
prinP,'The value of Et read from data file :',Et
Et = 1.5

s-m-sp = (a-sp-c c-i + a-sp-t + t-i)/((c-i+t-i)*1.)/1.609
t-intew = (t2 - t1)W
per-t = vol-Pl. /tot-vor 100.
fhv = l/(l+per-t/lOO+(Et-1))
flow-tot = tot-vol 60 /t-intew
eepc-fl= flow-tot /fhv/NL
densty = flow-tot / s-m-sp
densgc-In = density / NL/fhv
call t-conv-back(tl,hl,ml,sl)
print500,hl ,ml ,si ,tl ,t_intew,vol-c,voI_t,tot-vol,per-t,
eepc-fl.s-m-sp,densky,densjc-ln

tot-vol= vol-c + vol-t

500 format(//sO(l-'y
+ ' Measure/ Parameter [units] '/SO('-')/
+ ' lnitila Clock Time to [hh:mmss]',ll~33.0,f3.0,f6.2,f10.6/
+ ' Time interval dt [mins] ',llx,f7.2/
+ ' Volume of Cars Vc [veh] '.1 lx,i6/
+ ' Volume of Trucks Vt [veh] ',1 lx.61
+ ' Total Volume Vveh [veh] ',llx,i6/
+ ' Percent Trucks Ptrk [%I ', 1 lx.V.21
+ ' Equiv Passenger Car Flow Qpcpl[pcphpc~,5x,f7.21
+ ' Space Mean Speed Us [mph] ',l lx.ff.21

+ ' Equiv Passenger Car Density Kpcpl[pcpmpll',4x,V.21
+ ' Density K [veWmi] ',l lx,f7.2/

+ SO('-'))
return
end
!!!!+!!

compgar

AP P-A6rev.xls

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

subroutine xlx2(NL,Et,dinc,nc,xc,yc,log_cl,

...
+ dis-xi .dis-x2,dis_atr,tO,txl ,W)

implicit none
integer nc , iof.ior,i
integer NL
real xc(nc).yc(nc),loacl(nc),x~(3),~~(3).10~(3)
real Et, dinc
real h(3),m(3),~(3),tO,bl .W,dis-xl. dis-S,dis-atr
charactef20 xlx2-file

! The following variables can be deleted if we delete the variables
! in the subroutine loaveh
! These are being used here only because I have to pass then to
! this Subroutine.

! .
! ASK FOR A FILE WITH X 1 8 X2 POINTS AND THEN FIND THESE POINTS
! WTH REFERENCE TO THE CENTER LINE.

iof = 0
print*,'Please Enter the name of the file that has '
print*,'Xl ,X2 points'
read(5,lO) xld-file

open(unit =9,file=xlx2-file,status='old',iostat=iof)
if(iof.ge.0) then
read(g.'.iostat=ior) NL
read(Q'.iostat=ior) Et
do i = 1.3

real XP1(3),YP1(3),XP4(3),YP4(3)

10 format(a)

!
!
! areneeded.

read(9?, iostat=ior)xp(i),yp(i), h(i). m(i), s(i)
if(ior.ne.0)then
prinP.'Check data format in data file???
stop
end if
end do
call t_conv(tO,h(l),W),s(l))
call t_cOnv(al ,h(2),m(2),s(2))
call t_conv(a2,h(a),m(3),~(3))
pr inr.W. IO; xtl =',txl.' xt2 =',W
call lo~location(dinc,xc.yc,lo~cl.nc.xp.yp,logg,3)
dis-atr = l o w (1)
dis-xl= loag(2)
dis-x2 = IOgg(3)
print.,'
print'.' x l and x2 points are: '
print*,logg(2),' 8 ',lOgP(3)
print',' AlR at :',log_p(l)
print.,'
else
print*,'Xl J2.t data file failed to open '
stop
end if
return

only the value of Xp and Yp are needed for the ones in the
report But for the later more comprehensive one these values

I

\

xlx2.f Page 1 I

AP P-A6rev.xls

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
a4
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

end
!!!!+!!

! NOTES
! This Subroutine is based on the fact the same vehilce that
! appears more than once is organized in the format that the
! the vehicle's first appearance is listed firts.
! This subroutine is only for the vehicles that are between
! the Xl-X2 locations.
! This subroutine brings all the vehicles back to the ATR
! using the individual speeds of vehicles.
!!!!+!!
subroutine bring~to~atr~xlx2as(xl2~veh,xl2~lgv,xl2~idv,

+ xl2~tv,x12-spv,
+ dir,a-sp-ve h.x-atr,xl ,x2,
+ tminv-xlx2,tmaxv-xlx2,
+ atr-v-id,atr-t-veh,atr-v-sp,
+ i,a-sp-in.i-sp)

!!!!+!!
implicit none
integer dir,xl2-veh, k,i.il ,i2,flagl ,flag2,flag3,iii,i_sp
integer xl2-idv(xl2-veh), atr-~-id(400),casev(400)
integer id-in-t(400)
real sp-in-t(400)
real xl2~lgv(xl2~veh).x12~spv(x12~veh).x12~tv(x12~veh)
real atr-t-veh(xl2-veh),atr-v-sp(400)
real a-sp-veh,spd
real x-atr,xl ,x2,tminv-xlx2,tmaxv-xlx2
real 1-il, I-i2
real tmin,tmin-diff,t-diff,t-diff2,tt
real a-sp-in,sum-sp
real log_min,log_max
i-sp = 0
spd = 0
tminv-xlx2 = 9999.9999

printlB,x-atr,xl ,x2
tmaxv-xlx2 = 0

13 format(6O('-'),rATR dist inside the subroutine is:',f9.1,
+ /Start distance for count is = ',fl1.5,
+ rEnd distance for count is = ',fll.5,
+ //The values of the log and speed are:'//
+ ' # ID Dist-veh time-veh Speed'/60('-'))

tmin = 1 J(30.*3600.)
tmin-diff = 513600.
flag1 = 0
i = O
H = 1
i2=1
do while(flagl.eq.0)
i = i+ l
flag2 = 0
do while(flag2.eq.O)
i f (x l l idv(il).eq.x12_idv(i2+ 1))then
i2= i2+1
else
flag2= 2
end if
end do
atr-v-id(i) = xl2_idv(il)

!

xlx2.f

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
? 37
138
1 39
140
141
142
143
144
145
146
147
148
149
150
151
1 52
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

if(il.eq.i2) then
casev(i) = 1
atr-t-veh(i) = x12-tv(il) +

atr-v-sp(i) = 0.0
elseif(i2.gt.il) then

flag3 = 0
do k = il ,i2-1
if((x i 2-lgv(k).ge.x-atr.and.

+ xl2~lgv(k+l).le.x-atr).or.
+ (xi 2-lgv(k).le.x-atr.and.
+ x i 2_lgv(k+l).ge.x-atr))then

spd = a-sp-veh
atr-t-veh(i) = x12-tv(k) +

+ (x-atr - x12_lgv(k))/(1000+spd)*dir
atr-v-sp(i) = xl2-spv(k+1)
flag3 = 1
casev(i) = 2
end if
end do
if(flag3.eq.O) then
!-i! = x! 2-!gv(il)
1-i2 = xl2Jgv(i2)
if (dir.gt.O) then
if(l-i2.le.x-atr) then
spd = a-sp-veh
atr-t-veh(i) = x123i2) +

atr-v-sp(i) = xl2_spv(i2)
casev(i) = 3
elseif(l-il .ge.x-atr) then
spd = a-sp-veh
atr-t-veh(i) =xl2-tv(il) +

atr-v-sp(i) = xl2-spv(il+l)
casev(i) = 4
end if
else if(dir.lt.0)then
if(l-il .le.x-atr) then
spd = a-sp-veh
atr-t-veh(i) =x12-tv(il) +

atr-v-sp(i) = xl2-spv(il+l)
casev(i) = 5
elseif(l-i2.ge.x-atr) then
spd = a-sp-veh
atr-t-veh(i) =x12-tv(i2) +

atr-v-sp(i) = x i 2_spv(i2)
casev(i) = 6
end if
end if
end if
else
print.,'
print*,* SOME THING IS WRONG IN THE CHECK
print.," AT VEHICLE # 'A'
print*,'*
end if

+ (x-atr - x12_lgv(J4))/(1 OOO+a_sp-veh)' dir

+ (x-atr - x12~lgv(i2))/(1000*spd)+dir

+ (x-atr - xl2_lgv(il))/(l000+spd)*dir

+ (x-atr - xl2Jgv(il))/(l000'spd~dir

+ (x-atr - x12_lgv(J5))/(1000+spd)+dir

-'
-1

i

'rn

xlx2.f Page 3
I

I

175
1 76
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
21 0
21 1
212
21 3
214
21 5
216
217
21 8
21 9
220
221
222
223
224
225
226
227
228
229
230
231
232
233

if(atr-t-veh(i).gttmaxv-xlx2) tmm-xlx2 = atr-t-veh(i)
if(atr-t-veh(i).lttminv_xlx2) tminv-xlx2 = atr-t-veh(i)
if(n.eq.xl2-veh) flag1 = 10
il = i2+1
i2 = il
end do
prinr,'
print*.'" Direction is = ', dir,' *
print.,'" # of vehicles = ', i , ' *
print.,'
prinr,'# ID Time Speed Case'
do k = 1,i
write(6,130)k.atr-v-id(k).atr-t-veh(k).atr-v-sp(k),casev(k)
end do
print1 4O.tminv-xl x2, tmaxv-xi x2

+ * 8 Tmax is = ',fl 1.711
+
+ BO('-')r # ID SPEED(kmph) 'EO('-'))

I

140 format(GO('-'YFor this segment Tmin is = '$71.71

60('-'yllehicles that are included in the count are',

130 format(i5, i7,3x,fl2.7,f9.3,i4)
i-sp = 0
sum-sp = 0
do k = 1,i
write(6,l BO)k,atr-v-iid(k).atr-t-veh(k), atr-v-sp(k),casev(k)
if(atr-v-sp(k).gt.O) then
i_sp = i-sp + 1
sum-sp = sum-sp + atr-v-sp(k)
end if
end do
a-sp-in = sum-sp I i-sp
printl60,a-sp-in. i-sp

160 format(GO('-')PThe average speed of these vehicles is:',
+

150 format(2(i5),fll.4)
19.4,' kmph ',/'This is fOr'.i4,' Vehicles'BO('-'Y)

print*,'Cars with Speed = ',a-sp-in ,' Speed=',i-sp
return
end

!
!
!
!
!
!
!
!

+
+
+
+
+

!!!!+!!
NOTES
This Subroutine is based on the fact the same vehilce that
appears more than once is organized in the format that the
the vehicle's first appearance is listed firts.
This subroutine is only for the vehicles that are between
the Xl-X2 locations.
This subroutine brings all the vehicles back b the ATR
using the individual speeds of vehicles.
!!!!+!!!!!!!!!!!!!!!!!!!!!~!!
subroutine bring-to_atr-xlx2(xl2-veh.xl2-lgv,xl2-idv,

x i 2-tv,xl2-spv,
dir.a-sp-veh,x-atr,xl ,x2,
tminv-xlx2,tmaxv-xlx2,
atr-v-id.atr-t-veh,atr-v-sp.
i, a-sp-in, i-sp)

!!!!+!!
implicit none
integer dir,xl2-veh,k.i,il ,i2,flagl ,flag2.flag3,iii.i-sp
integer xl2-idv(xl2-veh). atr~v~id(400).casev(400)
integer id_in-t(400)

I

!

i

I

xlx2.f

APP-AGrev.xIs

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

real sp_in-t(400)
real xl2-lgv(xl2-ve h),xl2~spv(xl2~veh),xl2~tv(xl2~ve h)
real atr-t-veh(xl2-veh),atr-v-sp(400)
real a-sp-veh.spd
real x-atr.xl ,x2.trninv-xlx2,tmaxv-xlx2
real I-il , I-i2
real tmin , trnin-diff, t-di ff, t-d iff2,tt
real a-sp-in, sum-sp
real log-min,log_rnax
i-sp = 0
spd = 0
tminv-xlx2 = 9999.9999
t m - x l x 2 = 0
printl3,x~atr,xl ,x2

13 fomat(GO('-'),/ATR dist inside the subroutine is:',fQ.l,
+ /Start distance for count is = ',fll.5,
+ /End distance for count is = ',fl 1.5,
+ //The values of the log and speed are:'//
+ '# ID Did-veh time-veh Speed'lGO('-'))

tmin = I /@Q.*.?rOO.!
tmin-diff = 5./3600.
flag1 = 0
i = O
il = 1
i 2 = 1
do while(flagl.eq.0)
i=i+ 1
flag2 = 0
do while(flag2.eq.O)
if(xl2_idv(il).eq.x12_idv('a+ 1))then
Q= i2+1
else
flag2= 2
end if
end do
atr-v-id(i) = xl2_idv(il)
if(il.eq.i2) then
casev(i) = 1
atr-t-veh(i) = x i 2 3 4 1 1) +

atr-v-sp(i) = 0.0

flag3 = 0
do k = i1.Q-1
if((xl2-@(k).ge.x-atr.and.

+ x12-lgv(k+l).le.x-atr).or.
+ (x12-lgv(k). lex-atr.and.
+ xl2-lgv(k+l).ge.x-atr))then

+ (x-atr - xl2~lgv(#REF!))/(l000*a~sp~veh)* dir

elseif(iigti1) then

spd = xl2_spv(k+l)
if(xl2-spv(k+l).eq.O) spd = a-sp-veh
atr-t-veh(i) = x12-tv(k) +

+ (x-atr - x12-lgv(k)~(l00Ofspd)*dir
atr-v-sp(i) = xl2_spv(k+l)
flag3 = 1
casev(i) = 2
end if
end do

xlx2.f Page 5

:*

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
31 1
312
313
314
315
316
317
318
31 9
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
35 1

if(flag3.eq.O) then
I-il = xl2-lgv(il)
I-i2 = x i 2_lgv(i2)
if (dir.gt.0) then
if(lJ2.le.x-atr) then
spd = x12_spv(i2)
if(xl2_spv(Q).eq.O) s pd = a-s p-ve h
atr-t-veh(i) = x12-tv(i2) +
+ (x-atr - x12~lgv(i2)~(1000'spd)'dir
atr-v-sp(i) = xl2_spv(Q)
casev(i) = 3
elseiyl-il .ge.x-atr) then
spd = xl2-spv(il+l)
if(xl2~spv(il+l).eq.O) spd = a-sp-veh
atr-t-veh(i) = xl2-tv(il) +

atr-v-sp(i) = xl2-spv(il+l)
casev(i) = 4
end if
else if(dir.lt0)then
if(l-il.le.x-atr) then
spd = xl2-spv(il+l)
if(xl2_spv(il + 1).eq.O) spd = a-sp-veh
atr-t-veh(i) = xl2_tv(il) +

+ (x-atr - xl2~lgv(il)~(1000+spd)*dir
atr-v-sp(i) = xl2-spv(il+l)
casev(i) = 5
elseif(l-i2.ge.x-atr) then
spd = x12_spv(i2)
if(xl2-spv(i2).eq.O) spd = a-sp-veh
atr-t-veh(i) = x i 2,YQ) +

atr-v-sp(i) = x12_spv(i2)
casev(i) = 6
end if
end if
end if
else
prinr.'
print.,'" SOME THING IS WRONG IN THE CHECK
prinr.m AT VEHICLE # 'A,'
prinr,
end if
if(atr-t-veh(i).gt.tmaxv-xlQ) tmaxv-xlxZ = atr_t_veh(i)
iyatr-t-veh(i).lttminv-xld) tminv-xlx2 = atr-t-veh(i)
if(i2.eq.xl2-veh) flag1 = 10
il = i2+1
i2 = il
end do
print.,
prinr,'" Direction is = ', dir,'
prinr,* # of vehicles = I, i , '
print.,
print+.'# ID Time Speed Case'
do k = 1.i
write(6,l 30)k,atr-veid(k).atr-t-ve h(k), atr-v-sp(k),casev(k)
end do

+ (x-atr - xl2~lgv(il))/(1000*spd)~dir

+ (x-atr - x12~lgv(J216))/(1000*spd)*dir

I

-'
.rw

*'

130 fomat(i5, i7,3x.fl2.7.f9.3,i4)

xlx2.f Page 6

AP P-A6rev. XIS

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

140
+
+
+

160
+

printl40,tminv-xlx2, trnaxv-xlx2
format(GO('-'YFor this segment Tmin is = ',fll.7/

60('-'YVehicles that are included in the count are',
nSO('-'yl # ID SPEED(kmph) '/60('-'))

1 8 Tmax is = ',fl 1.7//

i-sp = 0
sum-sp = 0
do k = 1,i
write(6.130)k,atr-v-id(k),atr-t-veh(k),atr-v-sp(k).casev(k)
if(atr-v-sp(k).gt.O) then
i-sp = i-sp + 1
sum-sp = sum-sp + atr-v-sp(k)
end if
end do
a-sp-in = sum-sp I i-sp
print 160,a_sp_in, i-sp
format(GO('-')/The average speed of these vehicles is:'.

f9.4,' kmph ',/This is for'.i4;' Vehicles'lGO('-')/)

print*,'Can with Speed = ',a-sp-in ,' Speed=',i-sp
return
end

150 format(2(i5),fll.4)

!!!!+!!

xlx2.f Page 7

I

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

> 3 0
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

49
50
51
52
53
54
55
56

48

!!!!+!!
subroutine cnt-type(f-type)
!!!!+!!
implicit none
integer iof, f-type, ior
iof = 0
do while(iof.eq.0)
print 133

133 format(B6('=')/
+ 4x.You have 2 choices to choose from. These are: 'I/
+ 4x.Y- Enter (X,Y) of ATR and tl,t2 data. '//
+ 4x,'2- Enter (X,Y) of XI, X2 points and t value.'/
+ 4x.' This will compute traffic measures as in l'/
+ 4x.' but after eliminating the values outside X1, X2'//
+ 4x,'PLEASE Enter which method you want 1, or 2 : ',$)

read(5,',iostat = ior)f-type
if(ior.eq.0)then
prinP,p
if(f-type.ne.1.and.f-type.ne.2)then
prinr,'-
prinP,'- Invalid data try again. -
print*,'- Hit retum to continue -
print*,'-
read*
else
iof=9
end if
else
prinP.-
priW,- Invalid data try again. -
print*,'- Hit retum to continue -
prinr.'
reap
end if
end do
retu m
end
!!!!+!!
subroutine out-times(t1 ,t2,tminc,tmaxc,tmint,tmaxt)
!!!!+!!~!
i m p l i none
real tl ,t2,tminc,tmaxc,tmint,tmaxt
print 31, t l .t2,tminc,tmaxc,tmint,tm&

31 fonnat(/'The value of t i is = '.f9.5,' and t2 is = '.f3.5/
+
+

The times of cars, min = 'J9.5.' and max =',f9.5/
The times of trucks, min = 'J9.5,' and max "$9.5)

retum
end
!!!!+!!
subroutine check-cl-limits(dir,tl ,t2,trninc,tmaxc,tmint,tma

+ a_sp-~rs,a_sp-trks,dis-atr,
+ cl-I stcl-last.
+ tc-st,tc_end,tt,st,tt-end)

!!!!+!!
implicit none
integer dir

Page 1

Ap P-A7rev.xls

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
1 02
103
104
105
lo6
107
108
109
110
111
112
113
114
115

real t l ,t2,tminc,tmaxc,tmint,tmaxt
real a-sp-cars.a-sp-trks,dis-atr, cl-lst,cl-last
real tc-st,tc-end.tt-sttt-end
real cl_st-car_sp,cl_end_car_sp,cl_st-~-sp,c~end-trk-sp
cl-st-car-s p =tc-st+ (dis-atr-cl-1 sty(1 OOO'a-sp-cars)*dir
cl_end-car-sp=tc-end+ (dis-atr-cl_last)/(1 OOO'a-sp-ca rs)*d ir
cl-st-trk-s p %-st+ (dis-atr-cl-1 st)/(1 OOO'a_sp-trks)*dir
cl_end-trk-sp=tt-end+(dis-atr-cl_last)/(1 OOO'a_sp-trks)*dir
if(trninc.gt.cl-st-car-sp) tminc = cl-st-car-sp
iytrnaxc. It.cl-end-car-sp) tmaxc = cl_end-car-sp
iytrnint.gtd-st-trk-sp) tmint = cl-st-trl-sp
iytmaxt#cl_end-trk-sp) tmaxt = cl-end-trk-sp
return
end
!!!!+!!
subroutine save-xl2-t12(dis-x1 ,dis-x2,tl ,t2,dxl ,dx2,txl ,ba)
!!!!+!!
implicit none
real dis x i .dis-)Q.tl ,t2.dx1:d)QO.kl ,tx2

w=t2

dx2 = dis-x2
return
end
!!!!+!!
subroutine check-tlt2(tl,t2.trninc,tmaxc,trnint,trnaxt,fail)
.... 1111+l11111l111111~1llllllllll~~~~~llllllllllllllllllllllllllllllllll~l
implicit none
integer fail
real t l ,t2.tminc.tmaxc,tmint,tmaxt
fail = 0
if(tminc.gt.tl) print 21
if(trninc.gtt1) fail = 1
if(trnaxc.tt.t2) fail = 1
if(tmaxc.It.t2) print 22
if(trnint.gtt1) print 23
if(trnint.gtt1) fail = 1
if(tmaxt.ltt2) fail = 1
if(trnaxtltt2) print 24

kl = t1-

dx! = disx!

21 fonnat(/7ime t i is smaller than the limit of the cars. '/)
22 format(lTrime t2 is.greater than the limit of the cars. '/)
23 format(/Time t i is smaller than the limit of the trucks. I/)
24 format(l7ime t2 is greater than the limit of the trucks. I/)

return
end
!!!!+!!!~!!!!!!!!!!!!!!!!
subroutine check-tlt2-xlx2(tl,t2,
+ dir,a-sp-cars,a-sp_trks,
+ dis-atr,tO,dxl ,dx2,b<l ,bQ)
!!!!+!!
implicit none
integer dir
real tl ,t2,klc-atr,tx2c-atr,bl t-atr.tx2-atr
real a-sp-cars,a-sp-trks,center-l ,center-1st
real dis-atr,Qdxl ,dx2,txl ,W
txlc-atr = txl + (dis-atr - dxl)/(lOOO.*a-sp-cars)+dir
Wc-atr = tx2 + (dis-atr - dx2)/(1000.*a-sp-cars)fdir
txlt-atr = kl + (dis-atr - dxl)/(lOOO.*a-sp-trks)*dir

' I

I

!

Page 2

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
1 32
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
1 62
163
164
165
166
167
168
169
170
171
172
173
174

Wt-atr = tx2 + (dis-atr -
if(txlt-atr.lt.tx2t-atr)then
t i = klt-atr
if(tx1c-atr.gttx1t-atr) t l = klc-atr
t2 = tx2t-atr
if(bQc-atr.ktx2t-atr) t2 = bQt-atr
else
t i = tx2t-atr
if(tx2c_atr.stbat_atr)atr.gttx2t-atr) t i = hoc-atr
t2 = hit-atr
if(txlc-atr.tttxlt-atr) t2 = txl t-atr
end if
return
end
!!!!+!!
subroutine swap-xlx2(xl .x2,dir)
!!!!+!!
implicit none
integer dir
real xl.x2,swapxl2
if(xl*dir.gt@dir)then
swapxl2 = x i
x l =x2
x2 = swapxi2
end if
return
end
!!!!+!!

lOOO.*a-sp-trks)*dir

16
+

17
+

subroutine check-xl Q(x1 ,x2,dir,log_cl,numcl)
!!!!+!!
implicit none
integer numcl. dir
real log_cl(numcl), xl.x2.swapxl2
H(x1 *dir.gtedir)then
swapxl2 = x i
x i =x2
x2 = swapxi2
end if
if(dir.gt0) then
iyxl *dir.ltdif log-cl(2))then
print 16
fonnat(//.'The first point, X1, is before the limits of/

'the center line first point'/)
STOP
end if
if(Q*dir.gt dir.log_cl(numcl-1))then
print 17
fonnat(//,The second point, X2, is before the limits of/

STOP
end if
else if(dir.tt.0)then
if(x1 *dir.ltdif logcl(numcC1))then
print 16
STOP
end if
if(Q*dir.gt diPlog_cl(2))then
print 17
STOP

yhe center line last point'/)

Page 3

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
21 1

, 212
213
214
21 5
216
21 7
21 8
21 9
220
221
222
223
224
225
226
227
228
229
230
231
232
233

end if
end if
return
end
!!!!+!!
This subroutine will eleminate all the vehicles that are outside
Xl-X2 limits.
After this then we will bring the vehicles back to the ATR
locations and find the times.
!!!!+!!
subroutine veh_in_xlx2(dir,tl ,t2,d_xl ,d-x2,veh,n_veheid,

+ n-log_veh,n-veh_time-id,veh-sp,
+ x i 2~veh,x12~idv,x12~lgv,x12~tv.x12~spv)

!!!!+!! !!!!!!!!
implicit none
integer veh,xl2-veh,dir
integer n-veh-id(veh),xl2-idv(200)
real tl,t2, d-xl ,d-x2,swapt
real n-log-veh(veh),n-veh-time-id(veh),veh-sp(veh)
real x i 2~lgv(200).x12~tv(200),x12~spv(200)
integer k
I!(!!.g?.q?!?en
swapt = t l
t i =t2
t2 = mrapt
end if
dok=l .veh
if(keq. 1 .and.n-veh-id(k).eq.n-veh-id(k+l))then
veh-sp(k) = veh-sp(k+l)
elseif(kkveh.and.n-veh-id(k).eq.n-veh-id(k+l).

veh-sp(k) = veh-sp(k+l)
end if
end do
xl2-veh = 0
do k = 1.veh
if(n-veh-time-id(k).ge.tl .and.n-veh-time-id(k).le.Q.and.

1

+ and. n-veh-id(k).ne. n-veh-id(k-1))then

+ n-log-veh(k)*dir.ge.d-xl*dir.and.
+ n-log-veh(k)*dir.le.d-Qdir) then

xl2-veh = xl2-veh + 1
xl2-idv(xl2-veh) = n-veh-id(k)
xl2~lgv(xl2-veh) = n-log-veh(k)
x i 2-tv(x12-ve h) = n-veh-time-id(k)
xl2-spv(xl2-veh) = veh-sp(k)
end if
end do
return
end
!!!!+!!
subroutine which-sp(speed-type)
!!!!+!!
implicit none
integer ie. speed-type

print*,'Please indicate which speed you want to use to'
print*,'bring vehicles to the ATR location: '
print*,'Enter 1 to use average speed of vehicles'
print','Enter 2 to use individual speeds of vehicles'
print.

- I

165 prinr,' .

.. .

Page 4

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

read(5,',iostat= ie)speed-type
if(ie.ne.O.or.(speed-type.ne.1 .and.speed-type.ne.2)) then
prinr,'Your response is invalid. '
prinr.'Renter response '
go to 165
end if
return
end
!!!!!+!!
subroutine spdtype(a-sp-veh,spdnew,spdyn)
!!!!!+!!
implicit none

integer iof, spdyn. ior
real a-sp-veh,spdnew
iof=O
do while(iof.eq.0)

print 133,a-sp-veh
133 133 format(/sS('=')I

+ 4x,What average speed do you want to use:'//
+ 4x,'1- The average speed of the vehicles which is:',f7.2,
+ I4x.2- An average speed that you define? 'I

4x,'PLEASE Enter 1 or 2 to spec@ your choice : I,$)

read(5,+,iostat = ior)spdyn
if(ior.eq.0)then
print*,
if(spdyn.ne. 1 .and.spdyn.ne.2)then

prinr,'
print*,'- Invalid data try again. -
prinr,'- Hit return to continue -'
prinr,'
read'

iof = 9
else

end if
else

print',
prinr,"" invalid data try again. mu

prinr.- Hit return to continue -
prinr,
rea@

end if
end do
iof = 0
if(spdyn.eq.2) then

do while(iof.eq.0)
print134
read(5.'.iostat = ior)spdnew

if(ior.ne.0)then
print*.
print*,- Invalid data try again. -
print*,- Hit return to continue -
prinr,
read*

iof = 10

134 format(//,4x,'Please enter the speed in Kmph : ',$)

else

end if
end do

else

Page 5

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
31 0
31 1
312
313
3 4
31 5

spdnew = 0
end if
return
end

!!!!+!!
subroutine cars
!!!!+!!
implicit none
print'.'
prinv,' CARS '
print.,'
return
end
!!!!+!!
subroutine trucks
!!!!+!!
implicit none
prinr,'
print',' TRUCKS '
print*,'
return
earl
.

,

'

'

Page 6

I

Appendix B. Pattern Recognition for Stationary and Dynamic Pixels - Statistical
Description and Program Listings

1 Notations

In chis appendix, we provide the detail description of various components of the statistical pattern
recognition procedure discussed in Chapter 3. We will use the notations of Section 3.1. However
for compieteness, we ut? reproducing some of these notations here.

Bij: the gray-level of the pixel of she 1m x 1m in row i and column j in the estimated
background image B.

0 I$j: the bay-Ievel in the same pixel of the current image.

Bij: transformed value of the brightness matching transform +(Bij) for the background pixel
(& j) , where d(-) is unknown and must be estimated.

&j = xj - B;,: differenced current image and the transformed background image. Note that
& j . E [-255,255].

p ~ : distribution of R for pixels that are given to be stationary.

0 p y : distribution of R for pixels that are given to be dynamic.

0 X,: (unobservable pixel labels, in general),

(1)
1, if pixel (z , j) in the image Y is a stationary pixel,
0, otherwise, (dynamic pixel).

Xij =

Tij = Prob(Xij = 1): the prior probability that the pixel (i , j) in the current &age is a
stationary pixel.

The conditional distributions of the diferenced gray-levels:

u . It is clear that p ~ (-) should be an unimodal distribution centered at zero, but p v (-) depends
on the grey-levels of dynamic pixels in the current image (e.g. vehicle could be both lighter

l and darker than the background pixels, and shadows may or may not be present).
..

We can also write down the joint density of R and X as

0 Then the posterior probability of Xij = 1 is given by

2

2.1 The Background Transformation, 4(-)

Functional Form of Various Components

At present, our program alllows for two types of background transformations:

(1) A monotonic increasing transformation. This transformation is defined by

Where S(b) = (SI@), . . . , S,(b)) and SI,. . . , S, are the natural-spline base function (evaluated
at b). Various special cases of this monotonic transformation, that have been used by us are
give below:

(i) If Q = 0, 8 = 0 and /I = 0, 4(-) is just the identity transformation, i.e, no transformation
is used.

(ii) If 8 = 0 and = 0, #(a) is just the one parameter transformation, with just a change in
location.

(iii) If 8 = 0 then 4(-) is a two parameter, linear transformation with intercept a and slope
eB .

(iv) With the shift and a slope term and two knots in the natural splines, one has the five
parameter transformation.

(2) A natural-spline tmnsformetion. With S(B) as defined above, this transformation is simply

4(B) = a + S(B)’O. (8)
In this case, 4(B) does not have to be monotone.

Of course, one could investigate other suitable transformations, as well as quantize the trans-
formed variables differently.

2.2

We have limited ourselves to two probability distributions at this point:

The Background Difference Distribution, p ~ (.)

Student’s t-distribution. The difference R, given that Xjj = 1, is assumed to follow a stu-
dent’s t distribution with median zero (location parameter), scale parameter CT and degrees
of freedom df. Both Q and df need to be estimated.

Gaussian (normal) distribution. The difference R, given that Xij = 1, is assumed to follow
a normal distribution with location zero and standard deviation 0, which is estimated from
the data.

Recall that the normal distribution is a limiting case of the t-distribution when df goes to
infinity. In the image processing literature, the folklore is that the residuals R follow the Laplace
distribution. We intend to examine this aspect in the future.

2.3

Since, one expects a large variety of images, we have limited to ourselves to maximum entropy
distribution on a finite interval (the uniform distribution) and a non-parameteric density function
to allow for a large number of shapes.

The Vehicle/Background Differences Distribution, pv(-)

(1) Uniform distribution. The difference xj - Bij, when Xij = 0, is just assumed to be uniform

(2) Smooth density (nuturd-spline). The difference xj - Bij, when X;j = 0, is assumed to be

I in the range [-255,2551.

smooth and natural-spline function are used to capture the distribution.

As before, S(R) = (&(R), . . . , Sp(R)) is a set of base spline functions evaluated at R. Also,
note that the distribution should be continuous, but is quantized on a discrete grid ((-255,-
254, . . . ,255}), with R’ representing the nearest integer value of R.

3 Estimation Procedure

First, note that if the Xij’s (stationary or dynamic) were observables, one could estimate (PB, 4)
a d pv by the maximum likelihood method, i.e.,

PV = m g m a log[pv(xj) - Wij)l (12)

(13)

PV (ij):x,3 =o

= w g m a C (1 - xij)log[Pv(Kj - 4(~ i j))] .
pv i j -

However, the Xij’s are not observables, and we are basically interested in finding their posterior
distribution. Therefore, instead of ’ ing the log likelihood, we e the expected log
likelihood, with respect to the missing data (X i j) . Thus we are using the E M algorithm to estimate
the unknown parameters of these densities, in an iterative manner.

2

The iterative estimation procedure is as follows:

(1) Initilize 4 = 4 (O) (e.g. 4(’)(B) = a + B - just a shift in the identify transformation). Let
Riy’ = yij - 4(O)(Bij) and initihe p~ = p(B0) and p v = pv (0) .

(2) Compute the posterior probability distribution of Xij

(4) Updatepv. Let

(5) Repeat steps (2) to (4) to get p g ' , 4(k) andpv (k) for k = 2,3, untilp(k)(Xijl&j)'s converge
according to the foiiowing criteria.

(6) The convergence of the posterior probabilities pi:) = P (~) (X ; ~ = llfij), is judged by the s u m
of Kullbaick-Liebler distance between pi:-') and pi j ' k) over all the pixels, i.e.,

Once the value of d(k - 1, I C) falls below a certain threshold value, we stop and accept the $)
as the converged posterior probabililities.

4 S+Code

t

I

In this section, we first list the generic Splus functions for various components of the pixel classi-
fication procedure, which can be called from within S+ session. The we list the S+ code for the
implementation of this procedure on the test and scanned images, as described in Section 3.2. Fi-
nally, we also list S+ code for generic image processing, including plotting of images, edge detection,
and other filters.

4.1 The S+ Motion Detection Code
#####w##t+######t#####a#ut

W GJ: 19-AF'R-98 (25-June-98)

S+ Codes for Variuos Components of Pixel Classification Procedure

~ ~ t # ~ # t ~ ~ t # ~ # ~ # t ~ ~ ~ # $ ~ ~ t # #

M FIRST, FOR THE BACKGROUND TRANSFORMATION t+t#

all background transformation are evaluated on the grid 0,1, ..., 255.
The natural-spline transformation -- not monotonic increasing.
is of the form: f(x) = a + ns(x,knots) -- if 2 param. then nso is linear
get .back.ns. trans .base .mat <- function(back,n=6,knots=N~.pixels=O :255) <

tt to get the ns() base-matrix (X matrix)
back: the backg. pixel value
n: the number of parameters in the transformation
if (n=i)
only intercept
matrix(l.nro~lengh(pixels),ncol=l)

intercept and slope
cbind(rep(l.lengh(pixels)).pixels)

#! intercept and ns-term
if (is.null(hots))

cbind(rep(l,length(pixels)) ,115 (pixels ,knots=knots, intercept=F))

else if(n==2)

else I

knots <- quantila(back,(l:(n-2))/n)

1

init.back.ns.trans <- fuuction(res.base.mat)
initial estimate of the background trans. parameters.
c(maan(res.trim=0.5),rep(0.ncol(base.mat)-l))

get.back.ns.trans <- function(param.base.mat) I
param: the parameters in the n-s transformation (beta)
base-mat: the natural-spline matrix (511 rows)
pred <- as.vector(base.mat %*% param) + 0:255
pred[pred<Ol <- 0
pred Cpred>255] <- 255
pred

1

t## A monotonic. increasing, transformation.

tt transform background -- monotonic increasing transformation:
get.back.mono.trans <- function(param,base.mat=NULL)
param: the parameters in the transformation (beta)
base.mat: the natural-spline (ns) matrix with 511 rows.

pred <- svitch(as.character(length(param)),
#lD = param[ll + 0:255,
'2' = paramci] + exp(paraml21)*(0:255).
paramC11 + exp(paramC21) *
as .vector(cumsum(exp(base .mat. X * X param[-c(l.2)])) -1)
)

pred[pred<O] <- 0
predCpred>255] <- 255
names(pred1 <- 0:255
ttround(pred)
pred t not round things

>
U get the natural-spline matrix
get.back.mono.traus.base.mat <- function(back.n=2,pixels=0:255,hots=MnL) {
if(n>=4) { t have at least on h o t in the n s 0 function
if (is .null (hots 1

ns(pixels,knots=knots,intercept=F)
1 else {
NmL

1

knots <- quantile(back,(l:(n-3))/(n-3+1))

1

initial estimate of the background trans. parameters.
init .back.mono.trans <- function(res,n=2)
c(mean(res, trim*. 5) ,rep(O,n-l))

tt plot the background transformation
plot .back. trans <- f unctioncback . trans, img .back, back. probs , thresh=O -5) 1
back.trans: the value of the backg. transf. at 0.1, 255
plot<c(0,255) .c(O,255) .typ="n" ,xlab="Background image (pixel value)".

ind <- back.probs>thresh
points(back[ind] ,imgCind] .pch="." .cex=par()$cex*1.5,~01=2)
points(back[! ind] , imp[! indl ,pch=l , ~0113, cex=par() $cex*O. 8)
abline(aZ0 .b=l)
lines(0:255.back.trans.lud=3.col=l,lty=3)
fit <- smooth.spline(back,img,w=back.probs,df=lO)
lines(f it ,lwd=4, co1=3 .lty=2)
key(x=-30,p310.transparent=T.

lines=list (lty=c(3.2), lvd=c(3.3), col=c(3,2)),
text=list (c ("Transf . " , "5-s (d f = l O) "1)
1

key(~256/2.g-~10,transparent=TT.
points=list (pch=c (16.1) , cex=parO$cex*c(O. 6 .O -81, col=c(2.3) 1,
textslist (c (paste ("P(backg .) > " ,thresh, sep=" "1,

)

ylab="leu image (pixel value)")

paste("P(backg.) <= ".thresh,sep="")))

t#tt FOR DENSITIES #8#

tt get the marginal density of the residuals:
get.marg.dens <- function(veights.res.ind,un.res=(-255):255)

res.ind: points to un.res -- discreate residuals are un.res[res.indl
n <- length(un.res)
marg-dens <- tapply(c(veights.rep(O.n)),c(res.ind.l:n).sum)
names(marg.dens) <- un.18~
narg .dens

1

the background difference density -- t-density:
get.back.t.dens <- function(param,res) {

1
dt (res/exp(param[13 .df =exp(paramC2]))/exp(param[il)

O t compute initial estimate for the backgr. difference density
W based on residuals only vhen using t-density:
init. back. t .dens <- funct ion(res .df=5 .red=O .05) C

SO initial estimates for the t-distribution:
tmp <- abs(res)
res <- resctmp <= quantile(tmp.1-red)]
c(log(sqrt(var(res)/(df/(df-2)))),
log(df))

1

the background difference normal density -- don't need this
get.back.norm.dens <- function(param,res)
dnordres .O.param)

tt compute the vehicle density for -255...., 255
get .veh.dens <- function(param,base .mat .un.res=(-255) :255) C

tt using natural-spline to construct density:
tt param: beta in X*beta
tt base.mat: the natural b-spline matrix, X
probs <- as .vector(exp(base .matX*Xparam))
names(probs) <- un.res
probs/sum(probs)

1

get.veh.dens.base.mat.and.tot.probs <- function(res.ind.back.probs.
q.probs=(l:S)/b.
un.res=(-255):255) {

returns the ns base matrix, the tot. veh. probs for each pixel value.
q.probs (quantiles) are used to find the knots to use in ns0

if(!missing(res.ind) && !missing(back.probs))

else

cum.tot.veh.probs <- cumsum(tot.veh.probs/sum(tot.veh.probs))
find one quantile:
one.quantile <- function(pr0b.x)

all.quant <- sapply(q.probs,one.quautile.x=cum.tot.veh.probs)
then. get the base matrix:
#base.mat <- bs((-2SS) :255.Imots=all.quant .int=F) [.-length(q.probs)-3]
base.mat <- ns(an.res,knots=all.qaant,int=F)

tot.veh.probs <- get.marg.dens(1-back.probs,res.ind)

-r tot .veh. probs <- get .marg .dens (rep(1. lengthcun . res)) ,1 :length(=. res)

rev(as.numeric(names(x)) [x<=prob]) C13
1

.c return(base.mat=base.mat,tot.veh.probs=tot.veh.probs)
1

H plot back. and veh. dens:
plot.back.dens <- function(res,back.probs.back.dens) .(

O t back.dens: the density evaluated at (-255):255

use.breaks <- seq(-255.5.255.5,by=7)
res.breaks <- cut(res,breaks=use.breaks)
bg.hist <- tapply(back.probs,res.breaks,sum)
bg.hist[is.na(bg.hist)l <- 0
bg.hist <- bg.hist/(7+sum(bg.hist))
pix <- (-255):255
plot(c(-255,255),c(O,max(back.dens,bg.hist)).type="n".

panel .histogram(use .breaks, c(NA ,bg .hist) ,border=-1)
lines(pix,back.dens.lvd=3,~01=3)

xlab"Pixe1 difference (New - Backg. 1'' ylab"Density"1

3

plot. veh.dens <- f unct ion(res, back. probs , veh. dens) <
#t veh.dens: the veh./backg. diff. density evaluated at (-255):255

use.breaks <- seq(-255.5,255.5,by=7)
res.bre&s <- cut(res,breaks=use.breaks)
veh.hist <- tapply(1-back.probs.res.breaks,sum)
veh.hist[is.na(veh.hist)l <- 0
veh.hist <- veh.hist/(7*sum(veh.hist))
pix C- (-255):255
plot (4-255.255) .c(O.max(veh.dens ,veh.hist) 1, type=%",

xlab="Pixel difference (Nev - Backg.)", yfab="Density")
panel.histogram(use.breaks,c(NA,oeh.hist),borde~-l)
lines(pix.veh.dens,lvd=3,col=3)

8: estimate both the background difference denstiy and transformation
vhen using the t-density and monotonic backg. transformation:
est.back.t.dens.and.mono.trans <-
function(img,back.back.probs.param.start,

back.trans.base.mat1 <
the negative log-likelihood:
opt.func <- function(param) C
trans .bg <- get .back.mono .trans (param[-c (I ,2)] .base .mat=back.trans .base .mat)
- sum(back.probs * log(get.back.t.dens(param=param[1:2],

res-img - trans.bgback.indl)))
3

optimize -- minimize the negative log-likelihood:
assign("img" .img.vhere=O. immediatemf)
assign("back",back,vhera=O. immediate=T)
assign("back.probs",back.probs,vhere=O,immediate=T)
assign("back. trans .base .mat", back. trans. base .mat, vhere=O, immediate=?)
assign("back. ind",back+l .vhere=O,immediate=T)
fit <- nlminb(start=param.start, objective=opt.fuac,

remove(c("kg", "back" . "back.probs" , "back. trans .base .mat") ,vhere=O)
remove("back. ind",where=O)

control=nlminb.control(eval.max=400,iter.m~~200))

return(f it)
>

estimate both the background difference denstiy and transformation
vhen using the normal density and monotonic backg. transformation:
est.back.norm.dens.and.mono.trans <-
fanction(img.back,back.probs.param.start.

back. trans .base .mat) <
t# opt. function: minimizing sum of squares (prop. to neg-loglikelihood)

trans .bg <- get .back.mono, trans (param.base .mat=back. trans. base .mat)
sum(back.probs (img-trans.bgback.indl)'2)

opt.func <- function(param) <

1

optimize -- minimize the negative log-likelihood:
assign("img", img,vhere=O. immediate=T)
assign("back" ,back,vhere=O, immediate=T)
assign("back.probs",back.probs,vhere=O,immediate=T)
assign("back.trans.base.mat".back.trans.base.mat,vhere=O,inrmediate=T)
assign("back.ind",back+l,vhere=O,immediate=T)
fit <- nlminb(start=param.start, objective=opt.func.

I*.-

- - - -. _ _

m.EH.t.and.mono <-
function(img,back.back.prior.probs=NULL,traffic.dens=O.OS,

back.dens . control=list (param=NULL,df=S, trim=O.S),
back.trans.control=list(param=NULL.nr.trans.param=S,

veh.dens.control=list(probs=c(O.OS,O.2,0.4,0.6.0.9.0.95~).
max. iter-20. ask. iter=F, conv. crit=l/lO.
update.veh.dens=T

knots=NuLL),

) . (
tt img: the image (the pixels in the image)
tt back: the current estimate of the background pixels
#8 back.prior.probs: the prior prob for pixel being a background pixel.
t 8 traffic.dens: a prior estimate of traffic density (used if
back.prior.probs is NULL).

The other parameters are input parameters to other functions -- see use

back.ind <- back+l
res <- img - back
n <- 1engthcre.s)

tt first, initial estimate of transformation:
cat("Getting initial estimate of backg. transf. . . .\n")
back.trans.base.mat <- get.back.mono.trans.base.mat(back=back,

t index for the background. color 0 is index 1
8 current difference (residuals)

n=back.trans .control$nr .trans .param.
kuots=back.trans. controlSknots)

if (is.null(back. trans.control$param))

else

back.trans <- get.back.mono.trans(back.trans.param,back.trans.base.mat)

back.trans.param <- init.back.mono.trans(res.n=back.trans.control$nr.trans.param)

back.trans.param <- back.trans.control$param

88 new residuals
res <- img - back.transkck.indl
initial baekg. difference density -- if param. missing
cat("Getting initial estimate of backg. diff. density . . .\n")
if (is. null (back. dens. controlSparam))
back.dens.param <- init.back.t.dens(res,df=back.dens.control$df.

red=traffic.dens)
else

back.dens <- get.back.t.dens(back.dens.param,res)

tt initial veh./backg. diff. density:
cat("Getting initial estimate of veh./backg. diff. density . . .b")
88 it is just uniform
veh. stuff <- get .veh.dens .base .mat. and. tot .probs(q.probs=veh.dens . controlSprobs1
veh.dens .param <- rep(O.ncol(veh. stuff $base .mat))
un . veh.dens <- get. veh .dens (veh. dens. param.veh . stuff $base .mat)
res. ind <- round(res)+256
veh.dens <- uu.veh.densCres.M

back.dens.param <- back.dens.control$param

initial estimate of back.probs -- if missing
cat("Getting initial posterior estimates of backg. prob's . . .b")
if(is.null(back.prior.probs))

back.probs <- update.back.probs(back.prior.probs.
back.prior.probs <- 1-traffic-dens

back.deus=back.dens,
veh.dens=veh.dens)

cat(" Have ".round(sum(back.probs)/n*100.4),
"% are backg. pixels.\n",sep="")

tt start EM
iter <- T
nr.iter <- 1
cat("Starting the EM . . .\n")
vhile(iter) .(

cat('' Iteration".nr.iter.":\nii)

88 estimate backg. diff. density and backg. transf.:
cat(" Estimating new backg. transf. and density ... \n")
back.trans.and.dens.fit <-

est.back.t.dens.and.mono.trans(img,back.back.probs.
param.start=c(back.dens.param.
back.trans.param),

back.trans.base.mat=
back. trans. base .mat)

back. trans .param <- back. trans. and .dens. f it$paramc-c (1,211
cat ('I

back.dens . param <- back. trans. and .dens. f it$paamCc(1,2)3
cat ('I Backg. diff. density param. are".

back.trans <- get.back.mono.trans(back.trans.param.

res <- img - back.transback.ina

Backg. transf. param. are",
round(back.trans .param.4), "\n")

round(exp(back.dens .param) .4) ."\on)

back.trans.base.mat)
8 new residuals

88 estimate veh./backg. dens. diff.:
if (update.veh.dens) i

cat("
res.ind <- round(res) + 256
veh.stuff <- get.veh.dens.base.mat.and.tot.probs(res.ind,back.probs,

veh.dens.fit <- est.veh.dens(veh.stnff$tot.veh.probs,veh.dens.param.

veh.dens.param <- veh.dens.fit$param
un.veh.dens <- get.veh.dens(veh.dens.param, veh.stuff$base.mat)
veh.dens <- un.veh.densCres.ind1

Estimating the veh/backg. density . . .\n")
t gay-value of -255 has index 1

veh.dens.control$probs)

veh.stuff$base.mat)

1

U Update back.probs:
cat(" Update the backg. probabilities . . .\n")
new.back.probs <- update.back.probs(back.prior.probs,back.dens,veh.dans)
cat ('I Have " ,round(sum(new. back.probs) /n*100,4) ,

" X are backg. pixels. \n" , sep="")

88 compute iteration criteria:
back.probs.diff <- sum(log(new.back.probs/back.probs)*neu.back.probs.na.~=T)+

cat(
back.probs <- new.back.probs

sum(log((l-new.back.probs)/(l-back.probs))*(l-new.back.probs),na.rm=T)
"The convergence criteria is",back.probs.diff ,%'"

if (ask. iter) i
ask <- T
while(ask) c
answer <- menu(c("To do another iteration."."To stop at this point"),

if (ansver==l I I answers2)

else

titls="Shall we continue?")

ask <- F

cat("Se1ect 1 or 2 ... \n")
1
if (answer=2)
iter <- F

else i
if(m.iter >= -.iter I I back.probs.diff <= conv.crit)
iter <- F

nr.ites <- nr.iter + 1

return(back.probs=back.probs.
back.dens.param=back.dens.param.
back.trans.param=back.trans.param.
back.trans.base.mat=back.trans.base.mat.

veh.dens.param=veh.dens.param,
veh.dens.base.mat=veh.stuff$base.mat)

Estimate everything: transformation, densities and weights
using the M algorithm.
?his is for the case when:

(1) The backg. diff. density is a normal density
(2) The backg. transformation is monotonic increasing
(3) The veh./backg. diff. density can either by estimated or unif.

VERY slow function:

mu. M .norm. and .mono <-
fanction(img.back.back.prior.probs=~,traffic.dens=0.05.

back.dens.control=list(param=NULL).
back.trans.control=list(pa.ram=NULL.nr.trans.param=5.

veh.dens.control=list(probs=c~O.O5,0.2,0.4,0.6.0.9,0.95~~.
max.iterx20, ask.iter=F, conv.crit=l/lOO.
update.veh.dens=T

bnots=NuLL),

) C
imp: the image (the pixels in the image)
back: the current estimate of the background pixels
back.probs: the prior prob for pixel being a background pixel.
#$ traffic.dens: a prior estimate of traffic density (prop. of pixels
#S belonging to vehicles in the new image.

The other parameters are input parameters to other functions -- see use

back.ind <- back+l
res <- img - back
n <- length(res)

first, initial estimate of transformation:
cat ("Getting initial estimate of backg. transf\n")
back.trans.base.mat <- get.back.mono.trans.base.mat(back=back,

t index for the background, color 0 is index 1
$ current difference (residuals)

n=back.trans.control$nr.trans.param.
knots=back. trans. control$knots)

if (is .null(back.trans .controlSparam))

else

back.trans <- get.back.mono.trans(back.trans.param.back.trans.base.mat)

new residuals
res <- img - back.transtback.ind1
m! initial backg. diff density (the SD in the normal)
cat("Getting initial estimate of the SD in the backg. diff. density ... \n")
tmp <- abs(res)
tmp <- resctmp <= quantile(tmp,l-traffic.dens)l
back-dens .param <- sqrt(sum(tmp^2)/length(tmp))
back.dens <- dnorm(res.0,back.dens.param)

initial veh./backg. diff. density:
cat("Getting initial estimate of veh./backg. diff. density (unif .) ... \ne')
t# it is just uniform
veh.stuff <- get .veh.dens.base.mat .and.tot .probs(q.probs=veh.dens .control$probs)
veh. dens .param <- rep(0 ,ncol(veh. stuff $base .mat))
un.veh.dens <- get.veh.dens(veh.dens.param,veh.stuffSbase.mat)
res. ind <- round(res)+256
veh . dens <- un . veh .dens [res. ind]

back.trans.param <- init .back.mono.trans(res .n=back.trans.control$nr.trans .param)

back. trans. param <- back. trans. control$paranL

. I

'

initial estimate of back.probs -- if missing
cat("Getting initial estimates of backg. prob's . . .\xi")
if(is.null(back.probs))

back.probs <- update.back.probs(back.prior.probs.
back.prior.probs <- 1-traffic.dens

back.dens=back.dens,
veh.dens=veh.dens)

cat ('I Have " .round(sum(back.probs) /n*100.4),
I ' ' X are backg. pixels .\n",sep="")

tt Start En
iter <- T
=.iter <- 1
cat("Starting the EH . . .\n")
vhile(iter1 C

k

cat(" Iteration",nr.iter.":\n")

estimate backg. diff. density and backg. transf.:
cat(" Estimating new backg. transf. and density . . .\n")
back.trans.and.dens.fit <-
est.back.norm.dens.and.mono.trans(img,back,back.probs.

param. start=back. trans .param.

I

I

back.trans.base.mat=back.trans.base.mat)
back.trans.param <- back.trans.and.dens.fit$param
cat ('I Backg. transf. param. are" ,

round(back.trans .param.4) ,"\n")
back.trans <- get.back.mono.trans(back.trans.param,

res <- img - back.transback.ind1
back.dens.param <- sqrt(sum(back.probs*res^2)/sum(back.probs))
cat ('I
back-dens <- dnorm(res,O.back.dens.param)

#S estimate veh./backg. dens. diff.:
if (update.veh.dens) <

back.trans.base.mat)
t nev residuals

Backg. diff. density SD is".round(back.dens.param,2) ,"\n'')

cat("
res.ind <- round(res) + 256
veh.stuff <- get.veh.dens.base.mat.and.tot.probs(ras.ind,back.probs.

veh.dens.fit <- est.veh.dens(veh.stuff$tot.veh.probs,veh.dens.param.

veh.dens.param <- veh.dens.fitSparam
un.veh.dens <- get.veh.dens(veh.dens.param. veh.stuff$base.mat)
veh . dens <- un .veh . dens [res. ind]

Estimating the veh/backg. density . . .\n")
1 gray-value of -255 has index 1

veh-dens . controlSprobs)
veh.stuff$base.mat)

3

Update back.probs:
cat("
new.back.probs <- u~ate.back.probs(back.prior.probs,back.dens,veh.dens)
cat (" Have ",round(som(nev.back.probs)in*100.4).

Update the backg. 'probabilities . . .\n")

"1 are backg . pixels. \n" , sept"")
tt compute iteration criteria:
back.probs.diff <-
sum(log(new.back.probs/back.probs)*neu.back.probs.na.rm=l)+

cat (
back.probs <- new.back.probs

if(ask.iter) C

vhile(ask) I

sum(log((l-new.back.probs)/(l-back.probs))*(l-new.back.probs~,na.nn=T)
"The convergence criteria is" .back.probs .diff ."\n")

ask <- T

answer <- menu(c("To do another iteration.","To stop at this point"),

if (answer=l I I answer==2)

else

title="Shall we continue?")

ask <- F

cat("Se1ect 1 or 2 ... \nn)
3

if (ansve-2)
iter <- F

3 else I
if(nr.iter >= -.iter 1 1 back.probs.diff
iter <- F

3

nr.iter <- nr.iter + 1

3

return(back.probs=back.probs.
back.dens.param=back.dens.param.
back.trans.param=back.trans.param,
back.trans.base.mat=back.trans.base.mat.
veh.dens.param=veh.dens.param.
veh.dens.base.mat=veh.stuff$base.mat)

<= conv . crit)

3

t ~ t + W ~ # t # W ~ # t # # # t t t ~ # # ###

USING N O W BACKG. DENSITY AND N-S WSFORHATION

Estimate everything: transformation. densities and ueights
ot using the M algorithm.
ot This is for the case when:
W

W

W This is the fastest function:

(1) The backg. diff. density is a normal density
(2) The backg. transformation is natural-spline
(3) The veh./backg. diff. density can either by estimated or unif.

run.M.norm.and.ns <-
function(imgrback,back.prior.probs=~.traffic.dens=0.05.

back.dens .control=list(param=NUU),
back.trans.control=list(param=NULL,nr.trans.param=5,

veh.dens . control=list (probs=c(O. 05.0.2 ,O .4.0.6.0.8.0.95)),
max.ite~20. ask.iter=F. conv.crit=l/lO.
update.veh.dens=T

knots=NUU),

) I
t# imp: the image (the pixels in the image)
back: the current estimate of the background pixels
back.prior.probs: the prior prob for pixel being a background pixel.
traffic.dens: a prior estimate of traffic density (used if
back.prior.probs is MIU -- missing).
The other parameters a r e input parameters to other functions -- see use
back.ind <- as.vector(back+l) tindex for the background, color 0 is index 1
res.null <- as.vector(img - back)
n <- length(res.nul1)

first. initial estimate of transformation:
cat("Getting initial estimate of backg. transf. . . .\n")
back.trans.base.mat <-

t the raw difference.

get.back.ns.trans.base.mat(back=back.
n=back.trans.control$nr.trans.param,
knotsnback. trans. controltlcnots)

if(is.null(back.trans.control$param))
back.trans.param <- init .back.ns.trans(res .null,back.trans.base.mat)

else
back.trans.param <- back.trans.control$param

back.trans <- get .back.ns.trans(back.trans.param.back.trans.base.mat)
tt create the X matrix for the Isfit0 function
back. trans .f it .mat <- back. trans .base .mat [back. ind.1

new residuals

res <- img - back.trans[back.ind]
tt initial backg. diff density (the SD in the normal)
cat("Getting initial estimate of the SD in the
backg. diff. density ... \n")
tmp <- abs(res)
tmp <- resCtmp <= quantile(tmp.1-traffic.dens)l
back. dens .param <- s q r t (sum(tmp'2)/length(tmpmp))
back.dens <- dnonn(res .O,back.dens .param)

4

e initial veh./backg. diff. density:
cat("Getting initial estimate of veh./backg. diff. density (unif .) . . .\n")
it is just uniform
veh.stuff <- . .

get .veh. dens .base .mat. and. tot. probs (q.probs=veh. dens. controltprobs)
veh.dens.param <- rep(O.ncol(veh.stuff$base.mat))
un .veh, dens <- get .veh. dens (veh. dens .param,veh. stuff $base .mat)
res-ind <- round(res)+256
veh . dens <- un . veh. dens [res. indl

tt initial estimate of posterior back.probs:
cat("Getting initial estimates of backg. prob's . . .\n")
8# get the backg. density for residuals:
if(is.null(back.prior.probs))
back.prior.probs <- I-traffic.dens # can be 1 number

back.probs <- update.back.probs(back.prior.probs,
back.dens=back.dens.
veh . dens=veh .dens)

cat (" Have " ,round(sum(back.probs)/n*100.4),
" X are backg. pixels.\n",sep="")

t P start EM
iter <- T
nr.iter <- 1
cat("Starting the EM . . .\nu')
vhile(iter1 {

cat(" Iteration" .nr. iter," :\n")

!,

estimate backg. diff. density and backg. transf.:
cat(" Estimating new backg. transf. and density ... \n")
back.trans.and.dens.fit <-
lsf it (xrback. trans .f it .mat ,y=res .null, int=F ,*=back .probs) [c("coef 'I, "res")~
back.trans.param <- back.trans.aud.dens.fit$coef
res <- back.trans.and.dens.fit$res
cat(" Backg. transf. param. are'.

roundhck . trans . param.?), "\n")
back.dens .param <- sqrt(sum(back.probs*res'2)/sum(back.probs))
cat (I'
back-dens <- &orm(res,O.ba~.dens.param)

Backg. diff. density SD is".round(ba~.den~.param,2) ,%I")

estimate veh./backg. dens. diff.:
if (update.veh.dens)

cat("
res.ind <- round(res) + 256
veh.stuff <- get.veh.dens.base.m..and.tot.probs(res.ind.back.probs,

veh.dens.fit <- est.veh.dens(veh.stuff$tot.veh.probs.veh.dens.param.

veh.dens.param <- veh.dens.fitSparam
un.veh.dens <- get.veh.dens(veh.dens.param. veh.stuffSbase.mat)
veh.dens <- un.veh.dens[res.ind]

Estimating the veh/backg. density ... b")
t gray-value of -255 has index 1

veh.dens .control$probs)

veh.stuffSbase.mat)

1

tt Update back.probs:
cat(" Update the backg. probabilities . . .\n")
new.back.probs <- update.back.probs(back.prior.probs.back.dens,veh.dens)
cat ('I Have " ,round(sum(neu. back.probs)/n*l00.4),

" X a r e backg. pixels.\n",sep="")

z ;

compute iteration criteria:
back.probs .diff <-
sum(log(new.back.probs/back.probs)*new.back.probs,na.rm=T)+

cat(
back.probs <- new.back.probs

if (ask.iter) <
ask <- T
while(ask) <

sum(log((l-neu.back.probs)/(l-back.probs))*<l-new.back.probs),na.rm=T)
"The convergence criteria is*',back.probs .diff ,"\n")

answer <- menu(c("T0 do another iteration."."To stop at this point"),

if(answer==l I1 ansver==2)

else

title="Shall we continue?")
. .

ask <- F

cat("Se1ect 1 or 2 ... \n")
1
if(answe~2)
iter <- F

1 else I
if(nr.iter >= max.iter I1 back.probs.diff <= conv.crit)
iter <- F

1

nr.iter <- nr.iter + 1

1

return(back.probs=back.probs.
back.dens .param=back.dens .param.
back.trans.param=back.trans.param,
back.trans.base.mat=back.trans.base.mat.
veh.dens.param=veh.dens.param.
veh.dens.base.mat=veh.stuff$base.mat)

1

4.2 The S+ Code for Implementation on Test and Scanned Images
:#####4###tt#i+-##-#s#####-~#t

Gardar Johannesson: 23-June-98
file: detectingnotion-comands .s

S comands using the functions' in the file detecting_motion.s
and plotting figures for the file detecting-kuotion.tex

Revised June 1999- By Parag Coel
attaching sample images to use:
attach (/home/pxg/SATEIJ.ITE/ Image-analy s is/Sample- image s/ . Data")
attaching functions to plot images:
attach ("/home/pxg/SA~LITE/Image-analy s is/. Data")

#tu+ FIRST, PLOT THE SAMF'LE IMAGES #+m

, . . P. .

I . . .

.-

plot I70b photo nr. 56
tup <- i70b.56
tmp ! i70b. 56. cut. indl <- NA
image. device("postscript" ,f ile="detecting-motion-img-56 .PSI',

height=8,data.dim=dim(tmp))
plot. image(tmp)
dev.off ()
tt plot only vehicles:

tmp [! i70b. 56 .veh . indl <- NA
image. device ("postscript " , f ile="detecting-motion-img-56-veh .PSI',

plot. image(tmp)
dev.off 0
plot the background -- estimated
tmp <- i70b.56.bg
tmp[!i70b.56.cut.ind] <- NA
image .device("postscript" .f ile="detecting-motion-img-56-bg .PSI',

plot. image (tmp)
dev.off 0

plot I70b photo nr. 57 -- which vas resampled'urt nr.56
tmp <- i70b.57.bi
tmpc ! i70b S6. cut. indl <- HA
image. device ("post script", f ile="detect ing-mot ion-img-57. ps" ,

height=8.data.dim=di(tmp))

height=8 ,data.dim=dim(tmp))

height=8.data.dim=dim(tmp))
plot. image(tmp1
dev. of f 0
plot only vehicles:
tmp[!i70b.57.veh.indl <- NA
image. device ("post script" , f ile="det ect ing-mot ion-img-57 -veh. ps " ,

plot. image(tmp)
dev.off 0
plot the background -- estimated
tmp <- i70b.57.bg.bi
tmp C ! i70b. 56. cut. indl <- IA
image.device("postscript'~.f ile="detecting_motion,img~57~bg.ps",

plot. image(tmp)
dev.off 0

height=8 .data. dim=dim(tmp))

height=E.data.dim=dim(tmp))

plot histogram of pixelvalues in sample images:
for Image A:
tmp <- i70b. 56 Ci70b. 56. cut. ind]
trellis.device(postscript.file~"detecting~motion,hist~A.ps".

vidth=8 ,height=5 .horizontal=F)
histogram(-tmp.breaks=seq(-0.5,255.5,byr2),

xlab="Pixel reflective value".
ylab="Dens it y ")

dev.off 0
for Image E:
tmp <- i70b.57.biCi70b.56.cut.indl
trellis.device(postscript,file="detecting-motion,hist-B.ps".

vidth=8, height=S .horizontal=F)
histogam(-tmp,breaks=seq(-O.5,~55.5,by=2),

xlab="Pixel reflective value",
y1abr"Density")

dev.off ()
for Image A, vehicles only:
tmp <- i70b.56~i7Ob.56.cut.ind t i70b.56.veh.indl
trellis.device(postscript.file="detecting~otionbist_b_veh.ps@'.

histogram(-tmp.breaks=seq(-O .5,255.5,by=2),
width=8,height=5,horizontal=F)

xlab="Pixel ref lective value",
ylab="Dens it y")

dev. of f (1
S8 for Image E. vehicles only:
tmp <- i70b.57.biCi70b.56.cut.ind & i70b.57.veh.indl
trellis.device(postscript,file="detecting~otionpist_B_veh.ps",

histogram(-tmp,breaks=seq(-O.5,255.5,by=2).
width=8 .height=5, horizontal=F)

xlab="Pirel reflective value" ,
ylab="Density")

dev. of f ()

-# ESTIMATING THE BACKGROM) DIFFERENCE DISTRIBUTION

AND THE TRANSFORMATION

First, shov the difference in the images as 'images'
tmp <- i70b.56
tmpC! i70b. 56. cut. indl <- NA
tmp <- abs(tmp - i70b.57.bg.bi)
image. device ("postscript" ,f ile="detect ing-motion-img-56m57 .ps" ,

plot. image(255-tmp)
dev.off (1
tmp <- i70b.57.bi
tmp[!i70b.56.cut.ind] <- I A
tmp <- abs(tmp - i70b.56.bg)
image. device (((post script", f ile="detect ing-mot ion-img-57m56. pa",

plot. image (255-tmp)
dev. of f (1

height=8.data.dim=dim(trnp))

height=8 .data.dim=dim(tmp))

tt Using image A as nev image and B as background:
tmp.ind <- i70b.56.cut.ind
tmp . img <- i70b. 56 [tmp . indl
tmp . bg <- i70b. 57. bg . bi [tmp. indl
tmp.back.probs <- rep(l.length(tmp.img))
tmp.back.probs[i70b.56.veh.ind[tmp.ind]] <- 0 t 0 weights to vehicle
tmp.res <- tmp.img - tmp.bg

t S Use the t-distribution and monotonic transformation:
only using intercept in the transfoxmation:
tmp.base.mat <- NULL
tmp.start <- c(init.back.t.dans(tmp.res).init.back.mono.trans(tmp.res,n=l))
fit. t .mono. int <- est .back. t .dens. and.mono. transctmp. img. tmp. bg. tmp.back.probs, tmp. start .tmp. base .mat)
and plot:
(1) the histogram:
tmp <- tmp. img - get .back.mono .trans(f it .t .mono. int$param[-c(i.2)],

tmp <- tmp[tmp.back.probs==l]
trellis.device(postscript.file="detecting_motion_hist,t_mono_l.ps".

vidth=8 ,height=5,horizontal=F)
histogram('tmp .breaks=seq(-255 -5,255.5 ,by=7),

tmp.base.mat) [tmp.bg+ll
vhere ve have background

xlab="Pixel ref lective value",
ylab="Density (XI",
panel=function(x,y,. ..) C
panel.histogram(x,y.border=l, ...I
pix <- (-255):255
param <- fit.t.mono.int$param
tmp <- dt(pix/exp(param[l]) .exp(pa~am[2]))/exp(param[ll)
lines(pix.7*100*tmp,,lvd=3, col-3)

1
1

dev. of f ()
I# (2) the transformation:
tmp <- get .back .mono. trans (f it. t .mono. inttparaml-c (1.2) 1 .tmp . base .mat)
trellis.device(postscript.file="detecting_motion-trans-t-mono-l.ps",

plot.back.trans(tmp,tmp.img,tmp.bg,tmp.back.probs)
dev.off0

vidth=8,height=8,horizontal=F)

t O using 5 parameters in the transformation:
tmp .base .mat <- get .back .mono. trans .base .mat (tmp. bg.n=5)
tmp.start <- c(init.back.t.dens(tmp.res),init.back.mono.trans(tmp.res,n=5))
fit. t .mono .ns <- est. back. t .dens. and .mono. trans (tmp . img , tmp .bg , tmp .back.probs , tmp. start .tmP .base .mat)
tt and plot:
tt (1) the histogram:
tmp <- tmp.img - get.back.mono.trans(fit.t.mono.ns$param[-c(l.2)1,

tmp <- tmp[tmp.back.probs=l]
trellis.device(postscript.file="detecting~motion~hist~t~mono~2.ps",

vidth=8,height=5 ,horizontal=F)
histogram('tmp .breaks=seq(-255.5,255.5,by=7),

tmp.base.mat) Ct:tmp.bg+lI
vhere ve have background

I'

xlab="Pixel reflective value".
ylab="Density (%)'I,

panel=function(x.y, ...I I
panel.histogram(x,y,border=l, ...)
pix <- (-255):255
param <- fit.t.mono.ns$param
tmp <- dt (pix/exp(paramCl]) .exp(paramCZl))/exp(p=amCll)
lines(pix,7*100*tmp,lvd=3,col=3)

1
)

dev. of f 0
(2) the transformation:
tmp <- get .back.mono .trans(f it .t .mono .ns$paramC-c(1,2)1 .tmp.base .mat)
trellis.device(postscript,file="detecting_motion~trans~t~on0~2.ps",

plot. back. trans (tmp, tmp. img ,tmp .bg .tmp .back.probs)
dev. off 0

oidth=8, he ight=8, hor izontal=F)

Use the normal distribution and n s 0 transformation
only using intercept in the transformation:
tmp.base .mat <- get .back.ns .trans .base .mat (tmp .bg,n=l)
fit .t .mono. int <- est .back. t .dens .aud.mono. trans (tmp. img, tmp.bg. tmp.back.probs, tmp. start .tmp.base .mat)
and plot:
(1) the histogram:
tmp <- tmp.img - get .back.mono.trans(fit.t.rnono.int$paramC-c(l.2)1,
tmp <- tmp[tmp.back.probs=l]
trellis.device(postscript.file="detect~_motion~hist~t~mono~l.ps".

vidth=8, height-5 ,horizontal=F)
histogram('tmp,breaks=seq(-255.5,255.5.by=7),

tmp .base .mat) Ctmp. be11
t vhere ve have background

xlab="Pixel ref lective value",
ylab="Density (X) " .
panel=function(x,y,. . .) <
panel.histogam(x,y,bordeTl, . . . I
pix <- (-255):255
param <- fit.t.mono.int$param
tmp <- dt(pix/exp(paramClI) .exp(param[2]))/exp(paramCi])
lines(pix.7*100*tmp,lvd=3,col=3)

1
1

dev.off()
(2) the transformation:
tmp <- get.back.mono.trans(fit.t.mono.int$param[-c(l.2)1,tmp.base.mat)
trellis .device(postscript ,f ile="detecting-motion-trans-t-mono-l .ps",

plot.back.trans(tmp.tmp.hg,tmp.bg,tmp.back.probs)
dav.off (1

vidth=8,height=8 .horizontal=F)

#8
create table for the s i p and df of background distribution:
tmp. tab <- data. frame(a Scale '=exp(c(f it. t .mono. int$paramcl] ,\\

fit.t.mono.ns$param[l])),'Df'=exp~c(fit.t.~no.int$param~l~.\\
fit.t.mono.nsSparamC11)))

param[-c(l.2)] , tmp .base .mat), get .back.mono. trans(\\
fit. t .mono .ns$param[-c(l.2)3 .tmp .base .mat) Ctmp.bg+l .I

tmp <- tmp.img - cbind(get.back.mono.trans(fit .t.mono.int$\\

tmp. tab$ 'SD' <- sqrt (apply (tmp [tmp. back.probs=l .I ,2 .var))
tmp. tab$ '25% quantile ' <- apply(tmpCtmp .back.probs==l .I .2,quantile .probs=0.25)
tmp. tab$'75% quantile' <- apply (tmpctmp .back.probs==l .I ,2,quantile ,probs=O .75)
tmp.tab$'IQR' <- tmp.tab$'75% quantile' - tmp.tab8'25X quantile'
dimnames(tmp.tab)CClIl <- c('l param.'.'5 param.')
round(tmp .tab, 3)

tt create table of log-likelihoods and test for better transformation:
tmp.tab <- cbind('nr. of param.'=c(l,5),

tmp.tab <- as.data.frame(tmp.tab1
dhames(tmp.tab) [[ill <- c('l param. .'5 param.')

'log-likelihood'=-c(fit.t.mono.intSobj.fit.t.mono.ns$obj))

tmp. tab$ 'log-lik. diff ' <- c(NA. tmp. tabC2, 'log-likelihood'l-

tmp. tab$ 'p-value' <- round(c(NA. 1-pchisq(tmp. tab$ 'log-lik. diff ' cZl.4) 1)
tmp.tab

tmp.tabC1. alog-likelihood'])

Use the normal distribution and n s 0 transformation
only using intercept in the transformation:
tmp.base.mat <- get.back.ns.trans.base.mat(tmp.bg.ns1)
tmp.fit.mat <- tmp.base.matCtmp.bg+l.l
fit.norm.ns.1~ <- lsfit(x=tmp.fit.mat,y=tmp.res,int=F,

ut=tmp . back. probs) Cc ("coef " , "res")]
and plot:
(1) the histogram:
tmp <- tmp.img - get.back.ns.trans(fit.norm.ns.lp$coef,
tmp <- tmpCtmp.back.probs=l]
trellis. device (postscript ,f ila="detecting_motion-hist-no~-ns-l. ps" ,

width=8,height=5.horizontal=F)
histogram('tmp,breaks=seq(-255.5,255.5.by=7).

tmp.base.mat) Ctmp.bg+l]
t where we have background

xlab="Pixel reflective value",
ylab=-"Density (X) ",
panel=function(x.y. ...) .C
panel.histogram(x,y.border-1, ...)
pix <- (-255):255
param <- sqrt(sum(tmp.back.probs*fit.norm.ns.lp$res^2) /

tmp <- dnorm(pix,O,param)
lines(pi~.7*100*tmp,lwd=3 ,col=3)

sum(tmp.back. probs))

3
1

dev. off ()
tt (2) the transformation:
tmp <- get .back.=. transcf it .norm.ns. lplcoef , tmp .base .mat)
trellis .device (postscript ,f ile="detecting-motion-tr~s-norm_ns-l .ps" ,

plot. back. trans(tmp,tmp. img,tmp.bg.tmp.back.probs)
dev.off0

width=8,height=8, horizontal=F)

tt use 5 parameters in the ns transformation:
tmp.base.mat <- get .back.ns.trans .base .mat (tmp.bg.n=5)
tmp.fit.mat <- tmp.base.mat[tmp.bg+l.]
fit .norm.ns .5p <- lsf it (x=tmp. f it .mat, y=tmp . res, int-F ,

wt=tmp. back.probs) Cc("coef" ."res")] .
and plot:
tt (1) the histogram:
tmp <- tmp.img - get.back.ns.trans(fit.nom.ns.5p$coef.
tmp <- .3mpCtmp.back.probs==ll
trellis. device (post script, f ile="detecting_mot ion-histnorm-ns-2. ps" ,

width=8,height=5,horizontal=F)
histogram('tmp,breaks=seq(-256 .S,255.5 .by=7) ,

tap. base .mat) Ctmp. bel]
t where ue have background

xlab="Pixel reflective value".
ylab="Density (X) " ,
panel=function(x.y,. . .) <
panel.histogram(x,y.border=l. ...)
pix <- (-255):255
param <- sqrt(sm(tmp.back.probs*fit.norm.ns.5p$res-2) /

tmp <- dnorm(pix.O,param)
lines(pix,7*10O*tmp .lvd=3. col=3)

sum(tmp .back.probs))

>
1

dev. off ()
tt (2) the transformation:
tmp <- get.back.ns.trans(fit.norm.ns.5pScoef,tmp.base.mat)
trellis.device(postscript,file="detecting_motion_trans_norm_ns-Z.ps",

plot. back. trans (tmp, tmp. img, tmp .bg, tmp. back. probs)
dev .off C)

vidth=8,height=8,horizontal=F)

ttt ESTIMATING THE VEHICLE MINUS BACKGROUND DISTRIBUTION

tt Using image A as nev image and B as background:
tmp.ind <- i70b.56.cut.ind
tmp . img <- i70b. 56 [tmp . ind]
tmp.bg <- i70b.57.bg.bi[tmp.ind]
tmp .back .probs <- rep(l,length(tmp. img) 1

use the ns transformation with 5 parameters
I tmp.back.probs[i70b.56.veh.ind[tmp.indl] <- 0 t '0 weights to vehicles

P t TESTING ITERATIVE EM PROCEDURE t##t

Use a test images:
tmp.true.bg <- matrix(150+20*rnorm(30*20),30.20)
tmp.true.bg[,4:7] <- tmp.true.bg[,4:7] - 40
tmp.t1~~.bgC.12:161 <- tmp.true.bgC.12:161 - 30
tmp.true.bg[,19:20] <- tmp.true.bgC.l9:201 - 70
tmp. true .bg[tmp . true .bg<Ol <- 0
tmp.true.bg[tmp.true.bg>2551 <- 255
the brighness change:
tmp . f it <- smooth. spline(rc(O,50,100 150,200.255) ,

tmp. trans <- predict (tmp .f it ,x=O :255)
the new image:
tmp. img <- matrix.(approx(tmp. trans$x, tmp. trans$y ,xont=tmp. true .bg)$y +

tmp.img[6:12.4:8] <- 5*rnorm(7*5) #moving object nr. I (shadow)

1! the true background

y=c(0,40.85,120,155,180) ,df'=5)

7*rnorm(30*20). 30.20)

1 tmp.img[6:11,4:7] <- 40+5*rnorm(6*4) # the object nr.1
Y tmp.img[18:25.12:17] <- 5*rnorm(8*6) 8 moving object nr. 2 (shadow)

tmp.img[18:24,12:16] <- 170+5*rnorm(7*5) t the object xu 2

tmp.imgCtmp.img>2551 <- 255
number of vehicle pixels
(7*5+8*6)/(30*20)
the observed background
tmp.bg <- tmp.trne.bg + 7*rnorm(30*20)

tmp.imgctmp.imgc01 <- 0

t approx 14% or 83 pixels

I +lot test images
image. device ("postscript", f ile="detect ingaot ion-test -img. ps" ,

plot .i.mage(tmp.img)

image. device ("postscript", f ile="detecting-motion-test-bg .ps",

plot.image(tmp.bg)
dev.off 0

height4 ,data. dh=dh(tmp))

* dev . off 0

height=6.data.dimtdi(tmp))

ttttt
use unif. veh. dens. with the same prior (traffic.dens). but different
transformation
U Use 1 param:
tmp.fit.1 <- w.EU.nonn.and.ns(tmp.img.tmp.bg,update.veh.dens=F.

traffic.dens=O.14,
back.trans.control=list(nr.trans.param=l))

011 plot weights:

tttmpO <- round(255*tmp.fit .l$back.probs)
tmp0 <- if else(tmp .f it. l$back.probs>=O. 5,255.0)
image.device('postscript',file="detecting_motion-test_pp_l.ps",

data. dim=dim(tmp), heightr.6)
plot. image(tmp)
dev.off (1
tt plot background transformation
tmp.back.trans <- get.back.ns.trans(tmp.fit.1Sback.trans.param.

tmp.fit.l$back.trans.base.mat)
trellis.device(postscript.file="detecting_motion-test_bt_i.ps",

plot.back.tra2ls(tmp.back.traas,tmp.img,tmp.bg,tmp~.fit.l$back.probs)
dev. of f 0

tmp <- tmp.img

width=6,height~.horizontal=F)

Use 5 param:
tmp.f it. 2 <- run .EM .norm. and.ns(tmp. img. tmp. bg,update .veh.dens=F'.

traffic.densr0.14,
back. trans. control=list (nr . trans .parm=5))

plot weights:

#tmpO <-.round(25S*tmp.fit.2$back.probs)
tmpo <- ifelse(tmp.fit.2$back.probs>=0.5.255.0)
image.device('postscript',file="detecting~motion~test~pp,2.ps".

plot. image(tmp)
dev. of f ()
plot background transformation
tmp.back.trans <- get.back.ns.trans(tmp.fit.2Sback.trans.param.

tmp.fit.2Sback.trans.base.mat)
trellis. device (postscript ,f ile="detectinggpot ion-test-bt-2 .PSI',

plot. back .trans (tmp. back .trans, tmp . img.tmp .bg .tmp. i it. 2Sback .probs)
dev.off 0

tmp <- tmp.img

data. dim=dim(tmp) ,height=6)

width=6,height=6,horizontal=F)

t##$
tt plot histogram of new image:
trellis.device(postscript.file="detecting-motion_test_hist.ps".

histograd'tmp. img. breaks=saq(-0.5, 255 -5 .by=7),
width18 ,height=5 .horizontal=F)

xlab="Pixel reflective value",
ylab="Density")

dev.off 0

veh. only:
tmp.veh.ind <- matrix(F.30.20)
tmp.veh.ind[6:12,4:81 <- T
tmp.veh. ipd[18:25.12: 171 <- T
trellis.device(postscript,file="detectinggpotion~test_hist_veh.ps",

widthre ,height=5 .horizontal=F)
histogam('tmp. img[tmp.veh. ind] ,breaks=seq(-O.5,255 .S .by=7),

rlab="Pixel reflective value",
y1abt"Density")

dev.off ()

t##
tt create classification table for three methods:

thresholding (use SX vehicles, 70% in lower tail)
tmp <- order(tmp.img)
n <- length(tmp. img)
n.veh <- m0.05
thresh. ind <- c(tmp [l :round(n.veh*O .7)] , tmp[round(n-n.veh*O .3) :nl)
tmp <- table(tmp.veh.ind[thresh.indl)
tmp
c('total'=sum(tmp), ~correcr'=tmp['~~'l/sum~tmp~*100.
'vrong'=tmp ['FALSE' I /sum(tmp) *loo)

thresholding (use 15X vehicles, 70% in lover tail)
tmp <- order(tmp. img)
n <- length(tmp.img)
n.veh <- n*0.15
thresh. ind <- c(tmpc1 :round(n.veh*0.7)], tmp[round(n-n.veh*0.3) :nJ)
tmp <- table(tmp.veh.indCthresh.ind1)
tmP
c (’total ’=sum(tmp) , ’ correcr ’ 3 m p [’ TRUE’] /sum(tmp) *loo,

’wrongJ=tmpC’FALSE’l/sum(tmp)*lOO)

thresholding (use 25% vehicles, 70% in lover tail)
tmp <- order(tmp.img)
n <- length(tmp.img)
n.veh <- n*0.25 . .

thresh. ind <- c(tmpC1 :round(n.veh*O .7)1, tmp Croundb-n.veh*O .3) :nl)
tmp <- table (tmp.veh. indcthresh. indl)
tmP
c (’total’=sum(tmp) , ’correcr’=tmp [’TRUE’] /sum(tmp) *loo,

’wrong’ =tmpC ’FALSE’] /sum(tmp)*100)

1 parameter transformation:
Ut 5% traffic density at prior:
tmp.f it <- run.EM.norm.and.ns(tmp. img.tmp.bg.update .veh.dens=F,

traffic.dens=0.05,
back.trans.control=list(nr.trans.param=l))

tmp <- tmp.veh.ind[tmp.fit$back.probs<0.5]
tmp <- table(tmp1
tmP
c(’total’=sum(tmp), ’correcr ’=tmpC’TRUE’] /sum(tmp)*lOO.

’wrong~3mp[~FALSE’l/sum(tmp~*lOO~

15% traffic density at prior:
tmp.fit <- run.EH.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F.

traffic.dens=0.15.
back.trans.control=list(nr.trans.parZVJFl))

tmp <- tmp .veh. indctmp .f it$back.probs<O .53
tmp <- table(tmp1
cat (“15% at prior\n”)
tmp
c(’total’=sum(tmp), ’ correcr’rtmpC’TR~’l/sum~tmp~*100,

’wrong’ =tmp C ’ FALSE ’ I /sum(tmp) *loo)

25% traffic density at prior:
‘ tmp.fit <- run.M.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F,

traffic.dens=O.25.
back.trans.control=list(nr.trans.paraFl))

tmp <- tmp.veh.ind[tmp.fit$back.probs<O.51
tmp <- table(tmp1
cat(”25X at priorb”)

c(’totdL’=sum(tmp), ’correcr ’=tmp[’TRUE’] /sum(tmp)*lOO.
I t m p

’wrong J..tmp[’FALSE’l/sum(tmp)*lOO)

5 parameter transformation:
5% traffic density at prior:
tmp.fit <- run.M.norm.and.ns(tmp.img,tmp.bg,update.veh.dens=FF.

traffic.dens=0.05,
back.trans.control=list(nr.trans.param=5))

tmp <- tmp.veh.ind[tmp.fit$back.probs<O.5]
tmp <- table(tmp)
cat(“5 param. and 5% at prior\n“)
tmP
c(’total’=sum(tmp), ’correcr’=tmpt’~UE’I /sum(tmp)*100.

’wrong a =tmp [’FALSE’] /sum(tmp) *loo)

t 8 15X traffic density at prior:

I

tmp.fit <- run.EM.nonn.and.ns(tmp.img,tmp.bg.update.veh.dens=F,
traffic.dens=O.l5.
back. trans. control=list (nr . trans .param=5)

tmp <- tmp-veh. indCtmp.f itSback.probs<0.51
tmp <- tabla(tmp1
cat("5 param. and 15% at prior\n")
tmP
c(*totdl '=sum(tmp), 'correcr'=tmpC'~UE'1/sum~tmp)*100,
'urong'~~['FALsE'l//sum(tmp)*lOO)

25X traffic density at prior:
tmp .fit <- run.M .norm. and .ns(tmp . img ,tmp .bg .update .veh . dens=F,

traffic.denss0.25,
back. trans. control=list (nr. trans .param=5))

tmp <- tmp . veh. indttrnp .f it$back .probs<O .51
tmp <- table(tmp1
cat("5 param. and 25% at prior\n")
tmP
c('totdl '=sum(tmp). 'conecr J=tmpCJTRUE'l/sum(tmp)*lOO,

'wrong '=imp ['FALSE'] /sum(tmp)*lOO)

w#yt

use images A and B:(B image and A background)
use 3% traffic density as prior
tmp.ind <- i70b.56.cut.ind
tmp. img <- i70b. 57.bi [tmp. indl
tmp.bg <- i7Ob.56.bgCtmp.indl

use 1 parameter model
-.fit <- run.EH.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F,

traffic.dens=O.03,
back.trans.control=list(nr.trans .para~~l))

tt plot weights:
tmp <- i70b.57.bi
tmpC!tmp.W <- HA

tmp
tmpl [tmp.W <- round(255*tmp.fitSback.probs)
image.device(Jpostscript',file="detecting~otion~~~3pc,cc_i_2.ps".

plot. image(tmp1)
dev.off (1
tmp[tmp.ind] <- ifelse(tmp.fitSback.probs>=O.5.'255,0)
image .device('postscript ' ,f ile="detecting-motion-img-3pc-pp-l-2 .ps",

data.dim=dim(tmp) ,height=6)
plot .image(tmp)
dev.off (1

data.dim=dim(tmpl) .height4

tmp <- (i70b. 57 .veh. indctmp. indl) [tmp .f it$back.probs<O -51
tmp <- table(tmp)
cat("1 param. and 3% at prior\n")
tmp
c('total'=sum(tmp), ' conecrJ~mpCJ~~Jl/sum(tmp)llOO.

'vr~ng'~tmp[~FALSE']/sum(tmp)*lOO.
' omission '=<sum(i7Ob .57 .veh. ipdctmp .indl)-tmp[JTRUED])/sm(i70b. 57 .veh . indttmp. ind3)*IC@)

tt use 2 parameter model - shift 0 slope
tmp.f it <- run. EM. norm. and.ns(tmp. img .tmp .bg .update .veh .dens=F ,

traffic.dens=0.03.
back.traus.control=list(nr.trans .param=l))

tt plot weights:
tmp <- i70b.57.bi
tmpC!tmp.indl <- NA
tmpl <- tmp
tmpl Ctmp. indl <- round(255*tmp.f it$back.probs)
image .device('postscript ' ,f ile="detecting~motion~img~3pc~cc~2~2 .ps",

plot. image(tmp1)
dev . off (1
tmp Ctmp. indl <- if else(tmp. f itSback.probs>~O. 5,255.0)

data .dim=dim(tmpl) .height=6)

!

image. device ('postscript ' ,f ile="detecting-motion-img-3pc-pp-2-2. ps" ,

plot. image(tmp1
dev. off 0

data. dim=dim(tmp) ,height=B)

tmp <- (i70b.57 .veh. indctmp. ind]) [tmp .f it$back.probs<O. 51
tmp <- table(tmp)
cat("2 param, and 3% at prior\n")
tmP
~~'total'=sum~tmp),~correcr'~tmp[~~~~l/sum~tmp~*lOO,
'vrong'=tmp['FALSE'] /sum(tmp) *loo,
'omission'=(sum(i70b.57.veh. indctmp. ind])-tmpCDIRUED])/sum(i70b.57.veh. indCtmp. indl)*loo)

&'

I

tl! use 5 parameter model
tmp.fit <- run.M.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F.

traffic.densxO.03.
back.trans.control=list(nr.trans.param=5))

tt plot veights:
tmp <- i70b.57.bi
tmpC!tmp.indl <- NA

tmpl [tmp.indl <- round(255*tmp.f it$back.probs)
image .device('postscript a ,f ile="detecting~motion~img~3pc~cc~5~2.ps",

plot. image(tmp1)
dev.off 0

tmpCtmp.ind1 <- ifelse(tmp.fit$back.probs>=O.5.255.0)
image.device('postscripta.file="detecting~motion~img~~pc~pp~5~2.ps",

data. dim=dim(tmp) , height=6)
plot. image(tmp1
dev.off 0

tmpl <- tmp

data. dim=dim(tmpl) ,height*)

tmp <- (i70b.67.veh. indctmp. indl) Ctmp.fitOback.probs<O.5]
tmp <- table(tmp)
cat("5 param, and 3% at prior\n")
tmp
~~'totitl'=~um(tmp~.'correcr'~tmpt'TR~'3/s~~tmp~*~~~,
'vrong'=tmp[aFALSE~l/sum(tmp)*lOO,
'omission '=(sum(i7Ob. 57 .veh. ind [tmp . ind]) -tmp ['TRUE '3 /sum(i7Ob. 57.. veh. indCtmp. indl *loo)

tt thresholding:
tmp <- order(tmp.img)
n <- length(tmp.img)
n.veh <- ~40.03
thresh. ind <- c(tmpC1 :round(n.veh*O .7)1, tmpEround(n-n.veh*0.3) :n])
tmp <- table ((i70b. 57 .veh. indctmp. ind]) [thresh. indl)
tmP
~~'tot~~=sum(tmp~.'correcr'=tmpC'~UE~3/sum(tmp~*i00.
%rong'=tmp['FALSE'] /sum(tmp)*lOO,
' omission'=(sum(i70b. 57 .veh. indctmp. indl 3-tmp ['TRtE'])/sum(i'lOb -57. veh. h d c t m p . ind)*loo)

tmp <- i70b.57.bi
tmp0 <- 255
tmpctmp . indl [thresh. indl <- 0
~e.device(Jpostscript'.file="detecting~otion~~~3pc~t~es~l~2.ps"~

data. dim=dim(tmp) , height=6)
plot. image(tmp1
dev.off (1

Ottt:
tt use images A and B:(B image and A background)
tt use 1% traffic density as prior
tmp.ind <- i70b.56.cut.ind
tmp.img <- i70b.57.biCtmp.indI
tmp . bg <- i70b. 56. bg Ctmp . ind]

Ot use 1 parameter model

tmp.fit <- run.M.norm.and.ns(~p.img.tmp.bg.update.veh.dens=F,
traffic.dens=0.01,
back.trans.control=list(nr.trans.param=l))

plot veights:
tmp <- i70b.57.bi
tmp[!tmp.ind] <- NA
tmpl <- tmp
tmpl[tmp.indl <- round(255*tmp.fitSback.probs)
image.device('postscriptJ.file="detecting_motion_img_lpc-cc_1_2.ps".

plot. image(tmp1)
dev.off 0
tmp[tmp.indI <- ifelse(tmp.fitSback.probs>=0.5.255.0)
image. device ('postscript ' ,f ile="detecting-motion~img,lpc-pp-l-2 .PSI',

data. dim=dim(tmp) , height=6)
plot. image(tmp)
dev.off 0

data.dim=dim(tmpl),height=6)

tmp <- (i70b.57.veh.ind[tmp.ind'J)[tmp.fit~back.probs<0.5~
tmp <- table(tmp)
cat("1 param, and 1% at prior\n")
tmp
c0totalD=sum(tmp), JcorrecrJ=tmp[~~~J3/sum(tmp)*100.
'wrong '=tmp ['FALSE'] /sum(tmp) *loo,
'omission '=(sum(i7Ob. 57. veh. ind [tmp . indl)-trap C ' TRUE']) /sum(i7Ob. 57. veh. ind [tmp. indl 1 *loo)

tt use 2 parameter model - shift L slope
tmp.fit <- run.EM.norm.and.ns(tmp.img.tmp.bg.update.veh.dens=F,

traffic.dens=O.Ol.
back.trans.control=list(nr.tran~.param=2))

tt plot veights:
tmp <- i70b.57.bi
tmp[!tmp.indJ <- NA
tmpl c- tmp
tmpl[tmp.indl <- round(255*tmp.fitSback.probs)
image.device('postscript'.fi1e="detect~_motion~~g~1pc~cc~2~2.ps".

plot. image(tmp1)
dev. of f 0
tmp [tmp. ind <- if else (tmp. f itSback.probs>=O .5.255.0)
image.device('postscriptD,fi1e="detecting~motion~~g~1pc~pp~2~2.ps".

data. dim=dim(tmp) .height41
plot. image(tmp)
dev. of f 0

data. dim=dim(tmpl) , height=6)

tmp <- (i70b .57 .veh. indctmp. indl) [tmp .f itsback .probs<O. 53
tmp <- table(-)
cat("2 param. and 1% at prior\n")
tmp
c(total '=sum(tmp) , ' correcr '=tmp C 'Trim 'I /sum(tmp)*iOO,
'vrong'=tmpC'F~E']/sum(tmp)*lOO.
'omission'=~sum~i70b.57.~eh.ind[tmp.indl~-tmp~~~~'I~/sam~i70b.57.veh.ind~tmp.indJ~*100~

t# use 5 parameter model
tmp.fit <- run.En.nonn.and.ns(tmp.img.tmp.bg,npdate.veh.dens=F,

traffic.dens=O.Ol.
back.trans.control=list(nr.trans.param=5))

tt plot weights:
tmp <- i70b.57.bi
tmp[! tmp. ind] <- NA

tmpl [tmp. indl <- round(255*tmp.f it$back.probs)
image. device ('postscript ' , f ile="de tec t ing-mot ion-img-lpc-cc-5-2. ps ' I ,

plot. image(tmp1)
dev.off (1

tmp[tmp. indl <- if else(tmp. f it$back.probs>=O .5,255,0)
image .device('postscript ' .f ile="detecting-motion-img-lpc-pp-5-2 .ps",

data. dim=dim(tmp) , height=6)

tmpl <- tmp

data.dim=dim(tmpl) ,height=6)

plot. image(tmp)
dev.off (1

tmp <- (i70b.57.veh.indCtmp.ind])[tmp.fit$back.probs<0.51
tmp <- table(tmp)
cat("5 param. and 1% at prior\n")
tmP
c('total'=sum(tmp), 'correcr'=tmp['mUE']/sum(tmp)*iOO,

'wrong'=tmp['FALSE'] /sum(tmp)*100,
'omission'=~sum~i70b.57.veh.ind[tmp.indl)-tmp~'~UEil~/sum(i70b.57.veh.ind~tmp.~~~*100~

#8 thresholding:
tmp <- order(tmp.img)
n <- length(tmp.img)
n.veh <- neO.01
thresh. ind <- c(tmp[l :round(n.veh*O.7)] .tmp[round(n-n.veh*O. 3) :d)
tmp <- table((i70b.57.veh. indctmp. ind]) [thresh. indl)
tmp
c~'tot~'=sum(tmp~.'conecr'=tmpC'~~~l/s~~tmp~*iOO.

'wrong '=tmp ['FALSE'I /sum(tmp)*100,
'omissionJ=(sum~i70b.57.veh.ind[tmp.ind])-tmp['TRUE']~/sum(i70b.57.veh.ind~t~.ind~~*lOO~

t tmp <- i70b.57.bi
tmpo <- 255
tmp [tmp . ind] [thresh. ind] <- 0
image. device ('postscript ' , f ile="detecting-mot ion-img-lpc-thres-1-2. ps" ,

plot .image(tmp)
dev. off (1

data. dim=dim(tmp) , height=6)

St#*
*O use images A and B: (B image and A background)
#S use 7% traffic density as prior
tmp.ind <- i70b.56.cut.ind
tmp . img <- i70b. 57. bi Ctmp . indl
tmp . bg <- i70b. 56 .bg Ctmp . indl
W use 1 parameter model
tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F,

traffic.dens=O.07.
back.traus.control=list (nr-trans .param=l))

W plot weights:
tmp <- i70b.57.bi
tmp[!tmp.indl <- NA
tmpl <- tmp
tmplctmp. ind] <- round(255*tmp.f it$back.probs)
image.device(BpostscriptD.file=ndetecting~motion~~~7pc~cc~l~2.psn.

data.diwdim(tmp1) ,height=6) 3

plot .image(tmpl)
dev. off 0
tmp[tmp.indl <- ifelse(tmp.fit$back.probs>=0.5,255.0)
image .device ('postscript ' .f ile="detectingaotion-img_7pc-pp-l-2 .ps".

data.dh=dim(tmp) .height=6)
plot. image(tmp)
dev. off (1

tmp <- (i70b.57.veh.ind[tmp.indl~[tmp.fit$back.probs<0.5]
tmp <- table(tmp1
cat("1 param, and 7% at prior\n")
tmP
~~'tota~'=sum(tmp),~correcr'=tmpC'~~'l/sum~tmp~*lOO,

'wrong'=tmp ['FALSE ']/sum(tmp) *loo,
'omission'=(sum~i70b.57.veh.ind~tmp.indl)-tmp~'TRUE'l~/sum~i70b.57.veh.ind~tmp.ind]~*100)

OP use 2 parameter model - shift & slope
tmp.fit <- run.EM.norm.and.ns(tmp.img,tmp.bg.update.veh.dens=F.

traffic.dens=0.07.
back.trans.control=list(nr.trans.param=2))

P t plot weights:

tmp <- i70b.57.bi
tmpC!tmp.indl <- NA
tmpl <- tmp
tmplCtmp.ind1 <- round(255*tmp.fit$back.probs)
image.device('postscript',file="detecting~motion~img~7pc~cc~2~2.ps",

plot. image(tmp1)
dev. of f ()
tmp[tmp.ind] <- ifelse(tmp.fit$back.probs>=0.5,255,0)
image .device('postscript ' .f ile="detecting-motion-img-7pc-pp-2-2 .ps",

data. d%-dim(tmp) .height=6)

data. dim=dim(tmpl) , height=6)

plot. image (tmp)
dev.off 0

. .

. .

tmp <- (i70b.57.veh.ind[tmp.indl)Ctmp.fit$back.probs<0.5]
tmp <- tablectmp)
cat("2 param. and 7% at prior\n")
tmp
c(total'=sum(tmp), ' correcr 'amp C ' TRUE 'I /sum(tmp) *loo,
'vrong'3mpCJFALSE'l/sum~tmp~*l0O,
'omission'=(sum(i70b.57.veh~ind[tmp.ind])-tmp['TRUE'])/sum(i70b.57.veh.ind~tmp.in~)*100)

tt use 5 parameter model
tmp . f it <- run. EM .norm. and .ns (trnp. img , tmp. bg .update. veh . dens=F.

traffic .dens=O .07,
back.trans .control=list (nr.traus .param=5))

tt plot weights:
tmp <- i70b.57.bi
tmpC!tmp.indl <- NA
tmpl <- tmp
tmpl [trnp. ind] <- round(255*tmp.f it$back.probs)
image. device ('postscript ' .f ile="detecting_mot ion-img-7pc-cc-5-2. ps" ,

plot. image(tmp1)
dev.off (1

data. d M i m (tmpi ,he ight=6)

tmp[tmp.ind] <- ifelse(tmp.fit$back.probs>=O.5.255,0)
image. device ('postscript ' .f ile="detecting-motion-img-7pc-pp-5-2 .ps",

data. dim=dim(tmp) , heightz6)
plot. image (tmp)
dev .off (1

tmp <- (i70b.57.veh.indCtmp.ind])[tmp.fit$back.probs<0.51
tmp <- tablectmp)
cat("5 para, and 7% at prior\n")
tmP
c('tota'=sum(tmp), ' correcr '=tmp['TRuE'] /sum(tmp)*100,

'wrongJ=tmpC 'FALSE'] /sum(tmp)*lOO.
'omission'=(sum(i70b. 57 .veh . indctmp. indl)-tmp['TRUE'])/sum(i7Ob. 57. veh . ind [tmp. indl)*loo)

88 thresholding:

n <- length(tmp.img)
n.veh <- m0.07
thresh. ind <- c(tmp[l:roud(n.veh*O-7)] , tmp[round(n-n.veh*0.3) :d
tmp <- table((i70b.57.veh.indCtmp. ind]) [thresh. i d)
tmp
~~'tot~'=sum~tmp),'correcr'=tmpC'~UE'l/sum~tmp~*100,

tmp <- order(tmp.img) I . .

'vrongJEtmpCDFBLSE'l/sum(tmp)*lOO.
'omissionD=~sum(i70b.57.veh.ind[tmp.indl)-tmp['TRUE'])/sum(i70b.57.veh.ind~tmp.ind~~*100~

tmp <- i70b.57.bi
tmpn <- 255
trap Ctmp. ind] [thresh. indl <- 0
image. device('postscript ' ,f ile="detecting~motion~img~7pc~thres~l~2 .PSI',

data. dim=dim(tmp), height=6)
plot. image (tmp)
dev. off (1

i

I

4.3 The S+ Image Processing Code

#tt####t tt##ttt############t##############
t CJ: 5-NOV-97
t
8 Collection of functions to deal with gray-scale images.
It
t

t function to read in Images in ASCII format.
t Returns a matrix

imagine.2.s <- function(file,compresed=T) C
if (compresed) {
tmp.file <- tempfile0
unix(paste(”uncompress -c “,file.” > ” .tmp.f ile, sep=””) 1
on.exit(unix(paste(”rm -f”.tmp.file)))
file <- tmp-file

3
data <- matrix(scan(file,skip=4),byrov=T,ncol=3) t (x.y.z) data
tn <- sort(unique(data[,ll))
uy <- sort(unique(dataC.21))
data <- matrix(datac.31 ,byrov=T,nrov=length(uy) ,ncol=length(tn),

attr(data,”header”) <- scan(f ile .n=3,what=””) C31
returncdata)

dimnames=list(uy.ux))

3

t edge detection -- gradiant method on 3x3 mask

detect .edge <- function(data) C

Y

dd <- dim(data)
n.na <- 0
search.na <- T
vhile(search.na) C

search.na <- all(is.na(dataC.n.na+ll))
n.na <- n.na + search-na

3
print (n.na)
x.r <- (n.na+2):(ddC2l-n.na-l)
y.r <- (n.na+l) :(ddCll-n.na-l)
t in the x-direction:
data.x <- 2*data[y.r.] + data[y.r-1.3 + dataCy.r+l.l

data-y <- 2*dataC.x.r] + dataC,x.r-11 + dataC.x.r+l]
y.grad <- data.y[y.r-1.1 - data.yCy.r+l.l

r x.grad <- data.x[,x.r+l] - data.xC.x.r-11

1 size <- angle <- matrix(NA.nro~dd[l] .ncol=ddC2])
angle Cy .r ,x .rl <- atau(y .grad/x. grad)
size[y.r.x.rl <- sqrt(y.gradm2+x.grad-2)

return(size=size , angle=angle)
3

apply. f ilter <- f unctioncdata .weights=rbind(c (1.2.1) , c (2.4.2) , c (1 ,Z ,I)) ,
n.na=O) c

t the veights are given-row by row.
t by default it is a ’binomial’ mask.

weights <- weights/sum(weights)
n <- length(weights)
dd <- dimcdata)

dv <- dim(veights)
n0.na.s <- !is.na(data)
data[!no.na.s] <- 0

x.r <- l:(dd[2]-2*(n.na+l))
y.r <- l:(dd[11-2*(n.na+l))
result <- total .veights <- matrix(O,nrou=dd[l] .ncol=dd[2])
for(i in l:nrov(veights))
for(j in l:ncol(veights)) i
result[y.r+n.na+l,x.r+n.na+l] <- result[y.r+n.na+l.x.r+n.na+l] +
veight s [i jl *data Cy. r- l+i , x. r-l+ j I

totdl.weights [y .r+n.na+l ,x .r+n.na+ll <-

3
total.veightsCy.r+n.na+l,x.r+n.na+ll + n0.na.sCy.r-l+i.x.r-l+jl

result <- result*(length(veights)/total.veights)
return(resu1t)

>

image. device <- function(device=c("motif " , "postscript ") , f ile="image. ps" ,
height=10.5,vidth=8,dpi,n.co1ors=256,data.d~~,
horizontal=F, . . .) i

device <- match.arg(device)
assign("gey1evels .256colors" .seq(O,l.le=n.colors) .where=O)
ps.options(colors=greylevels.256colors.background=-l)

if (device=="motif") i
add.to.sgraphrc <- "-nm 'sgrapWotif .colorSchemes: name: \"256
greylevels\ "; background: vhite; lines: black h5 white; text:
black h5 vhite; polygons: black h2S4 white; images: black h254
vhite 'I'
motif(options=add.to.sgraphrc, ...)
a postscript file is created just to suround the image.
Sfigure out the size of the postscript file:
if (! is .null(data.dim)) {

3 else <

d . rat io <- data. dimCll /data. did21
p.ratio <- height/vidth
if (d.ratio>=p .ratio)

else
vidth <- height*(l/d.ratio)

height <- vidth*d.ratio
1
postscript(filerfile,vidth~idth,height=height,horizontdl=horizont~,

onefile=F,print.it=F,
colors=geylevels .256colors, image. colors=greylevels .256colors)

1

par (xaxs="i", yaxs="i")
Par (mar=c (0.0.0.0) 1

$ # # # # r t t t + t # # # # # $ # ~ # # # ~ # # # ~ ~ # # ~ ~ # # $ # #

scale .image <- function(data,n. colors=256,reverse=F) C

ind <- is .na(data) #background
d.r <- range(data[!ind])
data <- round((data-d.r [l])/(d.r [2] -d.r Cl]) * (n. colors-1))
if (reverse)

datacind] <- NA
returncdata)

data <- (n.colors-1)-data

>

.i,

plot.image <- function(data,add=F,n.colors=256,add.grid=F,add.frame=T.
method=c("image", "polygon")) <

t data is a matrix with gray-scale values.

dd <- diddata)
n.row <- ddC11; n.col <- ddC21
d.ratio <- n.row/n.col

if (!add)
par(pin=p=O $din)

p.par <- pd)Spin
p. ratio <- p .par C2l /p .par Cil
if (d-ratio >= p.ratio) {

3
if(d.ratio < p.ratio)

par(pin=c(p.parC2l/d .ratio.p.par[2] 1)

par(pin=c (p .par [I] ,p .par C13 *d. ratio) 1
3

if (!add)
plot (c(0.n. col)+O .5. c(O.n.row)+O. 5. type="p",

xlab"" ,ylab="" .axes=F,xIafs="i" ,yaxs="i", col=O)

par(err-1)

ux <- seq(O.5 ,n. col+O. 5,by=1)
uy <- seq(n.rou+0.5.0.5.by=-i)
method <- match.arg(method)
if (method=="polygon") {
data[is.na(data)l <- -1 t the background
. C("polygon_matrix",

as.single(ux).
as. integer(length(ux)),
as.single(uy).
as. integer(length(uy)),
as.single(c(0,i:n.colors)Cdata+23)
1

3 else <
3

image(x~,y=uy,~(&ta)+l,add=add)

return(invisible0)
3

Appendix C. Log-Normal and Poisson Traffic Count Data Simulation Programs

Documentation for Traffic Count Simulation-Log-Normal ERO~S: v2.0A
.
This program simulates a network of road links that are sampled by satellite photos and ATRs.
The data are generated according to a log-linear model with normal errors. The segment lengths
must be supplied in the file length. Expansion factors are now read from the file 'expfact0r.W
.
V LES

MAXLINK = maximum number of links possible
idum = random number seed used by ranlo and gasdeV0 ***Using the same idum gives the same output***
nlink = actual number of links used
nsat = number of sats
natr = number of perm ATR
nportatr = number of moveable ATR
li&mean(i) = AADT of link i
lid-length(i) = length of link i
mini = minimum AADT e.g. 10,000
maxi = maximum AADT eg 90,OOO
hef(24) = hourly expansion factor. Not currently used.
def(7) = day of week expansion factor
mef(12) = monthly expansion factor
dt = #days from one satellite overpass to another
coverage = proportion of links seen by satellite for one overpass ***e.g., coverage = 0.01 = 1% of links seen***
timeint = effective length of time (in hours) of traffic "seen" by satellite. ***e.g., timeint = 0.0167 => satellite

will count a minutes worth of traffic. Not currently used.***
sigma = variability of counts. *** e.g., sigma = 0.10 => 10% variability in recorded count***

+There are two sigmas used: sigmasat, sigmaground*

*** It's the dimension of linkMean()***

LIST OF MODULES IN PROGRAM.

P Read expansion factors from file 'expfactorin' */

P Read random seed from file 'idum.in' */

P Read input file and write to some parameter files */

P Get and prepare link lengths, write to file */

P Generate EF and write to files */

P Generate link parameters and write to files */

P Generate satellite data and write to files */

P Generate cts ATRs. The links are 0, ..., om-1, so the link lengths for
the cts ATRs are always the same. Write data to a file. */

!

P generate short term ATRs and write data to a file */

SUBRO USED:

P readseed: return the random seed from file idurn-in. The random seed is a
negative integer. */

P read-= read the seasonal adjustment factors */

P read-input: read fde 'input' for parameters */
P Read number of links, nlink */
P Read UB andLB on link AADT */

/* Read cts ATRparametas */
P Enter portable ATR parameters */

> 2
P Read Sat parameters */

P get-lengths: read and prepare the link lengths as follows:
Lengths are read from file lengthin
The first natr are always assigned to the PATR, so that the PATR
always have the same link lengths.
Finally the remaining nlink - natr lengths are assigned randomly
to the links w/o PATR, so the MATR are assigned to random links.
Lengths are written to 1ength.out */
P Read the lengths from 'lengthin'*/
P Scramble the last nlink - natr links */
P Write the results to file */

P gen-EFO generate expansion factors and write to file 'truth.out'. */

P gt%l-linkJar
VMT. Write above to files. */

: Genera& li- linklength, total traffic, AADT,

P Generate true mean of daily traftic count for each link */
/* Write out total volume of traffk for the year to 'truth.out'. */
/* Write link-mean (AADT of links) to files 'truth.out' and 'aadt.out' */
/* Compute VMT and write to file 'vmt.out' */

P gen-sat: write simulated sat counts to file 'sate-out' and write sampling
design to file 'design.out*. Write link and number of times each link
is sampled by sat to file 'satsamp.out' */
P' Initialize satsamp *I
P Sample from sat */

Q

i

P gea-Am generate ATR counts *I

P ranl: generate a realization of a uniform(O.1) rv */
L

P gasdev: return a realization of a std normal rv */

P get-sample: put sample of size n into fmt n slots of linkID 0 to n-1.
These links are sampled by the sat on a given pass, or used by the MATR.
The fmt excl links are excluded. %cl= npatr for MATR, or 0 for sat */

PROGRAM:

#include <StdiO.b
#include <stdlib.b
#include cmathb
#include <float&
#include climitsB>
#include ctime.h>

#define MAXLINK 5000 P Maximum number of links allowed *I

P' Function prototypes. *I

int mdseed(v0id);
void read-EF(doub1e hef[], double defll, double mefll);
void get-lengths(doub1e link-lengthn, int nlink, int natr, int d i n k ,

double ranl(int *idum);
double gasdev(int *idurn);
void gen-FiFO(double hefl], double defl], double mefl]);
void gen-linkpramems(double link-man, double link-length[],

int maxlink, int nlink, double mini, double maxi,
int *idum);

void gen-sat(doub1e linkmean[], int maxlink, int nlink, double dt,

int *idum);

double defl], double mefl], double coverage, double sigma,
int *idurn);

void ga-ATR(double link_mean[], int W i n k , int nlink, int link,
int yeardayl, int yearday2, double hem, double defll,
double mefl], double sigmaground, int *idum);

void read-input(int *dink, int *usat, double *dt, double *coverage,
double Weint, double *sigmasat, int *natr,
double *sigmaground, int *npomtr, double *mini,
double *maxi);

void get-sample(int linkID[], int n, int maxlink, int dink, int *idum,
int excl);

void convertDayNumbex(doub1e time, double *hh, int *dd, int *mm,
int *weekday);

double =(double a, double b);
double min(doub1e a. double b);

...

main0
{
P Declare variables: *I

int i, idum, natr, link, yeardayl, yearday2, length, start., nportatr,

double link-meanFLAXLIM(], l i n k - l e n g t h ~ I N K] ;
double dt, coverage, timeint, sigmasat, sigmaground, mini, maxi;
double hefl241, deq71, mefll21;

nlink, nsat = 0. excl;

I

!

P Read expansion factors from file 'expfactorin' *I

=d-EF@ef, def, mef);

P Read random seed from file 'idumh' *I
idum = readseedo;

P Read input file and write to some parameter files *I
md-input(&nlink, &usat, &it, &coverage, &beint, &sigmasat, &natr,

&sigmaground, &nportatr, &mini, &maxi);

P Get and prepm link lengths, write to file *I
get_lengths(link-lengtb, nlink, natr, MAxLIM(, &dum);

P Generate EF and write to files *I
genJFO(hef, def, mef);

P Generate link parameters and write to files *I
gen-link_paramems(link-mean, linklength, MAXLINK, nlink, maxi, mini,

&idurn);

P Genexate satellite data and write to files +I
for (i = 1; i c= nsat; i*) {
gen-sat(linkmean, MAXLINK, dink, dt, def, mef, coverage, sigmasat,

&idurn);
1

P Generate cts ATRs. The links are 0, ..., natr-1, so the link lengths for

yeardayl = 1;
yearday2 = 365;

the cts ATRs are always the same. *I

for (i = 0; i < n ~ , i++) (
link = i;
gen-ATROink-mean. MAXLINK, nlink, link, yeardayl, yearday2, hef, def, mef,

sigmaground, &idurn);
1

P genaate short term ATRs *I
for (i = natr; i c natr + n p o m , i+) (
length = 2; /* Number of days of observations at any MATR link *I
start = floor(ranl(&idum) * (365-length+l)) + 1;
gen-ATR(lixkmean, MAXLINK, nlink, i, start, start+length-1, hef, def,

1
mef, sigmaground, &idurn);

retmo;
} P End of main *I

I* Function definitions: *I

P readseed: return the random seed from file idurnin. The random seed is a

int readseed(v0id)
negative integer. *I

{
int c = 0;
FILE *idump;
idump = fopen("idum.in", "r");
fscanf(idump, "%d, &c);
fcl&idump);
if (!(c < 0))

return c;
1

printf("headSeed: mor, random seed must be a negative integer.b");

P read-= read the seasonal adjustment factors *I
void read-EF(doub1e heft], double defl]. double meft])
{
int i;

FILE *mp;

EFp = fopen("expfactor.in", "r");

for (i = 0; i <7; i++)

for (i = 0; i < 12; i++)
fscanf(EFp, "%E", &defli]);

f=W, "%lf", Btmef[il);

fclOse(EFp);

P &-input: read file 'input' for paramem */
void read-input(int *nlink. int *nsat, double *dt, double *coverage,

double *timeint, double *sigmasat, int *natr,
double *sigmaground, int *nportatr, double *mini,

double *maxi)
(

mtrp = fopen("matr.out", "w");

truthp = fopen~truth.out", "w");
p a w = fopen("patr.out". "w");

parametersp = fopem("parameters.out", "w");

P Read number of links, nlink *I
*nlink = 0;
do (
I* printf("Enter number of links for this run.W); *I
scanf("%d", nlink);

) while (*nlink < 1);
fprintf(mthp, "\nThere are %d links for this run.b", *dink);
fprintf(parametersp, "There are %d linksbb", *nlink);

P Read UB and LB on link AADT *I
*mini = 0;
do (
P printf("1nput lower bound for link AADT (min 1.0): b"); *I
scanf("%lf', mini);

) while (*mini < 1);

*maxi = *mini;
do (
P printf("1nput upper bound for link AADT: b"); *I
scanf("%lf', maxi);

) while (*maxi <= *mini);

fprintf(mthp, "Lower bound of AADT = 96f. Upper bound = %h", *mini,*maxi);
fprintf(parametersp, "Bounds are from %f to %flu", *mini. *maxi);

P read sat data *I

do (
P printf("Enter number of satellites: b"); */
scanf("W", nsat);

) while (*mat < 0);
*mat = (*mat > *nlink) ? *nlink : *mat; P Truncate nsat at nlink *I
fprintf(parametersp, "There are %d satellites.b", *mat);

do (
P printf("Input time between sat passes, in days.\n"); *I
scanf("%lf", dt);

) while (*dt c .Ol);
fprintf(parametersp, "Time between sat passes = %f days.b", *dt);

do (
P printf("Input fraction of links seen by satellite.\n"); *I
scanf("%lf', coverage);

) while (*coverage e 0 I I *coverage > 1);
fprintf(parametersp, "Coverage = 8 f percent.b", *coverage * 100);

P printf("1nput fraction of hour equivalent the sat sees.\n");

printf("Be sure to make the value between -001 and 24.0b"); *I
scanf("%lf", timeint);
fprintf(parametersp, "Equivalent time = %f.b", *timint);

/*printf("Input s > 0, where the error has exp(Normal[O, S U I) distb");

*sigmasat = -1;
do t
scanf("%lf", sigmasat);

) while (*sigmasat < 0);
fprintf(parametenp, "Sigmasat = %f.\n", *sigmasat);

printf("and s < 1 say. s is sigma-sat.b"); */

/* Enter cts ATR parameters */

I* printf("Enter number of continuous ATRs, not greater than #links.b");*/
scanfr%d, natr);
fprintf(parametersp, "There are 46d continuous ATR links.\n", *natr);
fprintf(patrp, "%5db", %a@);

for (i = 0; i < *natr; ii+)
fprintf(paap, "%8db", i+l);

/* printf("Enter nonnegative sigma value for ground c0unts.b"); */
scanf("%W, sigmaground);

fprintf(parametersp, "sigmaground = %M, *sigmaground);

P Enter poxtable ATR parameters *I

scanf("%d, nportatr);
@rintf(parametersp, "There are %d portable ATRs used.W, *nportatr);
$rintf(mafrp, " %db", *nportatr);

for (i = *natr; i < *natr + *nportaR i++)
fprintf(matrp, "%5db", i+l);

P get-lengths: read and prepare the link lengths as follows:
Lengths are read from file 1ength.in
The first natr are always assigned to the PATR, so that the PATR
always have the same link lengths.
Finally the remaining nlink - nau lengths are assigned randomly

to the links w/o PATR, so the MATR are assigned to random links.
Lengths are written to lenghout *I

void get-lengths(doub1e link-length[], int dink, int natr, int d i n k ,
int *idurn)

int i;
int l i n k l D m I N K] ;
double garb-dbl-1;

FILE *length-inp;
FILE *lengthp;

length-inp = fopen("length.in", "r");
lengthp = fopen("length.out", "w");

if (length-inp = NULL)
printf("read-lengths: file lengthin not found);

P Read the lengths from 'length.in'*/
for (i = 0; i < dink, i t e)
fscanf(length-inp, "%lf", &link-length[i]);

/* Scramble the last nlink - natr links */

get-sample(linkID, nlink - natr, MAxLIM(, nlink, idum, natr);

for (i = 0; i < nlink, it+)
garb-dbl[i] = link-length[i];

for (i = narr; i < dink, ii-t)
link-lengthIil= garb-dbl[linkll)[il I;

/* Write the results to fiie */
for (i = 0; i < nlink, i++)
fprintf(lengthp, "%5d %7.4f\n", i+l, link-length[il);

fclose(lengtb-inp);
fclose(1engthp);

P g e n - m . generate expansion factors and write to file 'txuthmt'. *I
void gen_EFO(double heal, double deal, double mefn)
(
int i;
double sum = 0.0;

truthp = fopen("mth.out", "a");

for (i = 0; i <= 22; ii-t)
sum += 1 .O / hef[i];

hefl231 = 1.0 I(24.0 - sum);

sum = 0.0;
for (i = 0; i e= 5; ii-t)

sum += 1 .O / defli];
defl61 = 1 .O / (7.0 - sum);

sum = 0.0;
f o r (i = Q i e = lO;ii+)

sum += 1 .O / mefli];
meflll] = 1.0 / (12.0 - sum);

. .

fprintf(truthp, "Hourly expansion factorsW);
for (i = 0; i e 24; i++)

fprintf(tmthp, "From 96d to 9bd, EF. = %flu", i, i+l, hai l) ;

fprintf(truthp, "\nWeekday expansion factorsW);
for (i = 0; i e 7; i++)
fprintf(tmthp, "From 96d to %d, EF. = %W, i, i+l. defli]);

fprintf(truthp, "Wonthly expansion factorsh");
for(i=Qie12;i++)

fprintf(truthp. "From 96d to %d, E.F. = %flu", i, i+l, mefli]);

fclose(truthp);

1
return;

P gen-link-paramaers: Generate linkMan, linklength, total traffic, AADT,
VMT. Write above to files. */
void gen-linkqarameters(doub1e link-mean [I, double link-length[l,

int maxlink, int nlink, double mini, double maxi,
int *idurn)

{
double sum = 0, adjust, proposed, meau-length, &length, minJength, temp?
timeint;

int i, count;

FlLE *truthp;
FILE *aadtp;
FILE *vmm

truthp = fopen("trurh.out", "a");
aadtp = fopen("aadt.out", "w");
vmtp = fopen("vmt.out", I'w");

P Generate true mean of daily traffic count for each link, then adjust to

sum = 0.0;
for (i = 0; i < nlink; i t t) {

ensure that the total traffic is (min+max)n.O */

temp = ranl(idum);
link-mean[i] = temp * (maxi - mini) + mini;
sum += link-mean[i];

1

adjust = (float)sum I dink - (mini + maxi) / 2.0;
for (i =O; i <dink; ii-t)
link~neau[i] -= adjust; . .

P' Write out total volume of traffic for the year to 'auth.out'. */
sum = 0.0;
for (i = 0; i < dink; ii-t)

sum +E link-mean[i];
fprintf(truthp, "Total volume of traffic for year, all links = %.of\n\n",

365*sum);

/* Write link-mean (AADT of links) to files 'truth.out' and 'aadt.out' */
sum = 0.0;
for (i = 0; i < dink; i t t) (

sum += link-mean[i];
fprintf(tmthp, "Link %d has true AADT = 9612.4W. i+l , link_mean[il);
fprintf(aadtp, "%12.4f WW, linkmean[i], i+l);

1
fprintf(truthp, "Mverage AADT o w all 96d links = %12.4fb", dink,

sum/(nliik)) ;

P Compute VMT and write to file 'vmt.out' */
sum = 0;
for (i = 0; i < nlink; i t t)

fprintf(vmtp, " %.Of.", sum);
sum +E link-mean[i] * linklength[i];

I* gen-sat: write simulated sat counts to file 'sate.out' and write sampling
design to file 'desigaout'. Write link and number of times each link
is sampled by sat to file 'sat-samp.out' */

void gen-sat(doub1e linkmean[], int maxlink, int nlink, double dt,
double deal, double mef[]. double coverage, double sigma,
int *idum)

{
int n, i, mm, dd, count, weekday, excl;

_----

I

int linkTDPAAXLINK1, satsamp-I;
double time, AADT, rcount, hh;

FILE *parametersp;
FILE *satep;
F a E *designp;
FILE *satsampp;

parametersp = fopen("parameters.out", ."a");
satep = fopen("sate.out", rw");
designp = fopen("design%it", "w"):
satsampp = fopen("sat~samp.out", "w");

n = ceil(cov.erage * nlink); /* Number of links sampled. */

fprintf(parametersp, "Numbex of links seen by sat is %db", n);

P Initialize satsamp */
for (i = 0; i < nlink; i++)

satsamp[il = 0;

P Sample from sat */

time =ranl(idum) * dt + 1;
excl = 0;
while (time < 366) (
get-sample(linkJD, n, MAXLINK, nlink, idum, excl);
for(i=O;i<n;i++) (
AADT = link-mean[linkID[i] 1;
convertDayNumber(time, &hh, Btdd. &mm, &weekday);
if (bh >= -1 && hh <= 25) (/* daytime: always for now */

rcount = AADT /(def[weekday-11 * meqmm-11);
rcount = rcount * exp(gasdev(idum) * sigma);
rcount = rcount / exp(sigma * sigma / 2); P bias correction */
count = floor(rcount);
fprintf(satep, "965d %1Od 83d 83d %2dW, linkIDb]+l, count, mm, dd,

fprintf(designp, "961Od 9658 82d %3db", count, linklD[i]+l,
weekday);

weekday, mm);

for (i = 0; i < nlink; i++)
fprintf(satsampp, "CRbd CRbdb", i+l, satsamp[il);

I

fclose(designp);
fclose(parametersp);

fclose(satep);
fclose(satsampp);

return;
1

I* gen-ATR: generate ATR counts *I
void gen-ATR(doub1e link-meau[], int maxlink, int nlink, int link,

int yeardayl. int yearday2, double heft], double deft],
double meft], double sigmaground, int *idum)

{
int dd, mm, weekday, i, count, isum = 0;
double AADT, rcount, suml, sumt, adjust, hh;
double temp[365];

FILE *Pam;
FILE *matrp;
FILE *designp;

matrp = fopen("matr.out", "a");
designp = fopen("design.out", "a");
patrp = fopen("patr.out", "a");

I* Sample from ATRs *I

if (yeardayl != 1 II yearday2 != 365) (I* movable atr */
for (i = yeardayl; i <= yearday2; i++) (
AADT = linkmean[link];
convertDayNumber((double)i, &hh, &dd, &mm, &weekday);
rcount = AADT/ (deftweekday-11 * meftmm-11);

mount = rcount / eq(sigmaground * sigmaground / 2);
count = floor(rc0unt);
isum = isum + count;
fprintf(designp. "%lOd %5d %2d %3db". count, link+l, weekday, mm);
fprintf(matrp, "%5d 961Od %3d %3d %2db", link+l, count, mm, dd,

I rcount = rcount * e q (gasdev(idum) * sigmaground);

weekday);
I

] else (I* permanent atr */
suml=0;
sumt = 0;
for (i = yeardayl; i <= yearday2; i*) {

AADT = link-m[link];
suml += AADR
convertDayNumber((doub1e)i. &hh, &dd, Bimm, &weekday);
rcount =AADT/ (deftweekday-l] * meftmm-11);
rcount = rcount * exp(gasdev(idum) * sigmaground);
rcount = rcount I exp(sigmaground * sigmaground I 2);
tempti-11 = floor(rcount);
sumt += temp[i-1 I;

I

adjust = (sum1 - sumt) / (yearday2 - yeardayl + 1);
sumt = 0;
for (i = yeardayl; i G yearday2; i+t) {

temp[i-11 += adjust;
sumt += temp[i-11;
count = floor(temp[i-11);
isum += count;
convea%DayNumber((double)i, &hh, a d , &mm, &weekday);
fprintf(pahp, “%5d %1Od %3d %’a %2dW, link+l, count, mm, dd,

fprintf(designp, ”%1Od %5d 526 %3d\n”, count, link+& weekday, mm);
weekday);

1
1

P ranl: generate a realization of a uniform(0,l) rv */
double ranl(int *idum)
(
int ia=16807, im=2147483647, iq427773, ir=2836, ntab=32, ndiv, j, k;
double r 1, am, eps, mmx;
P next two should be static or something */
static int iy ;
static int iv[32]; P dim is NTAB */
P statics are initialized to zero */

am = 1 / (doub1e)im;
ndiv = 1 + (im - 1) / (doub1e)ntab;

rnmx=l-eps;
eps =. 12;

if (*idum<=O I1 iy=O) (
*idum = (int)max((double)(-(*idurn)), 1.0);
for (j = ntab+8; j >= 1; j-) {
k = *idum / (doub1e)iq;
*idurn = ia * (*idum - kqq) - ir*k;
if (*idum < 0)

if (i e ntab)
*idurn += im;

ivo] = *idurn;
1
iy = iv[11;

1

k = *idum / (doubleliq;
*idum = ia * (*idurn - k*iq) - k*k;
if (*idum < 0)

*idurn += im;
j = l + i y / n d i y
iy = ivo];
ivb] = *idurn;

r l = min(am*iy, mmx);
return rl;

P gasdev: return a realization of a std normal rv */
double gasdev(int *idum)
(
static int iset;
double fac, rsq, vl , v2. gdev;
static double gset;

if(iset=O) {
one:
v l = 2 * ranl(idum) - 1;
v2 = 2 * ranl(idum) - 1;
rsq = vl*vl + v2*v2;
if(rsq= 1 IIrsq=O)
goto one;

fac = sqrt(-2 * log(rsq)/rsq);

gdev = v2 * fac;

1
else (

gdev = g*
iset = 0;

I

gset = v l * fac;

iset = 1;

return gdev;
I

/* get-sample: put sample of size n into fmt n slots of linkID 0 to n-1.
These links are sampled by the sat on a given pass, or used by the MATR.
The first excl links are excluded. Excl = npatr for MATR, or 0 for sat */

void get-sample(int linklD[], int n, int naaxlink, hit nlink, int *idum,
int excl)

(
int i, k, num, temp;
double rtemp;

P Initialize link IDS *I
for (i = 0; i < nlink; it+)
linkID[i] = i;

I

for (i = excl; i < n+excl; i++) (

rtemp = ranl(idum) * (nlink-i) + i; P a number in i to nlink */
n u n = floor(rtemp); /* truncate so in i to nlink - 1 */

temp = linkID[num];
linkID[num] = linkID[i];
linkID[i] =temp;

1
return;

I
P convertDayNumbea: */
void convertDayNumber(doub1e time, double *hh, int *dd, int *mm,

int *weekday)
{
int yearday;
double fraction;

fraction = time - floor(time);
yearday = floor(time - fraction);
*weekday = yearday 96 7 + 1;

hh = floor((time - yearday)%) + 1;
if (yearday <= 31 && yearday >=1) (
*mm= 1;
*dd = yearday;

I

if (yearday <= 59 && yearday >= 32) (
*mm=2;
*dd = yearday - 31;

1
if (yearday <= 90 && yearday >= 60)

*mLn=3;
*dd = yearday - 59;

1

if (yearday <= 120 && yearday >= 91) (
*mm=4;
*dd = yearday - 90,

I

if (yearday <= 151 && yearday r 121) (
*mm=5;
*dd = yearday - 120;

1

if (yearday <= 18 1 && yearday >= 152) (
*mm=6;
*dd = yearday - 151;

if (yearday <= 2 12 && yearday >= 182) {
*mm = 7;
*dd = yearday - 181;

)

if (yearday <= 243 && yearday >= 213) {
*mm = 8;
*dd = yearday - 212;

1

if (yearday <= 273 && yearday >= 244) {
*mm=9;
*dd = yearday - 243;

1

if (yearday c= 304 && yearday >= 274) {
*mm = 10;
*dd = yearday - 273;)

if (yearday <= 334 && yearday >= 305) {
*mm= 11;
*dd = yearday - 304; }

if (yearday <= 365 && yearday >= 335) {
*mm = 12;
*dd = yearday - 334;

1

return;
1

I* max *I
double max(doub1e a, double b)
{
double temp;

temp= (a>b)?a:b;
return temp;

1

P min *I
double min(doub1e a, double b)
{
double temp;

temp = (a < b) ? a : b;
rem temp;

1

B2: LISTING OF POISSON SIMULATION PROGRAM:

.
THIS PROGRAM IS WRITEN IN S-PLUS .
*
function(seed 0bs.param.s)
{

set.seed(seed) #DF and MF contain the appropriate daily and monthly
factors for each of the 365 days of the year

DF <- WEF, 53)[1 :365]
<- c(repW[11,31), rep(MEp[21, a), rep(MEF[31,31), rep(MEF[41,

30). rep(MEF[SI, 311, rep(MEF[61,30), ~ep(MEF[71,31), rep(MEF[
81,311, redMEF[91,30), rep(MEF[101,31), rep(MEF[ll1,30),
reP@5T121,31))

EF <- DF * MF #read link parameters from linkparams:

nlink <- obsparamS[11
alpha <- obs.params[2]

#n. of links; alpha and beta for the gamma prior,

beta <- 0b~.patams[3]
nsat <- obs.params[4]
repeatcycle c- obs.params[5]

npatr <- obs.param~[7]
SatCOVg <- 0b~.param~[6]

nmatr <- obS.pam~[8]
capacity <- 0b~.param~[9]
nsatdays <- (365 %/% repeatcycle) * nsat
nsatobsday <- satcovg * dink
&YS <- ~eq(l.365)
evendays <- seq(2,364,2)
links <- seq(npatr + 1, nlink)
monthofday <- c(rep(1, 311, ~ (2 , 2 8 1 , rep(3,31), rep(4,30), rep(5,

31), rep(6,30), rep(7.31). rep@, 31). rep@, 30). rep(l0,31
1, rep(ll,30), rep(l2,31))

dateofday e- c(l:31. 1:28, 1:31. 130, 1:31, 1 3 , 1:31, 1:31, 1:30, 1:
31,1:30, 1:31) #generate link means

theta <- beta * rgamma(nlink, alpha) + loo00

for(j in 1:npatr) (

Msc objects

#generate PATR counts
adjpatr <- WX(IUOW = 365 * ~ p a ~ r , U C O ~ = 5)

f@i in 1:365) (
adjpatr[i + (j - 1) * 365.11 <- j
adjpatr[i + (j - 1) * 365,21<- rpois(n = 1, thetau]/

adjpatr[i + (j - 1) * 365,3] <- monthofday[i]
adjpafr[i + (j - 1) * 365.41 <- dateofday[il
adjpatr[i + (i - 1) * 365,5] <- i 96% 7 + 1

Wril)

I
1 #choose links for moveables.
mvblelinks e- (npatr + l):(npatr + nmatr)
mvbledays <- sample(evendays, size = nmatr, replace = F)
#generate MATR counts

#choose days for moveables

adjmatr <- matrix(nrow = 2 * nmatr, ncol = 5)
for(i in 1:nmatr) {

adjmatr[2 * i - 1.21 <- rpois(n = 1, theta[mvblelinks[i]l/EF[

adjmatr[2 * i - 1.11 c- mvblelinks[i]
adjmatr[2 * i - 1,31 c- monthofday[mvbledays[ill
adjmatr[2 * i - 1,5] c- (mvbledays[i] 96% 7) + 1
adjmatr[2 * i - 1,4] e- dateofday[mvbledays[ill
adjmaM2 * i, 21 <- rpois(n = 1, theta[mvblelinks[i]]/EF[

adjmatr[2 * i, 11 <- mvblelinks[il
adjmatr[2 * i, 31 <- monthofday[mvbledays[il+ 11
a d j W 2 * i, 51 <- ((mvbledays[i] + 1) 46% 7) + 1
adjmaer[2 * i, 41 <- dateofday[mvbledays[il + 11

1 #choose days for sat.
firstday <- sample(c(1:7), size = 1)
satdays <- seq(fmtday, by = repeatcycle %/% nsat, length = nsatdays)
#for each sat obs in each day choose an hour and set of links
sathours <- matrix(nrow = nsatobsday, ncol = nsatdays)
satlinks <- matrix(nr0w = nsatobsday, ncol = nsatdays)
fodj in 1:nsatdays) {

mvbledays[il])

mvbledays[il + 11)

sathours[, j] <- sample(c(1:24), size = 1)
for(i in 1:nsatobsday) (

1
satlinks[i, j] <- sample(c(l:nlink), size = 1)

1 #generate satobs.
adjsat <- matrix(nrow = nsatdays * nsatobsday. ncol = 5)
foru in 1:nsatdays) {

for(i in 1:nsatobsday) (
linkvec <- rep(satlinks[i, j]. 2 * nmatr)
dayvec <- rep(satdaysjj],2 * nmatr)
if(all((dayvec != mvbledays) 1 (linkvec != mvblelinks))

adjsat[nsatobsday * (j - 1) + i, 21 <- min(288 *
HEF[sathours[i, j]] * EF[satdaysljll* p i s (
n = 1. theta[satlinks[i, jl1/(288 * HEF[
sathours[i, j]] * EF[satdays~ll)), capacity)

adjsat[nsatobsday * (j - 1) + i. 11 <- satlinks[
i, jl

adjsat[nsatobsday * (i - 1) + i, 31 <-
monthofday [satdays till

adjsat[nsatobsday * (i - 1) + i, 41 c-
dateofclay[satdays[il]

adjsat[nsatobsday * (j - 1) + i, 51 <- (satdays[
j] 96% 7) + 1

1
1

1 #remove missing sat rows
adjsat <- adjsat[adjsat[, 11 != "NA, I
lengths <- scan("length.out")
VMT.t <- sum(lengths[1:nlinkl * theta)
#output data for traditional method

#calc true VMT

write.table(npatr, file = "patr.out", dimnames.write = F)
write.table(as.vector(c(l:npatr)), file = "patr.out", dimnames.write =

write.table(adjpatr, file = "patr.out", dimnames.write = F, sep = " ",

write.table(nmatr, file = "matr.out", dimnames.write = F)
write.table(as.vector(c((npatr + l):(nmatr + npatr))), fide =

write.table(adjmatr,' file = "matr.out", dimnames.write = F, sep = " 'I,

write.table(adjsat, file = "sate.out", dimnames.write = F, sep = " ")
write.table(as.vector(theta), file = "aadt.out". dimnames.write = F)
write.table(VMT.t, file = "vmLout", dimnames.write = F)

F, append = T)

append 5 T)

"matr.out", dimnames.write = F, append = T)

append = T)

1

Appendix D. Traditional Method AADT and VMT Estimation Code

PProgram of VMT Estimations*/
I* Carolyn Kan 07R 1/98. */
.
I . I

#include Cstdi0.h

#include <stdlib.b
#include <stling.b

#include <sy&ype!s.b
#include <sys/stat.h
#include 4cntI.b

W i n e January 1
#define Febuary 2
#define March 3
#define April 4
#define M a y 5
#define June 6
#define July 7
#define August 8
#define September 9
#define October 10
#define November 11
#define December 12

#define Monday 1
#define Tuesday 2
#define Wednesday 3
#define Thursday 4
#define Friday 5
#define Saturday 6
#define Sunday 7

#defme no-link 100
#define day-ofjear 365
Mefinemax-rd 36500
/* max-rd = no-link * day-of_year
suppose it is not a leap year
maximum records allowed */

Pfde pointer*/
FEE Vie-in;
FEE *file-out;
FILE *aadtp;

Pfile names*/
char *outfilel;
char *outfile2;
char *outfile3;
char *infidel;
char *infde2;

char *infile3;
char *infild;
char *infie%

/*no of permenent & moving ATR and Satellite data generated */
int p-ATR; /*# of permanent Am*/
int m-AR, /*# of movable ATR*/
int sate; /*# of satellite images*/
int p-link[no-link]; Plist of link id for P Am*/
int m-link[no-link]; /*list of link id for m Am*/
int satc-link[no-link]; /*list of link id for satellite image*/
int no-mATR-rd; P# of records for P ATRV .

int no_pATR-r& /*# of records for m Am*/
int no-sate-ra /*# of records for satellite image*/

int Sate-not-Am, /*# of links without ground data only with satellite data*/
int sate,only[no-link]; /*list of link id without ground data only with
satellite data*/

struct ATR-data

int linkID; /*link identification */
float ADX

{

/*ADT value for simulated ATR and satellite data */
int month;
int day;
int week;
); rend of struct*/

struct sat-data

int linklD; /*link identification */
float flow;
/*ADT value for simulated ATR and satellite data */
int month;
int day;
int week;
P float start-time; */
P float end-time; */
); rend of struct*/

I

struct ATR-data p-AD~max-rdl;
struct ATR-data m-AD~max-rdl;
struct satdata sat-vol[max-rd];

float Jan,sum[no-linkl;
float Feb-sum[no-linkl;
float Mar-sum[no-link];
float Apr-sum[no-linkl;
float May-sum[no-link];
float Jun-sum[no-linkl;
float Jul-sumIno-link];
float Augsum[no-linkl;
float Sep-sum[no-link];

Y

I L. .

float Oct-sum[no-link];
float Nov-sum[no-link];
float Dec-sum[no-link];

float Mon-sum[no-link];
float Tue-sum[no-link];
float Wed-sum[no-link];
float Thu-sum[no-link] ;
float Fri-sum[no-link] ;
float Sat-sum[no-link];
float Sun-sum[no-link];

float Jan-AADT[no-link];
float Feb-AADqno-link];
float Mx-AADT[no-link] ;
float Apr-AADT[no-link];
float May-AADT[no-link];
float Jun-AADT[no-link];
float Jul-AADT[no-link];
float AugAADT[no-link];
float Sep-AADT[no-lin k] ;
float Oct-AADT[no-link] ;
float Nov-AADVno-link];
float Dec-AADT[no-link];

float Mon-AADT[no-link];
float Tue-AADT[no-link];
float Wed-AADT[no_link];
float Tbu,AADT[no-link];
float Fri-AADT[no-link];
float Sat-AADVnoJink];
float Sun-AADT[no-link];

float yr-AADT[no-link];
P365-day avg AADT */
float wk-AADT[no-link];
/*week avg AADT *I
float checking[no-link];

P declare the monthly and daily factors for each link */
float MEFJan[no-link];
float MEF_Feb[no-link];
float MEF-Mar[no-linkl;
float MEF-Apr[no-link];
float MEF-May[no-link];
float MEFJun[no-link];
float MEF-Jul[no-link];
float MEF-Aug [no-link];
float hEF-Sep[no-link];
float MEF-OctI no-link] ;
float MEF-Nov[no-link];
float MEF-Dec[no-link];

float DEI-Mon [no-link];
float DEF-Tue[nolin k] ;
float DEF-Wed[no-link];

float DEF-Thu[no-link];
float DEF-FriIno-link] ;
float DEF-Sat[no-link];
float DEF-Sun[no-lin k] ;

P Wfactors for calculating harmonic mean of factors*/
float MI; float tm2;
float un3; float tm4;
float M5, float tm6;
float tm? float tm8;
float tm9; float tmlO;
float unll; float tm12;
float twl; float tw2;
float tw3; float tw4;
float tw5; float tw6;
float tw7;

/* declare the final averaged monthly and daily factors */
float MEFI; float MEF2, float MEF3;
float MEF4; float MEF5; float ME%@
float MEF7; float MEF8; float MEF9;
float MEFIO; float MEFl1;
float MEF12; float DEFI;
float D E l 2 float DEF3;
float DEF4; float DEFS;
float DEF6; float DEF7,

float est_AADT[no_link][5];/*declare output array [link idlttrue
AADTl[flag][est AADT Ground only][est AADT ground+satellitel*/
P Definitions of Flag */
P 0 - link without data */
/* 1 -- link with permanent ATR only *I
/* 2 -- link with portable ATR only */
/* 3 -- link with satellite data only */
P 4 -- link with permanent ATR & Satellite */
P 5 -- link with portable ATR & Satellite * I
P 6 -- link with permanent & portable ATR */
P 7 -- link with permanent, portable ATR & satellite */

float trueIno-link]; /*temp. storage for m e AADT*/
float linkvmt[no-link][5]; Pdeclare array for link length [link
id1 [lengthl[vmt-ground only][vmt-ground+sateUitel [true mI*/
double total-t-w P the true VMT */
double total-G-w, P estimated VMT - ground only */
double total-GS-vmt; P estimated VMT - ground + satellite */
double vmt-G-m; /* Absolute value of the % mor of estimated Vh4T --
ground only */
double vmt-GS-err; /* Absolute value of the % error of estimated VMT -
ground + satellite */

int index; /* counter for number of records read in*/

x

int count;
int link-order;
int p-rds;
int m-rds;

,

..

int s-rb,
int alllink;
int temp-count; P all are counters in "for" loop*/

int dl;
int d2;
int d3;
int d4; /*temporal storage for struct */
float f l ;
float n;
float f3; /*temporal storage for struct*/

int 1-i&
in t p-i&
int m-id; P temp storage for link ID*/

int mm;
int wk;

float mon-factor,
float week-factor;
float est;

/* estimate AADT for each data and save it into a array for further
calculation.*/
float mATR-est[50000][2]; P array Pink ID][est. for mATR data] */
float sat-est~500001[2]; P array [link IDl[est. for sat. data] */
float av&~ADT[500001151; P [link ID][# of mATR est.][sum of est. for
mATRl[# of sat est.][sum of est. for sat] */
float avg; float sat-avg; float mATR-avg;

P Adding up the total monthly volumes and total daily volumes */
int no-Mon;
int no-Tue;
int no-Wa
int no-lku;
int no-Fri;
int no-Sat;
int no-Sun;

int ground-also; /*flag for checking if satellite covers the ground data also*/
int dife P # of links without any data=# of links -#of P ATR - # of M
ATR - # of satellite*/

Pstorage for averaging est. AADT for nodata link*/
float temp-total;
float est-G-mean; P avg aadt for ground only *I
float est-GS-mean; P avg aadt for ground + sat */
float est-G-em;
float est-GS-err;
float temp-G-err;
float temp-GS-err.

int low-G-aadt;
int low-GS-aadt;
int low-G-mt;

int low-GS-vmt; /* all counter to count if estimation < true value */
void main()

int fd;
{ /*start of main*/

oufilel = "resukout";
outfiile2 = "adt-err.out";
outfiild = "vmt-err.out";
infilel = "patr.out";
infie2 = "matr.out";
infile3 = "sate.out";
infile4 = "1ength.out";
infile5 = "aadt.out";

aadtp = fopen("AADTest.out", "w");
file-out = fopen(outfile1, "w");
if (file-out = NULL)

{
printf("Cannot open output file 96s b".outfilel);
fprintf (stderr,"Cannot open output file 9bs W', outfilel);
} /*open file for output*/

for (l i n k - o d d , link-orderao-link; link-order++)
{
est-AADT@ink-order][O]+, P linkTD*/
est-AADT(link-orderl[11=-1; Ptrue AADP/
est-AADT@inkorder1[21+;/* flag*/
est-AADT@inlcorder][3]=-1$* estimations Ground only*/
est-AADT[linkorder][4]=-1;/* estimations ground + Satellite*/
} /*initialize the output array */

fd = open(infiiel,O-RDONLY);
file-in = fdopen(fd, "r");
P read in simulated data for links with peamenent ATR */
if (fde-in = Nuu)

{
printf("Cannot open pATR file %s \n",infilel);
@rintf (stderr,"Cannot open pATR file %s W, infilel);
) /*end if */
else

{
index +, rindex of records*/
dl-M,
f I=f2=f3=0.0,
fscanf (file-in. "W, &p-ATR); h d in number of w e n t ATR */
printf("# of permenent ATR is %d b", p-ATR);
/* fprintf(file-out, Y of pennenent ATR is %d b", p-ATR);*/
for (count = 0, count < p-AlR count*) Pread in link IDS for p-ATR */

{
fscanf (file-in, "%db", &p-link[count]);
P printf("1ink %dW, p-link[count]);*/
) /*end for */

while (1)
I
int eof = fscanf (file-in, "96d %f %d %d W , &dl,&fl,&d2,&d3,&l4);

I

1.

J

. ...

2.

if (eof = EOF) break,
p-ADT[index].linkID = dl;
p-ADT[index].ADT = f l ;
p-ADT[index].month = d2;
p-ADT[index].day = d3;
p-ADT[index].week = d4;
index=index+l ;
} rend while */

fclose(fi1ejn);
no-pATRA = index;
1 P end else for reading p-ATR */

p n n d (W of P ATR records = %Ab”, no-pATR-d);
Pfprintf(file,out, “Wt of P ATR records = 9bdW. uoqATR-rd); */

P Adding up the total monthly volumes and total daily volumes */
no-Mon = no-Tue = no-Wexi = no-Thu = no-Fri = no-Sat = no-Sun = 0;

for (p-rds=o; p-rdsaoqATR-r& p-rds+)
{

Lid = p-ADnp-rds].linkID,
mm = p-ADT[p-rds].rnonth;
wk = p-ADT[p-rds].week;

switch (mm)

case January:
Jan-sum[l-idl= Jan-sum@-idl+ p-ADQ-rdsl.ADR
breag;

case Febuary:
Feb,sum[l-idl= Feb-sum[l-idl+ p-ADm-rdsI.ADT;
break;

caseMarch:
Mar-sumEl-idl= Mar_sum[l-idI + p_ADT[p_rdsl.A~T
break;

case April:
Apr-sumLidl= Apr-sum@-id] + p-ADT[p-rds].ADT;
break;

case May:
May-sum[l-idl= May-sum@-idl+ p-ADT[p_rdsl.ADT;
break;

case June:
Jun-sum@jdl= Jun-sum[l-idl+ p-AD~p-rds1.ADT
break;

case July:
Jd~sumP~id] = Jul,sum[l-idl+ p-ADnp-rdsl.ADT
break;

case August:
Augsum[l-idl= Aug_sum@-idl+ p-ADT[p-rdsl.ADT;
break;

Sep-sum[l-idl= Sep-sum[l-idl+ p-ADT[p-rdsl .ADT
break;

case October:
Oct-sum[l-idl= Oct-sum@jdl+ p-ADT[p-rds].ADT;
break;

P printf(l1inkID. month, week = %d, %d, Wb”, 1-id, mm, wk); */

case September:

case November:

Y

Nov-sum[ljd] = Nov-sum[l-idl+ p-ADT[p-rds].ADT
break,

Dec_sum@-id] = Dec-sum[l-id] + p-ADT[p-rds].ADT
break;

printf("%d this is not a month?!\n", mm);

caseDecember:

default:

) /*end of switch (mm) */
switch (wk)

case Monday:
(

Mon-sum[l-id] = Mon-sumP-idl+ p-ADT[p-rdsl.ADT
no-Mon = no-Mon + 1;
break;

case Tuesday
Tue-sum[l-idl= Tue-sum@jdl+ p-ADT[p-rdsI.ADT
no-Tue = no-Tue + 1;
break;

Wed-sum[l-idl= Wed-sum[l-idl+ p-ADT[p-rds].ADT
no-wed = no-wed + 1;
break,

Thu-sum@-idl = Thu-sum[l-idl+ p-ADVp-rds1.ADT
no-Thu = no-llu + 1;
break,

case Friday
Fri_sum@-id] = Fri-sum[l-id] + p-ADT[p_rds].ADT
no-Fri = no-Fri + 1;
break;

Sat-sum[l-idl = Sat-sum[ljdl+ p-ADVp-rdsI.ADT
no-Sat = nodat + 1;
break;

case Sunday
Sun-sum[l-idl= Sun-sum[l-idl+ p-ADT[p-rdsI.ADT;
no-Sun = no-Sun + 1;
break;

prind("%d this is not a day of the week?!\n",wk);

case Wednesday:

caseThursday

case Saturdar

default

} /*end of switch (wk)*/
} /* end of for(p-rds)*/

P Calculation of expansion factors */
for Oink-ord-, liuk-order<P_ATR, link-order+t)
(
Lid = p-link@ink-order];
Jan-AADT@-id]= Jan-sum[l-id]B 1;
Feb-AADT[l-id]= F&-sum[l_idy28;
Mar_AADT[l-id]= Mar-sum[l-id]B 1;
Apr-AADT@jd]= Apr-sum@jd]BO;
May-AADT[ljd]= May_sum@-id]/3 1;
Jun-AADT[l-id]= Jun-sum[l-idll30;
Jul-AADT@jdl= Jul-sum[l-idlB 1;
AugAADT@-id]= Aug_sum[l-id]B 1;
Sep-AADT[l-idl= Sep_sum[l_id]/30;

, -

Oct-AADT[l-id]= Oct-sum[l-id]B 1;
NovAAJIT@-id]= Nov-sum[l-id]L3Q
Dec_AADTP-id]= Dec-sum[l-id]Bl;

P putting the true AADT into the outputarray for permenent ATR *I
est-AADT[link-orderl[O] = Lid;
est-AADT[liuk-orderl[31= yr-AADT@-idl;
est-AADTPink-orderl141= yr-A.ADT@-idI;
est-AADT[link-ordezl[2]= 1;

P printf("bFor P ATR link %f, the type is %f, the estimate is
%fin, est-AADT[link-orderl[O], est-AADT€liuk-orderl[21,
est-AADT(link-order][11); */

I* checking the calculation *I
checking [l-id]=

~ o n ~ s ~ [~ ~ i d] + T u e ~ s u m [l ~ i d] + W e d _ s u m [l ~ i d] + ~ u ~ s u m @ ~ i d] + F n ~ s u ~ l ~ i d l + S a t ~ s
um[l-id]+Sun_sum[l-id])/365;
if (yr-AADT[l-id] != checking[l-id])

{
fprintf(stderr,"t.he calclation might be wrong?!b ");
printf("the calclation might be wrong?!b ");

1
Pend iPl

Mon-AADT[l-id]= Mon-sum[l-id]/no-Mon;
Tue-AADTLid]= Tue-sum@-id]/no-Tue;
Wed-AADT[l-id]= Wed-sum[l-idI/no-Wa
Thu-AADT[l-id]= Tnu-sum[l-idYno-l%u;
Fri-AADT[l-id]= Fri-sum[l-id]/no-W,
Sat-AADTP-id]= Sat-sumP-idJho-Sat;
Sun_AAJX@jd]= Sun-sum[l-id]/no-Sun;

t

I

I

Dm-Mon [Lid] =wk-AADT[l-id]/Mon-AADT[l-id];
DEF-Tue[ljd] =wk-AADT[l-id]/Tue-AADT[l-id];

DEF-Wed@-id] =wk_AADT[l-id]/[l-id];
DEF-l%u@-id] =wk-AADT@-id]/mu-~T[l-id];
DEF-.[l-id] =wk_AADT[l_id]lFri-~T[l-idl;
DEF-Sat[l-id] -k-AADT[l-id]/Sat-AADT[Lid];
DEF-Sun[l-idl =wk-AADT[l-id]/Sun-AADT[l-idl;
} /*end for (link-order) */

I* Avedaging the MEFs and DWs for this group of links */
P‘ TAKING ONIC MEAN */
MEFI=MEFz=~MEF4=MEF5=MEF6=MEF7=MEF&-MEF9=MEFl~MEFll=MEF12--0;
DEFl= DEF2= DEM= DEF4= DEFS DEPk DEF7a.

tml= tm2= tm3= tmk tm5= tm6= tm7= tms= tm9= lmlo= m11= tm12=0,
twl= tw2- tw3= tw4= t w S tw6= tw7=0;

for (link-order &, link-ordezq-AlR link-order++)
(
l j d = p-link[link-orderl;
tml = tml+ (l/MEF_Jan[l_id]);
rm2 = tm2+ (l/MEF_Feb[l_id]);
tm3 = tm3+ (l/MEF_Mar[l-id]);
tm4 = tm4+ (l/MEF-Apr@-id]);
tm.5 = tm5+ (l/MEF_Mayll_id]);
tm6 = tm6+ (l/MEF_Jun@_id]);
tm7 = tm7+ (lIMEFJul@jd]);
tm8 = tm8+ (lIMEF-Aug[l_id]);
tm9 = tm9+ (lME€-Sep[l-id]);
tml0 = tmlOt (1IMEF_octP~idl);
tml 1 = tml1+ (l/MEF_Nov@-id]);
tm12 = tm12+ (llMEF-Dec@-id]);

twl = twl+ (lIDEFJkfon@-id]);
tdL = tw2+ (llDEF-Tue[l-id]);
tw3 = tw3+ (lIDEF-Wed[ljd]);
tw4 = tw4+ (lIDEP-’l%u[l-id]);
tw5 = tw5+ (lIDEF-Fri[l_id]);
tw6 = tw6+ (lIDEF-Sat@_id]);
tw7 = tw7+ (lIDEF-Sun[l-id]);

) I* end of for*/

,

twl = twllp-ATR,
tw2 = tw2/p-ATR,

tw3 = tw3/p-Am
tw4 = tw4/p-ATR,
tw5 = twS/p-Am
tw6 = tw6/p-A=
tw7 = tw7/p-ATR,

MEFl = l/tml;
MEn = l/W;
MEF3 = 1 m ;
MEF4=lh*
MEF5 = 1m;
MEF6 = lh6 ;
MEFI= l h R
MEm = l h 8 ;
MEF9 = l/tm9;
MEFlO = l/tmlO;
MEFll = l/tmll;
MEFl2 = l/tm12;

DEFl = l/twl;
DEE! = l/tw2;
DEF3 = l/tw3;
DEF4 = l/tw4;
DEFS = l/tw5;
DEF6 = I lltw6;
DEF7 = l/tw7;

-.

/* MEFs and DEFs are ready! */
Pprintf("MEFl= %h", MEF1);
printf("MEF2 = %h", MEn);
printf("MEF3 = %h", MEM);
printf("MEF4 = %h", MEF4);
printf("MEF5 = %h", MEFS);
printf("MEF6 = %h", MEp6);
printf("MEF7 = %h", MEF7);
printf("MEF8 = %h", MEF8);
printf("MEF9 = %h", MEF9);
printf("MEF10 = %h", MEFlO);

printf("MEF12 = %h", MEF12);
printf("DEiFl= %h", DEFl);
printf("DEF2 = %h", DEF2);
printf("DEF3 = %h", DEP3);
printf("DEF4 = %h", DEF4);
printf("DEF5 = %flu", DEF5);
printf("DEF6 = %h", DEF6);
printf("DEF7 = %h", DEF7);*/

printf("MEF11 = %fw, MEFll);

Pfprintf(file-out, "MEFl = %h", MEFl);
fprintf(file,out, "MEF2 = %W, MEF9);
fprintf(file,out, 'MEF3 = %h", MEF3);
fprintf(fi1e-out, "MEF4 = %f\n", MEF4);
fprintf(file-out, "MEF5 = %h", MEF5);
fprintf(file-out, "MEF6 = %W, MEF6);
fprintf(fi1e-out, "MEF7 = %W, MEF7);
fprintf(fiile-out, "MEF8 = %fW, MEFS);

I .

I

fprintf(fiie-out, "MEF9 = %fW, -9);
fprintf(fde-out, 'UEFIO = S b h " , MEFlO);
fprintf(fi1e-out, "MEFI 1 = %h", MEFl1);
fprintf(fde-out, 'mEF12 = %h", MEF12);
fprintf(file-out,"DEFl = %fW, DEF1);
fprintf(fde-out,"DEn = %h", DEF2);
fprintf(fde-out,"DEl3 = %h". DEF3);
fprintf(fde-out,"DEF4 = %W, DEF4);
fprintf(fde-out,"DEF5 = %f\n", DEFS);
fprintf(fide_out."DEF6 = %W, DEF6);
fprintf(fde_out,"DEF7 = %h", DEF7);*/

fd = open(infie2,0,RDONLy);
Pprintf("open 8 s as fd %db",infde2, fd); *I
ffie-in = fdopen(fd, "r");
P read in simulated data for links with portable ATR */
if (fde-in = NULL)
{
prioff("Cannot open mATR fie %sW, infiie2);
fprintf (stderr,"Cannot open mATR file %sW, infile2);
} /*end if */
else

{
index = 0;
dl=d2=d3=d4=0,
fl=f2-13=0.0;
fscanf (file& "W", h A T R) ; /*read in number of portable A m * /
printf("# of movable ATR is 9bd b", m-ATR);
/* fprintf(fde-out, "# of movable ATR is %d h", m-Am);*/
for (count = 0; count < m-AR, count*) /*read in link IDS for m-AlR*/
(
fscanf (file-in, "%d, &m-link[count]);

P printf("1ink %d W, m-link[count]); *I
} Fend for *I

while (I)
(
int eof = fscanf (file-in. "%d %f %d 9bd %d",&dl,&fl,&d2,8zd3,&d4);
if (eaf = EOF) break;
m-ADT(indexl.linkID = dl;
m-AD~index].ADT= fl;
~ADT[index]month = 0,
m-ADTtindexl.day = d3;
m-ADnindexl.week = d4;
index=index+l ;
} r end while */

) P end else for reading m-ATR */
fclose(fileJn);
no-mATR-rd = index;
printf("# of mATR records = %d\n", no-mATR-rd);
/*fprintf(file-out, "# of mATR records = %din", no-mATR-rd); */

I* save m-ATR flag into output array*/
for (count+ count < m-ATR, count++)

I

for Oink-orded, link-order < no-link; link-order ++)
{
if (est-AADT[link-order][O] = m-link[count])

{
est-AADT[link-order1[2]=6;

/* printf("\nfor MATR link %f, it is also PATR. The type is %h",
est-AADTD~nk-orderl[O], est-AADT[link-orderl[21); */

break;
1 else if (est_AADT[link_order][0]=0)

{
est-AADT[link-orderl[OI= mlink[count];
est-AADTPink-oder][2] = 2;
break;
) P end else if+/

) /*end link-ordefV
* >) rend count*/

P estimate the AADT for links with movable ATR */
for (m - r M , m-rdsao-mATR-rd; m-rdst+)

{
...

Lid = m-ADT[m-rds].linklD,
mm = m-ADT[m-rds].month;
wk = m-ADT[m-rds].week;

switch (mm)
I* printfrlid = 9bd, month = %d, week = %dW.l-id,mm,wk); *I

1
case January:

mon-factor = MEFl;
break,

case Febuary:
mon-factor = MEF2;
-9

case March:
mon-factor = MEM;
break,

case April:
mon-factor = MEF4;
-9

CaseMay:
mon-factor = MEF5;
break,

case June:
monfactor = MEF6;
br&;

case July:
mon-factor = MEF7;
break;

case August:
mon-factor = MEF8;
break;

mon-factor = MEF9;
break;

case Octo&
mon-factor = MEFIO;
break,

case Septemb

case November:
mon-factor = MEF11;
break,

mon-factor = MEF12;
-,

printf("%d this is not a month?!\n",mm);

caseDecember:

defaulc

) /*end of switch (mm) */
switch (wk)

case Monday:
week-factor = DEFl;
break;

case Tuesday:
week-factor = DEn;
br&,

week-factor = DEF3;
break;

week-factor = DEF+
br&,

case %day:
weekfactor = DEF5;
br*

case Saturday:
week-factor = DEF6;
b r e ,

case Sunday:
week-factor = D W ,
br*,

printf("%d this is not a day of the week?!\n", wk);

(

case Wednesday: .

case Thursday:

default:

) /*end of switch (wk) */
P printf("mon-factor = S f , week-factor = %f, data = %flu", mon-factor,

week-factor, m-AD'I'[m-rds].ADT); */
Ptemporal storage for eatimeated AADT for one daily data */

est = m-ADT[mj&].ADT * mon-factor * week-factoc
mATR-est[m-rds][ll= est;
mATR-est[m_rds][O] = Lid;

P printf("for link %f, estimated aadt is %f\n",mATR-est[m-rds][O],
mATR_est[rgrdsl[ll); */

) /* end of for(m-rds)*/

/* Calculate ground-only Average AADT for each link.*/
/*initialize the array of estimates*/
for (link-order=O; link-orde~an-ATR; link-order*)

I
avgADTPink-order][Ol= 0; /*link id */
avgADTPink-order] 1 I= 0; /*# of mATR estimates*/
avg_ADT[link-order][2]= 0; /*sum of mATR estimates*/
av&ADT[link-order][3]= 0; /*# of sat estimates*/
avgADT[link_order][4]= 0; /*sum of sat estimates*/

I

I

3

P for movable ATR */
for (count =O; count e no-mATR-r& count ++)

I
for (linkorde&, link-order<m-ATR; link-order++)

I
if (m-linkPink-orderl= mATR-est[coun t] [O])

I
avgADT@ink-orderl[Oi = mATR-est[countl[Ol; Plink id*/
avg-ADTrlink-~~~erlIl I= avgADTPink-order][l]+I; P# of estimates *I
avg-ADTIlink-order1[21= avgADT[link-orderl[2] +

) r e n d iP/
mATR_estIcountl[l]; P sum of estimates */

) /*end for link-order */
I rend for count */

P testing
for (link-ordee link-order<no-link, link-orderH)

{
printf("\nlink ID = %f, # of est. = %f, sum of est. = %f',

) end for*/
avg_ADT[link-order] [Ol,av~ADT~link~orderl~ 1 l,avgADT[link-orderl [21);

P averaging ground-only estimates of AADT */
for (link-orda=O; link-ordercno-link; link-order++)

I
if (avgADT[link-order] [0]=0)
{
break;
) else

(
for (count = 0; count< no-link; count ++)

{
mA'IR-avg = avg~T[link~o~erlf2l/avgADT[link_order [1 I;
if (est~AADT[countl[Ol= avgJDT[link-order][Ol) P link

{
est-AAD~countl[31 = mATR-avg;
) Fend P/

ID match*/

) I* end for count*/
} P end else*/

) P a d for link,order*/

P check if there are links without groundsnly data */
if (m-ATR + p-AlR no-link)
{
printf("ALERT! SOMETHING IS WRONG! m-ATR + p-ATR no-fin&");
printfC'm-ATR = %d , p-ATR = %d W, m-ATR, p-ATR);
fprintf(file-out, "ALERT! SOh4ETHING IS WRONG! m-ATR + p-ATR no-linkb");
fprintf(fie-out, "m-ATR = %d , p-ATR = %dh", m-ATR, p-ATR);
) /* end if */
else if (m-ATR + p-ATR < no-link)

{
diff = no-link - m-ATR - p-ATR;
printf("There are 96d links without any ground data.b", diff);

/* fprintf(fde-out, "There are %d links without any ground data.\n",
diff);*/

} r end else iP/

P Use ARlTHMETIC MEAN of estimated AADT as the estimations for the links
without ground-only data */
temp-total =O;
for (counts, count <no-link; count*)

I
if (est~AADTtcountl[O]!=0)
{
temp-total = temp-total+ est-AAD~count][3];
) /* end P/

} /* end for*/
est-G-mean = temp-toW(no-link - diff);

P Read in Length of the links*/
fd = open(infide4,O_RDoNLy);
fde-in = fdopen(fd, "r");
if (file-in = NULL)

I
printf("Cannot open length file %s b",infile4);
fprintf (stden,"Cannot open length file 96s W, infile4);
} /*end if */
else

{
index a, Pindex of records*/
f l=p-f3=0.0;
for (count=O, count <no-link; count *)

{
fscanf (file-in, "%f 9bW; &f 1, &a);
link,vmt[count][O] = fl; P link Id*/
li~vmt[count][l] = f2, P link length*/
link,vmt[countl[2] = 0; /* initialize vmt ground only*/
link_vmt[count][3] = 0; /* initialize vmt ground + satellite*/
index=index+l ;
) Fend for count*/

fclose(fi1ejn);
1 P end else for reading length */

if (index != no-link) P checking if having exact # of length*/
{
printf("\n# of link length is not equal to # of links?!");
fprintf(fde-out,"b# of link length is not equal to # of links?!");
} /* end ir/

P Calculate ground-only VMT */

I

for (count e, count ao-link; count ++)
(
for (link-order =O, link-ordex no-link; link-order*)

if (link-vmt [count] IO] = est-AADTpink-order] [OJ)
{

I

{
link_vmt[countl[2] = link_vmt[countl[ll * est-AADT[link-order][3];
break;
) P end P I

)/* end for count*/
] /* end for linkorder*/

index =O,
for (count =O, count <no-link; count ++)
(
if (at~AAD'Ilcount][2]=0) index = index+l;
) /*end for count*/
P check if the # of links without ground-only data is correct*/
if (index != diff)
(
prhtf("bprob1em about ## of links without data?!");

fprintf(fde-out, "bproblem about # of links without data?!");
) else

(
for (count4 count ao-link, count ++)
{
if (link-~mt[countl[2] 4)

{
~ link_vmt[countJ[2] = link~vmt[count][l] * est-G-mean; I* use

) I* end P I
average est. AADT for links without data*/

)P end for count*/
) Pend else*/

B
totaLG-vmt =O,
for (count =O, count <no-link; count ++)

I
if (link_vmt[count][2]==0)
(
printf("We got problem for vmt array?!");
fprintf(fde-out, "We got problem for vmt array?!");
break.
} else

(
total-G-vmt = totaLG-vmt + link-vmt[countJ[2];
} Fend else*/

.

} P end for*/

printf(lnThe total ground-only VMT for 96d links in this class is %f,W,
no-link, total-G-vmt);
Pfprintf(frle-out, "96f " ,total-G-vmt); *I

rC end printing ground-only VMT */

fd = open(infile3,O_RDoNLy);
Pprintf("b open 96s as fd Wb", infile3, fd);*/
file-in = fdopen(fd,"r");
/* read in simulated data for links having satellite data */
if (fide-in = NULL)

{

printf('7n Cannot open satellite file %s", infile3);
fpTintf (stderr,"\n Cannot open satellite file %s", infile3);
] /*end PI
else
{
index = 0;
d l=d2=d3444=0,
f 1=&f3=0.0;
while (1)
/* there is no input for number of satellite data and no link

information */
I
int eof = fscanf(fi1e-in, "%d %f %d %d %d",&dl,&fl,&d2,&d3,&d4);
if (eof = EOF) break;
sat~vol[index].linkID = dl;
sat_vol[index].flow = fl; Pthe input is 24-hr volume ftom Roger's

sat-vol[index].month = d2;
sat-vol[indexl.day = d3;
sat-vol[index].week = d4;
I* sat~vol[index].start~time = Q, *I
P sat,vol[index].end-ti~m = f3; *I
index=index+l;
) rend while*/

no-sate-rd = index;
printf('ln# of sate records is %dW, no-sate&);
Pfprintf(fie-out, "\n# of sate records is W, no-sate-rd);*/

program*/

] P end else for reading sate */

P search for the # of links and list of link id*/
for (link-order a, link-order ao-link; link-order++)
{
sate-link[lin k-order]=O,
} /*initialize the array*/

sate e,

Psort the list of link ID*/
for (count+ count< no-sate-rd; count++)
{
for (link-order =O, link-orderao-link; link- order^)

I
if (sat-vol[countl.linkID = sate-link@i&odx])
{
break;
) else if (sate-link[link_orderl=O)

{
sate-link[link-order]= sat-vol [count] AinklD,
sate = sate +l;
break;
} I* end else PI

) P end for link-order*/
} /* end for count*/

fclose(file-in);

P print # of satellite and the list of link ID*/
printf("# of satellite = %dW, sate);
Pfprintf(fiie-out, "# of satellite = %dW, sate);*/
Pfor (link-order=O, link-orderaate; link-order++)

{
printf("the sate link is Wh", sate-1inHlink-order]);
] end for print*/

P estimate the AADT for links with satellite data */
for (s-r-, s-rds<no-sate-r& s_rds++)
{
Lid = sat-vol[s-rds].liinkID;
mm = sat-vol[s-rds].month;
wk = sat,vol[s-rds].week;
switch (mm)

{
case January:

mon-factor = -1;
break,

case Febuary:
mon-factor = MEF2,
b r e

case March
mon-factor = MEF3;
break;

CaseApril:
mon-factor = -4;
br&,

case May:
mon-factor = MEFS;
break;

case June:
mon-factor = MEFe
break;

case July:
mon-factor = MEF7;
break;

case August:
mon-factor = MEF8;
break;

caseseptembea:
mon-factor = MEF9,
break;

case October:
mon-factor = MEF10;
break;

mon-factor = MEFl1;
break,

mon-factor = MEF12;
break.

printf("%d this is not a month?!b",mm);

,

case November

case December:

default:

) /*end of switch (mm) */
switch (wk)

I
case Monday:

weekfactor = DFFl;
b r e ;

case Tuesday:
week-factor = DEF2;
break:

case Wednesday:
week-factor = DEM;
break;

CaseThursday:
weekfactor = DEEQ;
break;

caseFriday:
week-factor = DEFS;
break;

case Saturday:
week-factor = DE=,
break;

case Sunday:
week-factor = DEF7;
break;

default:
printf("%d this is not a day of LE week?!\n . wk);

) /*end of switch (wk) */
P printf("mon-factor = %f, week-factor = %f, data = %flu", mon-factor,

week-factor, sat,vol[s-rds]flow);*/
Ptemporal storage for eatimeated AADT for one daily data *I

est = sat~vol[s_rdsl.flow * mon-factor * week-factor;
sat-est[s-rdsl[ll =est;
sat-est[s-rdsl[O] = l-i&

P printf("\nFor link %f, estimated aadt is %fb",sat_est[s-rdsl[O],
sat-est[s~dsl[1 I); */

} I* end of for(sjds)*/

P Calculate ground+satellite Average AADT for each link.*/
/* for Satellite */
P First to search for links with only satellite data*/
P' also save flags for links wl p-ATR and Satellite and for links w/ m-ATR
and Sate*/
P' already KNOWN flag type 12, & 6 +/
for (count*, count < sate: count i+)

(
for (link-order =O, link-ordexao-link; link-orderi+)

I
if

(~ s ~ e ~ l i n k [c o u n t l ~ t ~ A ~ T [l i n k _ o r d e r l [l [2] = 1))
I
est,AADT[link-order] [2w;
break:

] P end if the link is pATR */
if

((s a t e ~ l i n k [c o u n t] ~ t ~ ~ T [l i n k _ o r d e r l] [2 3 = 2))

!

est-AADT[link_orderl[2]=5;
break;
] P end if the link is mATEt */

if

I
est-AADT[link-order] [2]=7;
break;
) P end if the link is pATR + mATR */

((sate-link[coun t] ~ t ~ A A D T [l i n k ~ o ~ l [O l) & & (~ t ~ A ~ T ~ l i ~ ~ o r d ~ I ~ ~ l ~ ~ ~

if ((s ~ e ~ l i n k [c o u n t l ~ t ~ ~ ~ l i ~ o r ~ l [O 1) & & (
est,AAD~linkorder] [2]=3))

(
break;
] P end if the link is sate */

(
est-AADT[link-orderl[O] = sate-link[countl;
est-AADT[link-orderI[21= 3;
break;
) P end if the link is new */

if (est-AADTtlink-orderl [O l d)

) /* end for link-order*/
] P end for count*/

P add satellite estimates into averaging array for sate-only links and for
links wlm ATR and Sate */
for (count *, count c no-sateA; count ++)

- J
- for (linkor-, linliordexno-link; linkorder++)

if (av~ADT@ink~orderl[Ol== sat-est[countI[Ol) P link ID match*/
(
avg_ADT[link-orde4[31= av~ADTPinLorderl[3]+1; P# of estimates */
av&ADTWnk-orderl[41= a v ~ A D ~ k ~ o r d e r l [4 1 +

break;
] else if (av&AD~liok-order][O]d)

(
avg_ADT[link-orderI[31= av&ADT@ink-ordex][3]+1; P# of

avg_ADTtlink-orderl[4] = avg_AD~link-orderIt41+

a v g ~ ~ l i n k - o d e r l [O l = satest[countl[Ol; I* link ID*/
break;
] /*end else if*l

] /*end for link-order */

sat,est[countl[l]; /* sum of estimates */

estimates */

sat-est[countl[l]; /* sum of estimates */

) /*end for count */

P testing
for (link-order=O; link-orderao-link, link-order*)

{
printf("\nlink ID = %f, # of est. = %f, sum of est. = %fW,

] end for*/
a v ~ ~ ~ l i n k ~ o r d e r l [O I , a v ~ ~ ~ l i n k ~ o r d e r l [3 l , a v g A D T [l i ~ ~ o r d e r l [4 l) ;

/* averaging ground+satellite estimates of AADT */
for (link-ordd, link-orderaolink link-orderH)

(
if (av~ADT[link~orderl[Ol=O)
1
break,
) else

(
for (count = 0; count< no-link, count ++)

I
sat-avg = avgADT[link~~rl[4I/avg_ADT[linkorderl[31;
avg = ((avg_ADT[link_order1[21+ avg-ADTPiuk~ordal[41) 1

if ((est,AADT[count][Ol =

{

(avg-AD~ink_ordeal[l] + avgADTIlink_Orderl[31));

avgADT[link-order] [0])&8c(est-AAD~count][2] != l)&&(est-AADT[count] [21 !=4))
P link ID match and it is not pATR link*/

est-AAD~countl[4] = avg;
) /*end P I

) /* end for count*/
) P end else*/

) Pend for link-order*/

sate-not-ATR=Q
for (count =O, count <no-link; count ++)

{
if (~~t-AADT[count][2]=3)
(
sate-not-ATR = sate-not-ATR +l;
} /* end ifV

)P end for count*/

P check if there are links without data */
diff =O; Pinitialize+/

if (mATR + sate-not-ATR + p-ATR no-link)

no-linlr\n");

1
printf("ALERT! SO

printf("m-Am = 46d. p-ATR = 9bd, sate-not-ATR = MW, m-ATR, p-ATR,

fprintf(file-out, "ALERT! SO

fprintf(ffle-out, "m-ATR = %d , p-ATR = %d , Sate-uotATR = a",
) r e n d i f * /
else if (m-AlR + sate-not-ATR + p-ATR < no-link)

G IS WRONG! m-ATR + p-ATR + sate-not-ATR <

sate-not-ATR) ;

sategotATR < no-linlr\n");

m A T R p-ATR, sate-not-ATR);

G Is WRONG! m-ATR + p-ATR +

{
diff = no-link - m-ATR - p-ATR - sate-not-Am
printf("There are %d links without any ground data or satellite

data.b", diff);

satellite data.W, diff);*/
) rend else iP/

/* fprintf(file-out, "There are %d links without any ground data or

I

,

I* Use ARITHMETIC MEAN of estimated AADT as the estimations for the links

r i

without ground+ sat data */
temp-total =O,
for (count+, count ao-link; count++)

(
if (est-AADT[count][O] !a)

I
temp-total = temp-total+ est-AADT[count][4];
] /* end if*/

} /* end for*/
est-GS-mean = temp,total/(no-link - diff);

P' Calculate ground+satellite VMT */
for (count =O, count <no-link count +e)

{
for (link-order a, link-order< no-link link-order++)
(
if (link-vmt[countl[Ol= es-AADT@ink-orderl[Ol)
(
link-mt[countl [31= link-vmt[count] [1 1 * est-AADTllink-order] [4 I;
break;
] P end ifV

]/* end for count*/
] /* end for link-order*/

index =O;
for (count =O, count <no-link; count i+)

I
if (est-AADT[count][2]=0) index = index+l;
} /*end for count*/

P' check if the # of links without data is correct*/
if (index != diff)
(
printf('lnprob1em about # of links without data?!");

fprintf(fi1e-out, "bproblem about # of links without data?!");
) else

for (count*, count ao-link; count ++)
I
if (link-vmt[countl[3] 4)

(
linkvmt[countl[3]= linkvmt[countl[ll * est-GS-mem, P use

) P e n d i r /
average est. AADT for links without data*/

)P end for count*/
) r end else*/

total-GS-vmt =O;
for (count =O; count <no-link; count ++)

I
if (link-vmt[count][3 1 4)
(
printf("We got problem for vmt array?!");
fprintf(fiie-out, "We got problem for vmt array?!");
break,

) else
{
total-GS-vmt = total-GS-vmt + link-vmt[count][3];
) /*end else*/

} P end for*/

/* print out the estimated AADT for the links with data */
-printf("b 0 -- link without datab");
printf("b 1 -- link with permanent ATR onlyb");
printf('ln 2 -- link with portable ATR onlyb");
printf('b 3 - link with satellite data onlw) ;
printf("\n 4 - link with permanent ATR & SateKteh");
printf("\n 5 - link with portable ATR & Satelliteb");
prind("b 6 -- link with permanent & portable ATRW);
printf("b 7 -- link with permanent, portable ATR & satelliteW);

Pfprintf(file-out, "b 0 -- link without datab");
fprintf(file-out, "b 1 -- link with permanent ATR onlyW);
fprintf(file-out, '%I 2 -- link with portable ATR onlyb");
fprintf(file-out, "\n 3 -- link with satellite data only\n");
fprintf(file-out, "b 4 -- link with permanent ATR & Satelliteb");
fprintf(fi1e-out, "b 5 -- link with portable ATR & SatelliteW);
fptmtf(file-out, "\XI 6 -- link with permanent & portable ATRb");
fprintf(fiile-out, "b 7 -- link with permanent, portable ATR &
satelliteb"); */

Pfor (link-ord-, linkorderao-link, link-order*)
{
printf(Wm link %f, the type is %f, estimated AADT = %fin,

fprintf(fi1e-out,"Wor link %f, the type is %f, estimated AADT =
es-AADTIlink,orderl[Ol, est~AAD~nk~orderIlE21, e s t - A A D ~ ~ - ~ 1 ~ 4 1) ;

%f\n",est-AADT[link-orderl[Ol ,es~AADTllink~orderI[21,
est-AADT[link-order] 141);
) end for */

printf('7nThe total ground+satellite VMT for %d links in this class is
96f.b" , no-link, total-GS-at);
I* */
P end of printing results*/

P testing */
for (count =O, count < no-link; count H)
{
printf("\nFor link %f, the type is %f, the true AADT is %f. the G-AAJIT

is %f, the GS-AADT is %f.b",
est-AADT[count] [O],est~AADT[countl[2l,est~AADT[count][l],est-AADT[count1[31,
est-AADT[count][4]);

} I* end for count*/

/* Read True AADT for a l l links */
fd = open(infile5,O-RDONLY);
fie-in = fdopen(fd, "r");
if (file-in = Nuu)

{

n

printf("Cannot open length file %s b",infile4);
fprintf (stdem."Cannot open length file %s b", infile4);
] /*end if */
else
(
index =O,
f l 9 . 0 ;
for (count=l; count <=no-link; count cl-)

I
fscanf (file-in, "%f W, MI);
true[count]=f 1;
index=index+l ;
} Pend for count*/

fclose(fi1e-in);
} P end else for reading true AADT * I

P check if # of true AADT = # of links*/
if (index != no-link)

(
printf("# oftrue AADT is not # of links!!!");

/* fprintf(file-out. "# of true AADT is not # of links!!!");*/
] /* end if */

P testing*/
printf("G-mean = %f, GS-mean = %f.W, est-G-mean, est-GS-mean);
for (count =I; count <=no-link; count++)
(
printf("bTrue AADT =%f",true[count]);
1

P put true AADT into array est-AADT *I
for (count =I; count <= no-link; count ++)

I
for (link-or- link-order < no-link; link-order ++)
(
if ((est-AADT[link-orderI[21=3) &&(est_AADT[link_orderl[0] = count))
(
est-AADT[linkorderl[l] = true[count];
est-AAD~link-order1[31= est-G-mem;
break;
I

if ((est-AADT[li~-o~l[Ol= count) && (e s t ~ ~ n k ~ o ~ l k _ o r d e a 1 [2 1

I
est-AADnlink-orderI [11 = true[count];
break;
I

(

!=O)&&(est-AADTDnk-orderl [2]!=3))

if ((est-AADT[link-orderI[21 =O) && (est_AADTPink_order][O]--~ount))

. .

estAAD~link-orde][Ol= count;
est-AADT[Unk-orderl[1 I = me[count];

est_AADT@1k-orderl[3] = est-G-mean;
est-AADT[link-order][4] = est-GS-mean;
break;
1

] /* end for link-order*/
} /* end for count */

P testing */
for (count e, count < no-link; count cc)

{
printf('lnF0r link Sf, the type is %f, the true AADT is %f, the G-AADT

is %f, the GS-AADT is %f.b",
est~AADT[count][O].est~~T[countl[2]~est~AADT[countl[1 l,est-AADT[count][3],
est-AADT[countl[4]);

) /* end for count*/

P Calculate True VMT */
for (count 4; count <no-link; count ++)

{
for (link-order =O, link-oder< no-link; link-order+t)
{
if (link-mt[countl[Ol = est-AADT@ink-ordexl[Ol)

I
link-vmt [coun t1[4] = linkvmt[coun tl [1 I * es t-AADTPink-order] [11;
break;
} P end if*/

)/* end for count*/
} /* end for link-order*/

total-t-vmt a,
for (count =O, count <no-link; count +t)

{
total-t-vmt = total-t-vmt + link~vmt[countl[4];
] /* end for*/

fprintf(fie-out, "%f " , total-t-vmt);
fprintf(fiie-out, "%f " ,total-G-vmt);
fprintf(fde-out, "%fin", total-GS-vmt);
fclose(file-ou t) ;

P open for 96 m o r of VMT file and calculate %or of W/
file-out = fopen(outfile3, "w");
if (fde-out = NULL)

(
printf("Cann0t open output Ne 96s \n",OUtfile3);
fprintf (stdm,"Cannot open output file %s b", outfile3);
] Popen output file for % error file*/

fprintf(fWout, "%f %h", vmt-G-err, vmt-GS-err);

fclose(fi1e-out);

-
4

/* open for % error of AADT file*/
fde-out = fopen(outfile2, "w");
if (file-out = NULL)

(
printf("Cannot open output file 8 s \n",outfile2);
fprintf (stdm,"Cannot open output file %s b", outfile2);
) Popen output file for 8 error of AADT file*/

P Calculate the square percent Error of estimated AADT and print them into
another fde*/
est-G-exr = 0.0;
est-GS-err = 0.0;
temp-G-em d.0;
temp-GS-err =0.0;
low-G-aadt = low-GS-aadt = 0;
for (count =O, count < no-link; count ++)

{
temp-G-err = (est~AAD~countl[3]est~AADT[coun tl [l l)/est-AADT[coun t] [11;
if (te.mp-G-err < 0)

I
low-G-aadt = low-G-aadt +l;
)P end if *I

est-G-err = est-G-err + (temp-G-erP temp-G-err);
temp-GS-err = (est-AADT[count] [4]estAADT[countl[1])/est-AADT[count] [1 I;
if (temp-GS-err < 0)

I
low-GS-aadt = low-GS-aadt +l;
)P end if */

est-GS-en = est-GS-m + (temp-GS-err*temp-GS-exr);
) /* end for */

fprintf(fie-out, "%f %h", est-G-err, est-GS-exr);

fclose(fi1e-out);

printf("b 9bd out of 100 est. AADT(G) are lower than true AADT.", low-G-aadt);
printf("b ?id out of 100 est. AADT(GS) are lower than true AADT.",
low-GS-aadt);
printf('7n %d out of 100 est. VMT(G) are lower than true VMT.", low-G-at);
printf("\n 9bd out of 100 est. VMT(GS) are lower than true VMT.", low-GS-vmt);

for (count = 0; count<no-link; count++)
fprintf(aadtp. "%f %f %f %fin", est-AADT[count][O],
est-AADT[countl[1 I, est-AADT[countI[3l1 est-AADT[count] [4 I);

fclose(aadtp);

) /*end of main*/

. .

I

Appendix E. Model-Based Estimation Code

function(seed, param, reps)
{

This function generates the model based AADT and Vh4T estimates for a fmed
set of input parameters.

The output is me VMT, ground VMT estimate, ground & sat VMT estimate,
ground residual, and ground & sat residual.

'seed' must be a negative integer

'param' is the input parametas for run.traffic

2

The simulation is run 'reps' times (the seed is incremented each time).

AAJ3T.G <- numeric(100)
AADT-GS <- numeric(100)
var.G <- numeric(100)
var.GS <- numeric(100)
MGE <- numeric(100)
MGSE <- numeric(100)
nsatobs <- (param[11 * param[6] * 365)/param[5]
print(nsatobs)
vmt <- matrix(nrow = reps, ncol = 5)
write.table@aram, file = "input", append = F)
for(i in lxeps) {

write(seed - j + 1, fie = "idum.in", append = F)
unix("cat input I run.traffic")
inputmat <- matrix(scan("design.out"), byrow = T, ncol = 4)
lengths <- matrk(scan("length.out"), byrow = 2, ncol = 2)[, 21
AADT.T <- ~an("aadt.out")
nrow e- length(inputJMt[, 11)
wts e- a~.vector(c@ep@mm[8]~-2, nsatobs), rep(param[101A-2,

IogCounts <- log(input.mat[, 11) + 142 * wts)
links.G <- unique(inpuLmat[(nsatobs + l):nrow, 21)
links.GS <- unique(inputmat[, 21)
dow.factor <- as.character(input.mat[, 31)
month.factor <- as.character(input.matat[, 41)
linkfactor <- as.characteafinput.mat[, 21)
h.GS <- lm(1ogCounts - lintfactor + dow.factor + monthfactor,

lm.G <- Im(1ogCounts - 1ink.factor + dow.factor + monthfactor.

nrow - nsatobs)))

weights = wts)

subset = as.vector((nsatobs + 1):nrow))
c0ef.G <- dummy.coef(lm.G)$link.factor
mean.G <- dummy.coef(lm.G)$(ntercept)"
coef.GS <- dummy.cuef(lm.GS)$linkfactor
mean .GS <- dummy.coef(Im.GS)$"(Intercept)"
~~mmary.G <- s~mmary(lm.G)
SUUUXMIY.GS <- ~~mmary(lm.GS)
sigma.G <- summary.G$sigma
sigma.GS <- summary.GS$sigma
par.cov.G <- (sigma.W2) * (summary.G$cov.unded)

for(k in l:max(links.G)) {
P~~.cov.GS <- (SigmrtGSY) * (SUIIUIMIY.GS$COV.UI~SC~~~~)

c.k <- as.matrix(c(1, rep(0. k - l), 1, rep(0. mol(
p~c0v.G) - k - 1)))

var.G[k] <- cr~s~prod(c.k, PZ.COV.G %*% C.k)
AADT.G[k] <- exp(mean.G + coef.G[as.character(k)] -

var.G[kl/2)
I
for(k in (max(links.G) + 1): 100) {

v~.G[k] <- PX.COV.G[1, 11
AADT.G[k] C- e~p(rnean.G - ~ . G [k] / 2)

1
for(k in 1inks.GS) {

1 <- as.numeric(row .names(as.data.fiame(links.GS)) [

c.k <- as.malrix(c(1, rep(O.1- l), I, rep(0, mol(

var.GS[k] <- crossprod(c.k, par.cov.GS %*% ck)
AADT.GS[k] <- exp(mean.GS + coef.GS[as.charactex(k)] -

links.GS = k])

P~~.COV.GS) - 1 - 1)))

var.GS [k]/2)
1
links <- seq(1:lOO)
links.no.GS <- links[- links.GS]
fm(k in linb.no.GS) (

var.GS[k] <- par.cov.GS[l, I]
AADT.GSB] <- exp(mean.GS - var.GS[k]R)

I
VMT.T <- sum(1engths * AADT.T)
VA4T.G <- sum(lengths * AADT-G)
VMT.GS <- sum(1engths * AADT.GS)
MGEUl<- sqrt(mean(((AADT.T - AADT.G)/AADT.T)Y))
MGSEU] <- sqrt(=(((AADT.T - AADT.GS)/AADT.T)"2))
vmt[i, 1 <- c(VMT.T, W . G , VMT.GS, MGEU], MGSEU])

1
vmt #?his is the real one, next line is temporary

cbindWGE, MGSE)
I

:

Appendix F. Scatterplots of the Traditional Estimation Method vs. the Model-Based
Estimation Method (100 replications; M = )

-
a,
L

,

.
. * . .

0 .
* .

0

8 . . .
. . '*
d

* .
0 .

. : c
** . .

0 . .

*\

.
a .

.*

1

0

0
cu

In
Y-

o

0
F.
0

In

0
9

9
0

O C O SZ'O OZ'O S l - 0 01'0 SO'O 0'0

P o w w pasw lapow

. -.. . . .
,

2.

c a
E
c,
0
0
[I

06'0 SZ'O OZ'O S1.0 01'0 so-0 0'0

PoqlauJ pa=q lapow

0

0
Y

m
T

0

0
7

0

rn
0
9

9
0

E

..
v)
t
3
L

m
m
0

a b

c a
' E
c,
0
0
K

0 cu
0

Lo
7

0

0
F

0

v)
0
0

9
0

I

.. cn c
2

E

a

1 I 1 I I I I

O€'O sz-0 OZ'O 51-0 01'0 SO'O 0'0

P0WU.J paseq ppoyy

0

0
c\!

rr,
7

0

0
T

0

m
0
0

9
0

a- m
0-
II

U

a
3
D
v)

p1

C
CCI

E

e

* e
e

*e

e

0
CY
0

m
Y

0

0
7

0

v)

0
9

9
0

OE'O SZ'O OZ'O SL'O 01'0 SO'O 0'0

i/j c
3
I

I a
3
CT
v)

C a
E

I I I I I I I \ I
O€'O SZ'O OZ'O SC'O 01-0 SO'O 0'0

pollmu paseq lapow

9
0

i

c,
0
0
[r

e

\.: e

3.

OE'O SZ'O OZ'O Sf'O 01'0 SO'O 0'0

0

0

10
- 7

0

0

i-2

In

0
- 9

- 9
0

i

	Executive Summary
	1 Introduction
	Air-Ground Coordinated Field Tests
	0 2.1 Acqulsibon of Data
	Analysis of Data
	2.3 Results

	3 ImageProcessing
	3.1 Identifjring Stationary and Dynamic Pixels

	1 3.2 Overview ofthe Iterative Procedure
	3.3 Numerical Study
	3i3.1 Simulated Images
	3.3.2 Scanned Images

	4 Use of Image Data
	4.1.1.1 Log-NormalGeneration
	4.1.1.2 Poisson Generation
	4.1.1.3 Output of Data Generation
	4.1.2 Estimation ofTr&c Parameters

	4.1.2.1 Traditional Estimation Method
	4.1.2.1 Traditional Estimation
	4.2 Numerical Study
	Suary and Future Work
	References Cited

